comparison peak_calling_script.py @ 8:15a3d5439e7b draft

Uploaded
author nitrozyna
date Thu, 29 Mar 2018 12:06:11 -0400
parents
children
comparison
equal deleted inserted replaced
7:d10ac6a3f293 8:15a3d5439e7b
1
2 from __future__ import print_function
3 import sys
4 import numpy
5 import math
6 import random
7 import csv
8 import matplotlib.pyplot as plt
9 import pystache
10 import json
11 from sklearn import mixture
12
13
14 x = []
15 y = []
16
17 toolInput = sys.argv[1]
18 toolOutput = sys.argv[2]
19 toolWebsite = sys.argv[3]
20 inName = sys.argv[4]
21
22 with open(toolInput, 'rb') as csvfile:
23 spamreader = csv.reader(csvfile, delimiter='\t')
24 for i, row in enumerate(spamreader):
25 if i != 0:
26 x.append(int(row[0]))
27 y.append(int(row[1]))
28
29 csvfile.close()
30
31 # you have to set this manually to weed out all the noise. Every bit of noise should be below it.
32 threshold = 20
33 rightLimit = 200
34
35 # unravelling histogram into samples.
36 samples = []
37 for no, value in enumerate([int(round(i)) for i in y]):
38 if value > threshold and no < rightLimit:
39 for _ in range(value):
40 samples.append(no)
41
42 # total number of reads
43 totalAmp = len(samples)
44
45 # reshaping numpy arrays to indicate that we pass a lot of samples, not a lot of features.
46 xArray = numpy.array(x).reshape(1, -1)
47 samplesArray = numpy.array(samples).reshape(-1, 1)
48
49 # learning a gaussian mixture model.
50 gmm2 = mixture.BayesianGaussianMixture(n_components=2).fit(samplesArray)
51
52 # getting the mean of each gaussian
53 means = [x[int(round(i[0]))] for i in gmm2.means_]
54
55 # rounding errors
56 roundErr = [i[0] - int(round(i[0])) for i in gmm2.means_]
57
58 # getting the coverage of each gaussian
59 weights = gmm2.weights_
60
61 sampleID = inName
62
63 #with open(toolOutput, "w") as f:
64 # print("sampleID", file=f, end="\t")
65 # print("Al1", file=f, end="\t")
66 # print("Al2", file=f, end="\t")
67 # print("frac1", file=f, end="\t")
68 # print("frac2", file=f, end="\t")
69 # print(file=f)
70 # print(sampleID, file=f, end="\t")
71 # print(means[0], file=f, end="\t")
72 # print(means[1], file=f, end="\t")
73 # print(weights[0], file=f, end="\t")
74 # print(weights[1], file=f, end="\t")
75
76 template_dir = {
77 "sampleID": sampleID,
78 "al1": means[0],
79 "al2": means[1],
80 "freq1": weights[0],
81 "freq2": weights[1],
82 "x": json.dumps(x),
83 "y": json.dumps(y)
84 }
85 with open(toolWebsite) as wt:
86 with open(toolOutput, "w") as wr:
87 wr.write(pystache.render(wt.read(), template_dir))
88
89 wt.close()
90 wr.close()