# HG changeset patch
# User nml
# Date 1486402264 18000
# Node ID 6f870ed59b6e731dde904e342d220e1bffb84044
Uploaded
diff -r 000000000000 -r 6f870ed59b6e srst2.pl
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/srst2.pl Mon Feb 06 12:31:04 2017 -0500
@@ -0,0 +1,378 @@
+#!/usr/bin/env perl
+
+
+use strict;
+use warnings;
+use Cwd;
+use File::Copy;
+
+#The first 4 arguments should be in this format:
+# /path/to/srst2.py bam_output scores_output pileup_output ...
+
+my $binary = $ARGV[0];
+shift;
+
+my ($bam_results, $scores, $pileup, $job_type, $txt_results, $genes_results, $fullgenes_results, $name, $databases);
+my ($allele_results,$allele_type);
+
+
+$bam_results = $ARGV[0];
+shift(@ARGV);
+$scores = $ARGV[0];
+shift(@ARGV);
+$pileup = $ARGV[0];
+shift(@ARGV);
+
+#Now that we shifted the first 4 arguments, get the rest depending on the job type. There are three:
+#I pass a letter to tell us which job type was selected.
+$job_type = $ARGV[0];
+shift(@ARGV);
+
+#If m, mlst only: we only have one mlst output file
+if($job_type eq "m")
+{
+ $txt_results = $ARGV[0];
+ shift(@ARGV);
+ $allele_results = $ARGV[0];
+ shift(@ARGV);
+ $allele_type = $ARGV[0];
+ shift(@ARGV);
+}
+#If g, genedb only: we have two outputs: genes and fullgenes. We also get the name of the database
+elsif($job_type eq "g")
+{
+ $genes_results = $ARGV[0];
+ shift(@ARGV);
+ $fullgenes_results = $ARGV[0];
+ shift(@ARGV);
+ $databases = $ARGV[0];
+ shift (@ARGV);
+}
+#If b, both mlst and genedb: We will have three output files and the database name.
+else
+{
+ $txt_results = $ARGV[0];
+ shift(@ARGV);
+ $genes_results = $ARGV[0];
+ shift(@ARGV);
+ $fullgenes_results = $ARGV[0];
+ shift(@ARGV);
+ $databases = $ARGV[0];
+ shift(@ARGV);
+}
+
+#After we get the output files/database name, now we get the name of the reads
+#This allows SRST2 to give meaningful output instead of just printing 'dataset_xxx' as the sample name
+my $filename = $ARGV[0];
+shift(@ARGV);
+
+#This index offset is used to determine where the 'genedb' option is located.
+#If only a single-end input, the genedb will be 3 positions into the arguments:
+# -input_se sample.fastq --genedb database.fasta
+my $index_offset = 3;
+
+print @ARGV;
+#change the file extensions of the input reads so srst can use them
+
+#Usually the file name looks like this: sample_S1_L001_R1_001.fastq
+#If we use this file name, it confuses srst2 a lot. So we just extract
+#the sample name to use as input file name.
+my @file_name = split /_/, $filename;
+$name = "temp_file_name";
+
+my ($for_read, $rev_read, $sing_read, $database);
+if ($ARGV[0] eq "--input_pe")
+{
+ #Increment index offset if we paired-end inputs
+ $index_offset++;
+
+ $for_read = $name."_1.dat";
+ $rev_read = $name."_2.dat";
+
+ symlink($ARGV[1], $for_read);
+ symlink($ARGV[2], $rev_read);
+
+ $ARGV[1] = $for_read;
+ $ARGV[2] = $rev_read;
+}
+else
+{
+ $sing_read = $name.".dat";
+
+ symlink($ARGV[1], $sing_read);
+
+ $ARGV[1] = $sing_read;
+
+}
+#If we are running a job to include genedb, use the database name for input file name
+if ($job_type eq 'g' | $job_type eq 'b')
+{
+ my @db_names = split /,/, $databases;
+ my $num_db = @db_names;
+ my %names_hash = ();
+ # loop through dbs to replace spaces with _ and check for duplicates
+ for (my $i = 0; $i < $num_db; $i++){
+ $db_names[$i]=~s/ /_/g;
+ if( exists($names_hash{$db_names[$i]}) ) {
+ print STDERR "More than one database with the same name";
+ exit(1);
+ }else{
+ $names_hash{$db_names[$i]}=$db_names[$i];
+ }
+ }
+
+
+ foreach my $db_name (@db_names){
+ (my $base = $db_name) =~ s/\.[^.]+$//;
+ $database = $base.".dat";
+
+ symlink($ARGV[$index_offset], $database);
+ $ARGV[$index_offset] = $database;
+
+ $index_offset++;
+ }
+}
+
+for (my $i =0; $i< @ARGV; $i++){
+ if (index($ARGV[$i], "maxins") != -1){
+ my ($maxins, $minins);
+ my @b2args = split(' ', $ARGV[$i]);
+ for (my $j = 0; $j < @b2args; $j++){
+ if (index($b2args[$j], "maxins") != -1){
+ $maxins = $b2args[$j+1];
+ }
+ if (index($b2args[$j], "minins") != -1){
+ $minins = $b2args[$j+1];
+ }
+ }
+ if ($maxins - $minins < 0){
+ print STDERR "--minins cannot be greater than --maxins";
+ exit(1);
+ }
+ }
+}
+
+
+
+my $command = "python $binary @ARGV";
+
+my $exit_code = system($command);
+
+my $cur_dir = getcwd();
+# make arrays for using multiple custom databases (creates multiple output files - need to be concatenated)
+my (@genefiles, @bamfiles, @pileupfiles, @fullgenefiles, @scoresfiles);
+
+# go through files in the output directory to move/concatenate them as required.
+
+foreach my $file (<$cur_dir/*>)
+{
+ print $file, "\n";
+ #Will cause problems if any files have 'mlst' in them
+ if ($file =~ /mlst/)
+ {
+ move($file, $txt_results);
+ }
+ elsif ($file =~ /\.bam$/)
+ {
+ push @bamfiles, $file;
+ }
+ elsif ($file =~ /\.scores$/)
+ {
+ push @scoresfiles, $file;
+ }
+ elsif ($file =~ /\.pileup$/)
+ {
+ push @pileupfiles, $file;
+ }
+ elsif ($file =~ /__fullgenes__/)
+ {
+ push @fullgenefiles, $file;
+ }
+ elsif ($file =~ /__genes__/)
+ {
+ push @genefiles, $file;
+ }
+ elsif ($file =~ /all_consensus_alleles.fasta$/ && $allele_type eq 'all') {
+ move($file,$allele_results);
+ }
+ elsif ($file =~ /new_consensus_alleles.fasta$/ && $allele_type eq 'new'){
+ move($file,$allele_results);
+ }
+}
+
+
+my ($cmd, $temp_head, $temp_full, $cat_header, $final_bam, @headers );
+
+# create new concatenated bam file with all bam files.
+if (@bamfiles > 1){
+ my $counter = 0;
+ $cat_header = "cat_header";
+ while ($counter < @bamfiles) {
+ $headers[$counter] = "bam_header".$counter;
+ # make a header file for each bam results file
+ my $cmd = "samtools view -H $bamfiles[$counter] > $headers[$counter]";
+ system($cmd);
+ if ($counter >= 1){
+ # only keep the @hd and @pg from first file because the final concatenated file can only have one of each (doesn't matter location)
+ $temp_head="cut_head".$counter;
+ # cut off first row and last row of each file (the @HD and @PG)
+ $cmd = "tail -n +2 $headers[$counter] | head -n -1 > $temp_head";
+ system($cmd);
+ unlink $headers[$counter];
+ # replace the old header with the new cut header in the array
+ $headers[$counter] = $temp_head;
+ }
+ $counter++;
+ }
+ # combine all header files
+ $cmd = "cat ".join(" ",@headers)." > $cat_header";
+ system($cmd);
+
+ $final_bam = "final_bam";
+ # concatenate all the bam files *must include the concatenated header file created above
+ $cmd = "samtools cat -h $cat_header -o $final_bam ".join(" ",@bamfiles)." ";
+ system($cmd);
+
+ # sort the bam file so it can be indexed
+ $cmd = "samtools sort $final_bam 'last_bam'";
+ system($cmd);
+
+ # move bam file to where Galaxy expects it.
+ $cmd = "mv 'last_bam.bam' $bam_results";
+ system($cmd);
+} else {
+ # only one bam file, don't need to concatenate
+ move($bamfiles[0], $bam_results);
+}
+
+# concatenate all pileup files
+if (@pileupfiles > 1){
+ $cmd = "cat ".join(" ",@pileupfiles)." > $pileup";
+ system($cmd);
+} else {
+ move($pileupfiles[0], $pileup);
+}
+
+# perform find-replace to restore original user-specified file names
+foreach my $gene (@genefiles){
+ my $data = read_file($gene);
+ $data =~ s/temp_file_name/$file_name[0]/g;
+ write_file($gene, $data);
+}
+
+foreach my $gene (@fullgenefiles){
+ my $data = read_file($gene);
+ $data =~ s/temp_file_name/$file_name[0]/g;
+ write_file($gene, $data);
+}
+
+# concatenate gene files with a space separating each file
+if (@genefiles > 1){
+ my $join = join(" <(echo) ", @genefiles);
+ my @args = ("bash", "-c", "cat $join > $genes_results");
+ system(@args);
+} else {
+ # only one gene results file
+ move($genefiles[0], $genes_results);
+}
+
+# concatenate full gene results files but only keep header in first file.
+if (@fullgenefiles >1){
+ for (my $i= 1; $i < @fullgenefiles; $i++){
+ # go through all files but the first one to remove headers
+ # create a temp file to save the file after header is removed
+ $temp_full = "temp_full".$i;
+ $cmd = "tail -n +2 $fullgenefiles[$i] > $temp_full";
+ system($cmd);
+ unlink $fullgenefiles[$i];
+ $fullgenefiles[$i] = $temp_full;
+ }
+ $cmd = "cat ". join(" ",@fullgenefiles)." > $fullgenes_results";
+ system($cmd);
+} else{
+ # only one full gene results file
+ move($fullgenefiles[0], $fullgenes_results);
+}
+
+# concatenate full gene results files but only keep header in first file.
+if (@scoresfiles >1){
+ for (my $i= 1; $i < @scoresfiles; $i++){
+ # go through all files but the first one to remove headers
+ # create a temp file to save the file after header is removed
+ $temp_full = "temp_full".$i;
+ $cmd = "tail -n +2 $scoresfiles[$i] > $temp_full";
+ system($cmd);
+ unlink $scoresfiles[$i];
+ $scoresfiles[$i] = $temp_full;
+ }
+ $cmd = "cat ". join(" ",@scoresfiles)." > $scores";
+ system($cmd);
+} else{
+ # only one scores file
+ move($scoresfiles[0], $scores);
+}
+
+# cleanup srst2 output and temp files
+foreach my $file (@fullgenefiles){
+ unlink $file;
+}
+foreach my $file (@genefiles){
+ unlink $file;
+}
+foreach my $file (@pileupfiles){
+ unlink $file;
+}
+foreach my $file (@bamfiles){
+ unlink $file;
+}
+foreach my $file (@headers){
+ unlink $file;
+}
+foreach my $file (@scoresfiles){
+ unlink $file;
+}
+unlink $temp_head;
+unlink $temp_full;
+unlink $cat_header;
+unlink $final_bam;
+
+#get rid of symlinks
+if ($for_read)
+{
+ unlink $for_read;
+}
+if ($rev_read)
+{
+ unlink $rev_read;
+}
+if ($sing_read)
+{
+ unlink $sing_read;
+}
+if ($database)
+{
+ unlink $database;
+}
+$exit_code = $exit_code >> 8;
+exit $exit_code;
+
+sub read_file {
+ my ($filename) = @_;
+
+ open my $in, '<:encoding(UTF-8)', $filename or die "Could not open '$filename' for reading $!";
+ local $/ = undef;
+ my $all = <$in>;
+ close $in;
+
+ return $all;
+}
+
+sub write_file {
+ my ($filename, $content) = @_;
+
+ open my $out, '>:encoding(UTF-8)', $filename or die "Could not open '$filename' for writing $!";;
+ print $out $content;
+ close $out;
+
+ return;
+}
\ No newline at end of file
diff -r 000000000000 -r 6f870ed59b6e srst2.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/srst2.py Mon Feb 06 12:31:04 2017 -0500
@@ -0,0 +1,1548 @@
+#!/usr/bin/env python
+
+# SRST2 - Short Read Sequence Typer (v2)
+# Python Version 2.7.5
+#
+# Authors - Michael Inouye (minouye@unimelb.edu.au), Harriet Dashnow (h.dashnow@gmail.com),
+# Kathryn Holt (kholt@unimelb.edu.au), Bernie Pope (bjpope@unimelb.edu.au)
+#
+# see LICENSE.txt for the license
+#
+# Dependencies:
+# bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml version 2.1.0
+# SAMtools http://samtools.sourceforge.net Version: 0.1.18 (Version: 0.1.19 DOES NOT WORK - loss of edge coverage)
+# SciPy http://www.scipy.org/install.html
+#
+# Git repository: https://github.com/katholt/srst2/
+# README: https://github.com/katholt/srst2/blob/master/README.md
+# Questions or feature requests: https://github.com/katholt/srst2/issues
+# Manuscript: http://biorxiv.org/content/early/2014/06/26/006627
+
+
+from argparse import (ArgumentParser, FileType)
+import logging
+from subprocess import call, check_output, CalledProcessError, STDOUT
+import os, sys, re, collections, operator
+from scipy.stats import binom_test, linregress
+from math import log
+from itertools import groupby
+from operator import itemgetter
+from collections import OrderedDict
+try:
+ from version import srst2_version
+except:
+ srst2_version = "version unknown"
+
+edge_a = edge_z = 2
+
+
+def parse_args():
+ "Parse the input arguments, use '-h' for help."
+
+ parser = ArgumentParser(description='SRST2 - Short Read Sequence Typer (v2)')
+
+ # version number of srst2, print and then exit
+ parser.add_argument('--version', action='version', version='%(prog)s ' + srst2_version)
+
+ # Read inputs
+ parser.add_argument(
+ '--input_se', nargs='+',type=str, required=False,
+ help='Single end read file(s) for analysing (may be gzipped)')
+ parser.add_argument(
+ '--input_pe', nargs='+', type=str, required=False,
+ help='Paired end read files for analysing (may be gzipped)')
+ parser.add_argument(
+ '--forward', type=str, required=False, default="_1",
+ help='Designator for forward reads (only used if NOT in MiSeq format sample_S1_L001_R1_001.fastq.gz; otherwise default is _1, i.e. expect forward reads as sample_1.fastq.gz)')
+ parser.add_argument(
+ '--reverse', type=str, required=False, default="_2",
+ help='Designator for reverse reads (only used if NOT in MiSeq format sample_S1_L001_R2_001.fastq.gz; otherwise default is _2, i.e. expect forward reads as sample_2.fastq.gz')
+ parser.add_argument('--read_type', type=str, choices=['q', 'qseq', 'f'], default='q',
+ help='Read file type (for bowtie2; default is q=fastq; other options: qseq=solexa, f=fasta).')
+
+ # MLST parameters
+ parser.add_argument('--mlst_db', type=str, required=False, nargs=1, help='Fasta file of MLST alleles (optional)')
+ parser.add_argument('--mlst_delimiter', type=str, required=False,
+ help='Character(s) separating gene name from allele number in MLST database (default "-", as in arcc-1)', default="-")
+ parser.add_argument('--mlst_definitions', type=str, required=False,
+ help='ST definitions for MLST scheme (required if mlst_db supplied and you want to calculate STs)')
+ parser.add_argument('--mlst_max_mismatch', type=str, required=False, default = "10",
+ help='Maximum number of mismatches per read for MLST allele calling (default 10)')
+
+ # Gene database parameters
+ parser.add_argument('--gene_db', type=str, required=False, nargs='+', help='Fasta file/s for gene databases (optional)')
+ parser.add_argument('--no_gene_details', action="store_false", required=False, help='Switch OFF verbose reporting of gene typing')
+ parser.add_argument('--gene_max_mismatch', type=str, required=False, default = "10",
+ help='Maximum number of mismatches per read for gene detection and allele calling (default 10)')
+
+ # Cutoffs for scoring/heuristics
+ parser.add_argument('--min_coverage', type=float, required=False, help='Minimum %%coverage cutoff for gene reporting (default 90)',default=90)
+ parser.add_argument('--max_divergence', type=float, required=False, help='Maximum %%divergence cutoff for gene reporting (default 10)',default=10)
+ parser.add_argument('--min_depth', type=float, required=False, help='Minimum mean depth to flag as dubious allele call (default 5)',default=5)
+ parser.add_argument('--min_edge_depth', type=float, required=False, help='Minimum edge depth to flag as dubious allele call (default 2)',default=2)
+ parser.add_argument('--prob_err', type=float, default=0.01, help='Probability of sequencing error (default 0.01)')
+
+ # Mapping parameters for bowtie2
+ parser.add_argument('--stop_after', type=str, required=False, help='Stop mapping after this number of reads have been mapped (otherwise map all)')
+ parser.add_argument('--other', type=str, help='Other arguments to pass to bowtie2.', required=False)
+
+ # Samtools parameters
+ parser.add_argument('--mapq', type=int, default=1, help='Samtools -q parameter (default 1)')
+ parser.add_argument('--baseq', type=int, default=20, help='Samtools -Q parameter (default 20)')
+
+ # Reporting options
+ parser.add_argument('--output', type=str, required=True, help='Prefix for srst2 output files')
+ parser.add_argument('--log', action="store_true", required=False, help='Switch ON logging to file (otherwise log to stdout)')
+ parser.add_argument('--save_scores', action="store_true", required=False, help='Switch ON verbose reporting of all scores')
+ parser.add_argument('--report_new_consensus', action="store_true", required=False, help='If a matching alleles is not found, report the consensus allele. Note, only SNP differences are considered, not indels.')
+ parser.add_argument('--report_all_consensus', action="store_true", required=False, help='Report the consensus allele for the most likely allele. Note, only SNP differences are considered, not indels.')
+
+ # Run options
+ parser.add_argument('--use_existing_pileup', action="store_true", required=False,
+ help='Use existing pileups if available, otherwise they will be generated') # to facilitate testing of rescoring from pileups
+ parser.add_argument('--use_existing_scores', action="store_true", required=False,
+ help='Use existing scores files if available, otherwise they will be generated') # to facilitate testing of reporting from scores
+ parser.add_argument('--keep_interim_alignment', action="store_true", required=False, default=False,
+ help='Keep interim files (sam & unsorted bam), otherwise they will be deleted after sorted bam is created') # to facilitate testing of sam processing
+# parser.add_argument('--keep_final_alignment', action="store_true", required=False, default=False,
+# help='Keep interim files (sam & unsorted bam), otherwise they will be deleted after sorted bam is created') # to facilitate testing of sam processing
+
+ # Compile previous output files
+ parser.add_argument('--prev_output', nargs='+', type=str, required=False,
+ help='SRST2 results files to compile (any new results from this run will also be incorporated)')
+
+ return parser.parse_args()
+
+
+# Exception to raise if the command we try to run fails for some reason
+class CommandError(Exception):
+ pass
+
+def run_command(command, **kwargs):
+ 'Execute a shell command and check the exit status and any O/S exceptions'
+ command_str = ' '.join(command)
+ logging.info('Running: {}'.format(command_str))
+ try:
+ exit_status = call(command, **kwargs)
+ except OSError as e:
+ message = "Command '{}' failed due to O/S error: {}".format(command_str, str(e))
+ raise CommandError({"message": message})
+ if exit_status != 0:
+ message = "Command '{}' failed with non-zero exit status: {}".format(command_str, exit_status)
+ raise CommandError({"message": message})
+
+
+def bowtie_index(fasta_files):
+ 'Build a bowtie2 index from the given input fasta(s)'
+
+ # check that both bowtie and samtools have the right versions
+ check_command_version(['bowtie2', '--version'],
+ 'bowtie2-align version 2.1.0',
+ 'bowtie',
+ '2.1.0')
+
+ for fasta in fasta_files:
+ built_index = fasta + '.1.bt2'
+ if os.path.exists(built_index):
+ logging.info('Index for {} is already built...'.format(fasta))
+ else:
+ logging.info('Building bowtie2 index for {}...'.format(fasta))
+ run_command(['bowtie2-build', fasta, fasta])
+
+
+def modify_bowtie_sam(raw_bowtie_sam,max_mismatch):
+ # fix sam flags for comprehensive pileup
+ with open(raw_bowtie_sam) as sam, open(raw_bowtie_sam + '.mod', 'w') as sam_mod:
+ for line in sam:
+ if not line.startswith('@'):
+ fields = line.split('\t')
+ flag = int(fields[1])
+ flag = (flag - 256) if (flag & 256) else flag
+ m = re.search("NM:i:(\d+)\s",line)
+ if m != None:
+ num_mismatch = m.group(1)
+ if int(num_mismatch) <= int(max_mismatch):
+ sam_mod.write('\t'.join([fields[0], str(flag)] + fields[2:]))
+ else:
+ logging.info('Excluding read from SAM file due to missing NM (num mismatches) field: ' + fields[0])
+ num_mismatch = 0
+ else:
+ sam_mod.write(line)
+ return(raw_bowtie_sam,raw_bowtie_sam + '.mod')
+
+
+def parse_fai(fai_file,db_type,delimiter):
+ 'Get sequence lengths for reference alleles - important for scoring'
+ 'Get gene names also, required if no MLST definitions provided'
+ size = {}
+ gene_clusters = [] # for gene DBs, this is cluster ID
+ allele_symbols = []
+ gene_cluster_symbols = {} # key = cluster ID, value = gene symbol (for gene DBs)
+ unique_allele_symbols = True
+ unique_gene_symbols = True
+ delimiter_check = [] # list of names that may violate the MLST delimiter supplied
+ with open(fai_file) as fai:
+ for line in fai:
+ fields = line.split('\t')
+ name = fields[0] # full allele name
+ size[name] = int(fields[1]) # store length
+ if db_type!="mlst":
+ allele_info = name.split()[0].split("__")
+ if len(allele_info) > 2:
+ gene_cluster = allele_info[0] # ID number for the cluster
+ cluster_symbol = allele_info[1] # gene name for the cluster
+ name = allele_info[2] # specific allele name
+ if gene_cluster in gene_cluster_symbols:
+ if gene_cluster_symbols[gene_cluster] != cluster_symbol:
+ unique_gene_symbols = False # already seen this cluster symbol
+ logging.info( "Non-unique:" + gene_cluster + ", " + cluster_symbol)
+ else:
+ gene_cluster_symbols[gene_cluster] = cluster_symbol
+ else:
+ # treat as unclustered database, use whole header
+ gene_cluster = cluster_symbol = name
+ else:
+ gene_cluster = name.split(delimiter)[0] # accept gene clusters raw for mlst
+ # check if the delimiter makes sense
+ parts = name.split(delimiter)
+ if len(parts) != 2:
+ delimiter_check.append(name)
+ else:
+ try:
+ x = int(parts[1])
+ except:
+ delimiter_check.append(name)
+
+ # check if we have seen this allele name before
+ if name in allele_symbols:
+ unique_allele_symbols = False # already seen this allele name
+ allele_symbols.append(name)
+
+ # record gene (cluster):
+ if gene_cluster not in gene_clusters:
+ gene_clusters.append(gene_cluster)
+
+ if len(delimiter_check) > 0:
+ print "Warning! MLST delimiter is " + delimiter + " but these genes may violate the pattern and cause problems:"
+ print ",".join(delimiter_check)
+
+ return size, gene_clusters, unique_gene_symbols, unique_allele_symbols, gene_cluster_symbols
+
+
+def read_pileup_data(pileup_file, size, prob_err, consensus_file = ""):
+ with open(pileup_file) as pileup:
+ prob_success = 1 - prob_err # Set by user, default is prob_err = 0.01
+ hash_alignment = {}
+ hash_max_depth = {}
+ hash_edge_depth = {}
+ max_depth = 1
+ avg_depth_allele = {}
+ next_to_del_depth_allele = {}
+ coverage_allele = {}
+ mismatch_allele = {}
+ indel_allele = {}
+ missing_allele = {}
+ size_allele = {}
+
+ # Split all lines in the pileup by whitespace
+ pileup_split = ( x.split() for x in pileup )
+ # Group the split lines based on the first field (allele)
+ for allele, lines in groupby(pileup_split, itemgetter(0)):
+
+ # Reset variables for new allele
+ allele_line = 1 # Keep track of line for this allele
+ exp_nuc_num = 0 # Expected position in ref allele
+ allele_size = size[allele]
+ total_depth = 0
+ depth_a = depth_z = 0
+ position_depths = [0] * allele_size # store depths in case required for penalties; then we don't need to track total_missing_bases
+ hash_alignment[allele] = []
+ total_missing_bases = 0
+ total_mismatch = 0
+ ins_poscount = 0
+ del_poscount = 0
+ next_to_del_depth = 99999
+ consensus_seq = ""
+
+ for fields in lines:
+ # Parse this line and store details required for scoring
+ nuc_num = int(fields[1]) # Actual position in ref allele
+ exp_nuc_num += 1
+ allele_line += 1
+ nuc = fields[2]
+ nuc_depth = int(fields[3])
+ position_depths[nuc_num-1] = nuc_depth
+ if len(fields) <= 5:
+ aligned_bases = ''
+ else:
+ aligned_bases = fields[4]
+
+ # Missing bases (pileup skips basepairs)
+ if nuc_num > exp_nuc_num:
+ total_missing_bases += abs(exp_nuc_num - nuc_num)
+ exp_nuc_num = nuc_num
+ if nuc_depth == 0:
+ total_missing_bases += 1
+
+ # Calculate depths for this position
+ if nuc_num <= edge_a:
+ depth_a += nuc_depth
+ if abs(nuc_num - allele_size) < edge_z:
+ depth_z += nuc_depth
+ if nuc_depth > max_depth:
+ hash_max_depth[allele] = nuc_depth
+ max_depth = nuc_depth
+
+ total_depth = total_depth + nuc_depth
+
+ # Parse aligned bases list for this position in the pileup
+ num_match = 0
+ ins_readcount = 0
+ del_readcount = 0
+ nuc_counts = {}
+
+ i = 0
+ while i < len(aligned_bases):
+
+ if aligned_bases[i] == "^":
+ # Signifies start of a read, next char is mapping quality (skip it)
+ i += 2
+ continue
+
+ if aligned_bases[i] == "+":
+ i += int(aligned_bases[i+1]) + 2 # skip to next read
+ ins_readcount += 1
+ continue
+
+ if aligned_bases[i] == "-":
+ i += int(aligned_bases[i+1]) + 2 # skip to next read
+ continue
+
+ if aligned_bases[i] == "*":
+ i += 1 # skip to next read
+ del_readcount += 1
+ continue
+
+ if aligned_bases[i] == "." or aligned_bases[i] == ",":
+ num_match += 1
+ i += 1
+ continue
+
+ elif aligned_bases[i].upper() in "ATCG":
+ this_nuc = aligned_bases[i].upper()
+ if this_nuc not in nuc_counts:
+ nuc_counts[this_nuc] = 0
+ nuc_counts[this_nuc] += 1
+
+ i += 1
+
+ # Save the most common nucleotide at this position
+ consensus_nuc = nuc # by default use reference nucleotide
+ max_freq = num_match # Number of bases matching the reference
+ for nucleotide in nuc_counts:
+ if nuc_counts[nucleotide] > max_freq:
+ consensus_nuc = nucleotide
+ max_freq = nuc_counts[nucleotide]
+ consensus_seq += (consensus_nuc)
+
+ # Calculate details of this position for scoring and reporting
+
+ # mismatches and indels
+ num_mismatch = nuc_depth - num_match
+ if num_mismatch > num_match:
+ total_mismatch += 1 # record as mismatch (could be a snp or deletion)
+ if del_readcount > num_match:
+ del_poscount += 1
+ if ins_readcount > nuc_depth / 2:
+ ins_poscount += 1
+
+ # Hash for later processing
+ hash_alignment[allele].append((num_match, num_mismatch, prob_success)) # snp or deletion
+ if ins_readcount > 0:
+ hash_alignment[allele].append((nuc_depth - ins_readcount, ins_readcount, prob_success)) # penalize for any insertion calls at this position
+
+ # Determine the consensus sequence if required
+ if consensus_file != "":
+ if consensus_file.split(".")[-2] == "new_consensus_alleles":
+ consensus_type = "variant"
+ elif consensus_file.split(".")[-2] == "all_consensus_alleles":
+ consensus_type = "consensus"
+ with open(consensus_file, "a") as consensus_outfile:
+ consensus_outfile.write(">{0}.{1} {2}\n".format(allele, consensus_type, pileup_file.split(".")[1].split("__")[1]))
+ outstring = consensus_seq + "\n"
+ consensus_outfile.write(outstring)
+
+ # Finished reading pileup for this allele
+
+ # Check for missing bases at the end of the allele
+ if nuc_num < allele_size:
+ total_missing_bases += abs(allele_size - nuc_num)
+ # determine penalty based on coverage of last 2 bases
+ penalty = float(position_depths[nuc_num-1] + position_depths[nuc_num-2])/2
+ m = min(position_depths[nuc_num-1],position_depths[nuc_num-2])
+ hash_alignment[allele].append((0, penalty, prob_success))
+ if next_to_del_depth > m:
+ next_to_del_depth = m # keep track of lowest near-del depth for reporting
+
+ # Calculate allele summary stats and save
+ avg_depth = round(total_depth / float(allele_line),3)
+ avg_a = depth_a / float(edge_a) # Avg depth at 5' end, num basepairs determined by edge_a
+ avg_z = depth_z / float(edge_z) # 3'
+ hash_max_depth[allele] = max_depth
+ hash_edge_depth[allele] = (avg_a, avg_z)
+ min_penalty = max(5, int(avg_depth))
+ coverage_allele[allele] = 100*(allele_size - total_missing_bases - del_poscount)/float(allele_size) # includes in-read deletions
+ mismatch_allele[allele] = total_mismatch - del_poscount # snps only
+ indel_allele[allele] = del_poscount + ins_poscount # insertions or deletions
+ missing_allele[allele] = total_missing_bases # truncated bases
+ size_allele[allele] = allele_size
+
+ # Penalize truncations or large deletions (i.e. positions not covered in pileup)
+ j = 0
+ while j < (len(position_depths)-2):
+ # note end-of-seq truncations are dealt with above)
+ if position_depths[j]==0 and position_depths[j+1]!=0:
+ penalty = float(position_depths[j+1]+position_depths[j+2])/2 # mean of next 2 bases
+ hash_alignment[allele].append((0, penalty, prob_success))
+ m = min(position_depths[nuc_num-1],position_depths[nuc_num-2])
+ if next_to_del_depth > m:
+ next_to_del_depth = m # keep track of lowest near-del depth for reporting
+ j += 1
+
+ # Store depth info for reporting
+ avg_depth_allele[allele] = avg_depth
+ if next_to_del_depth == 99999:
+ next_to_del_depth = "NA"
+ next_to_del_depth_allele[allele] = next_to_del_depth
+
+ return hash_alignment, hash_max_depth, hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele, size_allele, next_to_del_depth_allele
+
+
+def score_alleles(args, mapping_files_pre, hash_alignment, hash_max_depth, hash_edge_depth,
+ avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele,
+ size_allele, next_to_del_depth_allele, run_type):
+
+ if args.save_scores:
+ scores_output = file(mapping_files_pre + '.scores', 'w')
+ scores_output.write("Allele\tScore\tAvg_depth\tEdge1_depth\tEdge2_depth\tPercent_coverage\tSize\tMismatches\tIndels\tTruncated_bases\tDepthNeighbouringTruncation\tmaxMAF\tLeastConfident_Rate\tLeastConfident_Mismatches\tLeastConfident_Depth\tLeastConfident_Pvalue\n")
+
+ scores = {} # key = allele, value = score
+ mix_rates = {} # key = allele, value = highest minor allele frequency, 0 -> 0.5
+
+ for allele in hash_alignment:
+ if (run_type == "mlst") or (coverage_allele[allele] > args.min_coverage):
+ pvals = []
+ min_pval = 1.0
+ min_pval_data = (999,999) # (mismatch, depth) for position with lowest p-value
+ mix_rate = 0 # highest minor allele frequency 0 -> 0.5
+ for nuc_info in hash_alignment[allele]:
+ if nuc_info is not None:
+ match, mismatch, prob_success = nuc_info
+ if match > 0 or mismatch > 0:
+ if mismatch == 0:
+ p_value = 1.0
+ else:
+ p_value = binom_test([match, mismatch], None, prob_success)
+ # Weight pvalue by (depth/max_depth)
+ max_depth = hash_max_depth[allele]
+ weight = (match + mismatch) / float(max_depth)
+ p_value *= weight
+ if p_value < min_pval:
+ min_pval = p_value
+ min_pval_data = (mismatch,match + mismatch)
+ if p_value > 0:
+ p_value = -log(p_value, 10)
+ else:
+ p_value = 1000
+ pvals.append(p_value)
+ mismatch_prop = float(match)/float(match+mismatch)
+ if min(mismatch_prop, 1-mismatch_prop) > mix_rate:
+ mix_rate = min(mismatch_prop, 1-mismatch_prop)
+ # Fit linear model to observed Pval distribution vs expected Pval distribution (QQ plot)
+ pvals.sort(reverse=True)
+ len_obs_pvals = len(pvals)
+ exp_pvals = range(1, len_obs_pvals + 1)
+ exp_pvals2 = [-log(float(ep) / (len_obs_pvals + 1), 10) for ep in exp_pvals]
+
+ # Slope is score
+ slope, _intercept, _r_value, _p_value, _std_err = linregress(exp_pvals2, pvals)
+
+ # Store all scores for later processing
+ scores[allele] = slope
+ mix_rates[allele] = mix_rate
+
+ # print scores for each allele, if requested
+ if args.save_scores:
+ if allele in hash_edge_depth:
+ start_depth, end_depth = hash_edge_depth[allele]
+ edge_depth_str = str(start_depth) + '\t' + str(end_depth)
+ else:
+ edge_depth_str = "NA\tNA"
+ this_depth = avg_depth_allele.get(allele, "NA")
+ this_coverage = coverage_allele.get(allele, "NA")
+ this_mismatch = mismatch_allele.get(allele, "NA")
+ this_indel = indel_allele.get(allele, "NA")
+ this_missing = missing_allele.get(allele, "NA")
+ this_size = size_allele.get(allele, "NA")
+ this_next_to_del_depth = next_to_del_depth_allele.get(allele, "NA")
+ scores_output.write('\t'.join([allele, str(slope), str(this_depth), edge_depth_str,
+ str(this_coverage), str(this_size), str(this_mismatch), str(this_indel), str(this_missing), str(this_next_to_del_depth), str(mix_rate), str(float(min_pval_data[0])/min_pval_data[1]),str(min_pval_data[0]),str(min_pval_data[1]),str(min_pval)]) + '\n')
+
+ if args.save_scores:
+ scores_output.close()
+
+ return(scores,mix_rates)
+
+# Check that an acceptable version of a command is installed
+# Exits the program if it can't be found.
+# - command_list is the command to run to determine the version.
+# - version_identifier is the unique string we look for in the stdout of the program.
+# - command_name is the name of the command to show in error messages.
+# - required_version is the version number to show in error messages.
+def check_command_version(command_list, version_identifier, command_name, required_version):
+ try:
+ command_stdout = check_output(command_list, stderr=STDOUT)
+ except OSError as e:
+ logging.error("Failed command: {}".format(' '.join(command_list)))
+ logging.error(str(e))
+ logging.error("Could not determine the version of {}.".format(command_name))
+ logging.error("Do you have {} installed in your PATH?".format(command_name))
+ exit(-1)
+ except CalledProcessError as e:
+ # some programs such as samtools return a non-zero exit status
+ # when you ask for the version (sigh). We ignore it here.
+ command_stdout = e.output
+
+ if version_identifier not in command_stdout:
+ logging.error("Incorrect version of {} installed.".format(command_name))
+ logging.error("{} version {} is required by SRST2.".format(command_name, required_version))
+ exit(-1)
+
+
+def run_bowtie(mapping_files_pre,sample_name,fastqs,args,db_name,db_full_path):
+
+ print "Starting mapping with bowtie2"
+
+ # check that both bowtie and samtools have the right versions
+ check_command_version(['bowtie2', '--version'],
+ 'bowtie2-align version 2.1.0',
+ 'bowtie',
+ '2.1.0')
+
+ check_command_version(['samtools'],
+ 'Version: 0.1.18',
+ 'samtools',
+ '0.1.18')
+
+ command = ['bowtie2']
+
+ if len(fastqs)==1:
+ # single end
+ command += ['-U', fastqs[0]]
+ elif len(fastqs)==2:
+ # paired end
+ command += ['-1', fastqs[0], '-2', fastqs[1]]
+
+ sam = mapping_files_pre + ".sam"
+ logging.info('Output prefix set to: ' + mapping_files_pre)
+
+ command += ['-S', sam,
+ '-' + args.read_type, # add a dash to the front of the option
+ '--very-sensitive-local',
+ '--no-unal',
+ '-a', # Search for and report all alignments
+ '-x', db_full_path # The index to be aligned to
+ ]
+
+ if args.stop_after:
+ try:
+ command += ['-u',str(int(args.stop_after))]
+ except ValueError:
+ print "WARNING. You asked to stop after mapping '" + args.stop_after + "' reads. I don't understand this, and will map all reads. Please speficy an integer with --stop_after or leave this as default to map 1 million reads."
+
+ if args.other:
+ command += args.other.split()
+
+ logging.info('Aligning reads to index {} using bowtie2...'.format(db_full_path))
+
+ run_command(command)
+
+ return(sam)
+
+def get_pileup(args,mapping_files_pre,raw_bowtie_sam,bowtie_sam_mod,fasta,pileup_file):
+ # Analyse output with SAMtools
+ logging.info('Processing Bowtie2 output with SAMtools...')
+ logging.info('Generate and sort BAM file...')
+ out_file_bam = mapping_files_pre + ".unsorted.bam"
+ run_command(['samtools', 'view', '-b', '-o', out_file_bam,
+ '-q', str(args.mapq), '-S', bowtie_sam_mod])
+ out_file_bam_sorted = mapping_files_pre + ".sorted"
+ run_command(['samtools', 'sort', out_file_bam, out_file_bam_sorted])
+
+ # Delete interim files (sam, modified sam, unsorted bam) unless otherwise specified.
+ # Note users may also want to delete final sorted bam and pileup on completion to save space.
+ if not args.keep_interim_alignment:
+ logging.info('Deleting sam and bam files that are not longer needed...')
+ del_filenames = [raw_bowtie_sam, bowtie_sam_mod, out_file_bam]
+ for f in del_filenames:
+ logging.info('Deleting ' + f)
+ os.remove(f)
+
+ logging.info('Generate pileup...')
+ with open(pileup_file, 'w') as sam_pileup:
+ run_command(['samtools', 'mpileup', '-L', '1000', '-f', fasta,
+ '-Q', str(args.baseq), '-q', str(args.mapq), out_file_bam_sorted + '.bam'],
+ stdout=sam_pileup)
+
+def calculate_ST(allele_scores, ST_db, gene_names, sample_name, mlst_delimiter, avg_depth_allele, mix_rates):
+ allele_numbers = [] # clean allele calls for determing ST. order is taken from gene names, as in ST definitions file
+ alleles_with_flags = [] # flagged alleles for printing (* if mismatches, ? if depth issues)
+ mismatch_flags = [] # allele/diffs
+ uncertainty_flags = [] #allele/uncertainty
+# st_flags = [] # (* if mismatches, ? if depth issues)
+ depths = [] # depths for each typed locus
+ mafs = [] # minor allele freqencies for each typed locus
+
+ # get allele numbers & info
+ for gene in gene_names:
+ if gene in allele_scores:
+ (allele,diffs,depth_problem,divergence) = allele_scores[gene]
+ allele_number = allele.split(mlst_delimiter)[-1]
+ depths.append(avg_depth_allele[allele])
+ mix_rate = mix_rates[allele]
+ mafs.append(mix_rate)
+ else:
+ allele_number = "-"
+ diffs = ""
+ depth_problem = ""
+ mix_rate = ""
+ allele_numbers.append(allele_number)
+
+ allele_with_flags = allele_number
+ if diffs != "":
+ if diffs != "trun":
+ allele_with_flags+="*" # trun indicates only that a truncated form had lower score, which isn't a mismatch
+ mismatch_flags.append(allele+"/"+diffs)
+ if depth_problem != "":
+ allele_with_flags+="?"
+ uncertainty_flags.append(allele+"/"+depth_problem)
+ alleles_with_flags.append(allele_with_flags)
+
+ # calculate ST (no flags)
+ if ST_db:
+ allele_string = " ".join(allele_numbers) # for determining ST
+ try:
+ clean_st = ST_db[allele_string]
+ except KeyError:
+ print "This combination of alleles was not found in the sequence type database:",
+ print sample_name,
+ for gene in allele_scores:
+ (allele,diffs,depth_problems,divergence) = allele_scores[gene]
+ print allele,
+ print
+ clean_st = "NF"
+ else:
+ clean_st = "ND"
+
+ # add flags for reporting
+ st = clean_st
+ if len(mismatch_flags) > 0:
+ if mismatch_flags!=["trun"]:
+ st += "*" # trun indicates only that a truncated form had lower score, which isn't a mismatch
+ else:
+ mismatch_flags = ['0'] # record no mismatches
+ if len(uncertainty_flags) > 0:
+ st += "?"
+ else:
+ uncertainty_flags = ['-']
+
+ # mean depth across loci
+ if len(depths) > 0:
+ mean_depth = float(sum(depths))/len(depths)
+ else:
+ mean_depth = 0
+
+ # maximum maf across locus
+ if len(mafs) > 0:
+ max_maf = max(mafs)
+ else:
+ max_maf = 0
+
+ return (st,clean_st,alleles_with_flags,mismatch_flags,uncertainty_flags,mean_depth,max_maf)
+
+def parse_ST_database(ST_filename,gene_names_from_fai):
+ # Read ST definitions
+ ST_db = {} # key = allele string, value = ST
+ gene_names = []
+ num_gene_cols_expected = len(gene_names_from_fai)
+ print "Attempting to read " + str(num_gene_cols_expected) + " loci from ST database " + ST_filename
+ with open(ST_filename) as f:
+ count = 0
+ for line in f:
+ count += 1
+ line_split = line.rstrip().split("\t")
+ if count == 1: # Header
+ gene_names = line_split[1:min(num_gene_cols_expected+1,len(line_split))]
+ for g in gene_names_from_fai:
+ if g not in gene_names:
+ print "Warning: gene " + g + " in database file isn't among the columns in the ST definitions: " + ",".join(gene_names)
+ print " Any sequences with this gene identifer from the database will not be included in typing."
+ if len(line_split) == num_gene_cols_expected+1:
+ gene_names.pop() # we read too many columns
+ num_gene_cols_expected -= 1
+ for g in gene_names:
+ if g not in gene_names_from_fai:
+ print "Warning: gene " + g + " in ST definitions file isn't among those in the database " + ",".join(gene_names_from_fai)
+ print " This will result in all STs being called as unknown (but allele calls will be accurate for other loci)."
+ else:
+ ST = line_split[0]
+ if ST not in ST_db.values():
+ ST_string = " ".join(line_split[1:num_gene_cols_expected+1])
+ ST_db[ST_string] = ST
+ else:
+ print "Warning: this ST is not unique in the ST definitions file: " + ST
+ print "Read ST database " + ST_filename + " successfully"
+ return (ST_db, gene_names)
+
+def get_allele_name_from_db(allele,unique_allele_symbols,unique_cluster_symbols,run_type,args):
+
+ if run_type != "mlst":
+ # header format: >[cluster]___[gene]___[allele]___[uniqueID] [info]
+ allele_parts = allele.split()
+ allele_detail = allele_parts.pop(0)
+ allele_info = allele_detail.split("__")
+
+ if len(allele_info)>2:
+ cluster_id = allele_info[0] # ID number for the cluster
+ gene_name = allele_info[1] # gene name/symbol for the cluster
+ allele_name = allele_info[2] # specific allele name
+ seqid = allele_info[3] # unique identifier for this seq
+ else:
+ cluster_id = gene_name = allele_name = seqid = allele_parts[0]
+
+ if not unique_allele_symbols:
+ allele_name += "_" + seqid
+
+ else:
+ gene_name = allele.split(args.mlst_delimiter)
+ allele_name = allele
+ seqid = None
+ cluster_id = None
+
+ return gene_name, allele_name, cluster_id, seqid
+
+def create_allele_pileup(allele_name, all_pileup_file):
+ outpileup = allele_name + "." + all_pileup_file
+ with open(outpileup, 'w') as allele_pileup:
+ with open(all_pileup_file) as all_pileup:
+ for line in all_pileup:
+ if line.split()[0] == allele_name:
+ allele_pileup.write(line)
+ return outpileup
+
+def parse_scores(run_type,args,scores, hash_edge_depth,
+ avg_depth_allele, coverage_allele, mismatch_allele, indel_allele,
+ missing_allele, size_allele, next_to_del_depth_allele,
+ unique_cluster_symbols,unique_allele_symbols, pileup_file):
+
+ # sort into hash for each gene locus
+ scores_by_gene = collections.defaultdict(dict) # key1 = gene, key2 = allele, value = score
+
+ if run_type=="mlst":
+ for allele in scores:
+ if coverage_allele[allele] > args.min_coverage:
+ allele_info = allele.split(args.mlst_delimiter)
+ scores_by_gene[allele_info[0]][allele] = scores[allele]
+ else:
+ for allele in scores:
+ if coverage_allele[allele] > args.min_coverage:
+ gene_name = get_allele_name_from_db(allele,unique_allele_symbols,unique_cluster_symbols,run_type,args)[2] # cluster ID
+ scores_by_gene[gene_name][allele] = scores[allele]
+
+ # determine best allele for each gene locus/cluster
+ results = {} # key = gene, value = (allele,diffs,depth)
+
+ for gene in scores_by_gene:
+
+ gene_hash = scores_by_gene[gene]
+ scores_sorted = sorted(gene_hash.iteritems(),key=operator.itemgetter(1)) # sort by score
+ (top_allele,top_score) = scores_sorted[0]
+
+ # check if depth is adequate for confident call
+ adequate_depth = False
+ depth_problem = ""
+ if hash_edge_depth[top_allele][0] > args.min_edge_depth and hash_edge_depth[top_allele][1] > args.min_edge_depth:
+ if next_to_del_depth_allele[top_allele] != "NA":
+ if float(next_to_del_depth_allele[top_allele]) > args.min_edge_depth:
+ if avg_depth_allele[top_allele] > args.min_depth:
+ adequate_depth = True
+ else:
+ depth_problem="depth"+str(avg_depth_allele[top_allele])
+ else:
+ depth_problem = "del"+str(next_to_del_depth_allele[top_allele])
+ elif avg_depth_allele[top_allele] > args.min_depth:
+ adequate_depth = True
+ else:
+ depth_problem="depth"+str(avg_depth_allele[top_allele])
+ else:
+ depth_problem = "edge"+str(min(hash_edge_depth[top_allele][0],hash_edge_depth[top_allele][1]))
+
+ # check if there are confident differences against this allele
+ differences = ""
+ if mismatch_allele[top_allele] > 0:
+ differences += str(mismatch_allele[top_allele])+"snp"
+ if indel_allele[top_allele] > 0:
+ differences += str(indel_allele[top_allele])+"indel"
+ if missing_allele[top_allele] > 0:
+ differences += str(missing_allele[top_allele])+"holes"
+
+ divergence = float(mismatch_allele[top_allele]) / float( size_allele[top_allele] - missing_allele[top_allele] )
+
+ # check for truncated
+ if differences != "" or not adequate_depth:
+ # if there are SNPs or not enough depth to trust the result, no need to screen next best match
+ results[gene] = (top_allele, differences, depth_problem, divergence)
+ else:
+ # looks good but this could be a truncated version of the real allele; check for longer versions
+ truncation_override = False
+ if len(scores_sorted) > 1:
+ (next_best_allele,next_best_score) = scores_sorted[1]
+ if size_allele[next_best_allele] > size_allele[top_allele]:
+ # next best is longer, top allele could be a truncation?
+ if (mismatch_allele[next_best_allele] + indel_allele[next_best_allele] + missing_allele[next_best_allele]) == 0:
+ # next best also has no mismatches
+ if (next_best_score - top_score)/top_score < 0.1:
+ # next best has score within 10% of this one
+ truncation_override = True
+ if truncation_override:
+ results[gene] = (next_best_allele, "trun", "", divergence) # no diffs but report this call is based on truncation test
+ else:
+ results[gene] = (top_allele, "", "",divergence) # no caveats to report
+
+ # Check if there are any potential new alleles
+ #depth_problem = results[gene][2]
+ #divergence = results[gene][3]
+ if depth_problem == "" and divergence > 0:
+ new_allele = True
+ # Get the consensus for this new allele and write it to file
+ if args.report_new_consensus or args.report_all_consensus:
+ new_alleles_filename = args.output + ".new_consensus_alleles.fasta"
+ allele_pileup_file = create_allele_pileup(top_allele, pileup_file) # XXX Creates a new pileup file for that allele. Not currently cleaned up
+ read_pileup_data(allele_pileup_file, size_allele, args.prob_err, consensus_file = new_alleles_filename)
+ if args.report_all_consensus:
+ new_alleles_filename = args.output + ".all_consensus_alleles.fasta"
+ allele_pileup_file = create_allele_pileup(top_allele, pileup_file)
+ read_pileup_data(allele_pileup_file, size_allele, args.prob_err, consensus_file = new_alleles_filename)
+
+ return results # (allele, diffs, depth_problem, divergence)
+
+
+def get_readFile_components(full_file_path):
+ (file_path,file_name) = os.path.split(full_file_path)
+ m1 = re.match("(.*).gz",file_name)
+ ext = ""
+ if m1 != None:
+ # gzipped
+ ext = ".gz"
+ file_name = m1.groups()[0]
+ (file_name_before_ext,ext2) = os.path.splitext(file_name)
+ full_ext = ext2+ext
+ return(file_path,file_name_before_ext,full_ext)
+
+def read_file_sets(args):
+
+ fileSets = {} # key = id, value = list of files for that sample
+ num_single_readsets = 0
+ num_paired_readsets = 0
+
+ if args.input_se:
+ # single end
+ for fastq in args.input_se:
+ (file_path,file_name_before_ext,full_ext) = get_readFile_components(fastq)
+ m=re.match("(.*)(_S.*)(_L.*)(_R.*)(_.*)", file_name_before_ext)
+ if m==None:
+ fileSets[file_name_before_ext] = [fastq]
+ else:
+ fileSets[m.groups()[0]] = [fastq] # Illumina names
+ num_single_readsets += 1
+
+ elif args.input_pe:
+ # paired end
+ forward_reads = {} # key = sample, value = full path to file
+ reverse_reads = {} # key = sample, value = full path to file
+ num_paired_readsets = 0
+ num_single_readsets = 0
+ for fastq in args.input_pe:
+ (file_path,file_name_before_ext,full_ext) = get_readFile_components(fastq)
+ # try to match to MiSeq format:
+ m=re.match("(.*)(_S.*)(_L.*)(_R.*)(_.*)", file_name_before_ext)
+ if m==None:
+ # not default Illumina file naming format, expect simple/ENA format
+ m=re.match("(.*)("+args.forward+")$",file_name_before_ext)
+ if m!=None:
+ # store as forward read
+ (baseName,read) = m.groups()
+ forward_reads[baseName] = fastq
+ else:
+ m=re.match("(.*)("+args.reverse+")$",file_name_before_ext)
+ if m!=None:
+ # store as reverse read
+ (baseName,read) = m.groups()
+ reverse_reads[baseName] = fastq
+ else:
+ logging.info("Could not determine forward/reverse read status for input file " + fastq)
+ else:
+ # matches default Illumina file naming format, e.g. m.groups() = ('samplename', '_S1', '_L001', '_R1', '_001')
+ baseName, read = m.groups()[0], m.groups()[3]
+ if read == "_R1":
+ forward_reads[baseName] = fastq
+ elif read == "_R2":
+ reverse_reads[baseName] = fastq
+ else:
+ logging.info( "Could not determine forward/reverse read status for input file " + fastq )
+ logging.info( " this file appears to match the MiSeq file naming convention (samplename_S1_L001_[R1]_001), but we were expecting [R1] or [R2] to designate read as forward or reverse?" )
+ fileSets[file_name_before_ext] = fastq
+ num_single_readsets += 1
+ # store in pairs
+ for sample in forward_reads:
+ if sample in reverse_reads:
+ fileSets[sample] = [forward_reads[sample],reverse_reads[sample]] # store pair
+ num_paired_readsets += 1
+ else:
+ fileSets[sample] = [forward_reads[sample]] # no reverse found
+ num_single_readsets += 1
+ logging.info('Warning, could not find pair for read:' + forward_reads[sample])
+ for sample in reverse_reads:
+ if sample not in fileSets:
+ fileSets[sample] = reverse_reads[sample] # no forward found
+ num_single_readsets += 1
+ logging.info('Warning, could not find pair for read:' + reverse_reads[sample])
+
+ if num_paired_readsets > 0:
+ logging.info('Total paired readsets found:' + str(num_paired_readsets))
+ if num_single_readsets > 0:
+ logging.info('Total single reads found:' + str(num_single_readsets))
+
+ return fileSets
+
+def read_results_from_file(infile):
+
+ if os.stat(infile).st_size == 0:
+ logging.info("WARNING: Results file provided is empty: " + infile)
+ return False, False, False
+
+ results_info = infile.split("__")
+ if len(results_info) > 1:
+
+ if re.search("compiledResults",infile)!=None:
+ dbtype = "compiled"
+ dbname = results_info[0] # output identifier
+ else:
+ dbtype = results_info[1] # mlst or genes
+ dbname = results_info[2] # database
+
+ logging.info("Processing " + dbtype + " results from file " + infile)
+
+ if dbtype == "genes":
+ results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
+ with open(infile) as f:
+ header = []
+ for line in f:
+ line_split = line.rstrip().split("\t")
+ if len(header) == 0:
+ header = line_split
+ else:
+ sample = line_split[0]
+ for i in range(1,len(line_split)):
+ gene = header[i] # cluster_id
+ results[sample][gene] = line_split[i]
+
+ elif dbtype == "mlst":
+ results = {} # key = sample, value = MLST string
+ with open(infile) as f:
+ header = 0
+ for line in f:
+ if header > 0:
+ results[line.split("\t")[0]] = line.rstrip()
+ if "maxMAF" not in header:
+ results[line.split("\t")[0]] += "\tNC" # empty column for maxMAF
+ else:
+ header = line.rstrip()
+ results[line.split("\t")[0]] = line.rstrip() # store header line too (index "Sample")
+ if "maxMAF" not in header:
+ results[line.split("\t")[0]] += "\tmaxMAF" # add column for maxMAF
+
+ elif dbtype == "compiled":
+ results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
+ with open(infile) as f:
+ header = []
+ mlst_cols = 0 # INDEX of the last mlst column
+ n_cols = 0
+ for line in f:
+ line_split = line.rstrip().split("\t")
+ if len(header) == 0:
+ header = line_split
+ n_cols = len(header)
+ if n_cols > 1:
+ if header[1] == "ST":
+ # there is mlst data reported
+ mlst_cols = 2 # first locus column
+ while header[mlst_cols] != "depth":
+ mlst_cols += 1
+ results["Sample"]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
+ results["Sample"]["mlst"] += "\tmaxMAF" # add to mlst header even if not encountered in this file, as it may be in others
+ if header[mlst_cols+1] == "maxMAF":
+ mlst_cols += 1 # record maxMAF column within MLST data, if present
+ else:
+ # no mlst data reported
+ dbtype = "genes"
+ logging.info("No MLST data in compiled results file " + infile)
+ else:
+ # no mlst data reported
+ dbtype = "genes"
+ logging.info("No MLST data in compiled results file " + infile)
+
+ else:
+ sample = line_split[0]
+ if mlst_cols > 0:
+ results[sample]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
+ if "maxMAF" not in header:
+ results[sample]["mlst"] += "\t" # add to mlst section even if not encountered in this file, as it may be in others
+ if n_cols > mlst_cols:
+ # read genes component
+ for i in range(mlst_cols+1,n_cols):
+ # note i=1 if mlst_cols==0, ie we are reading all
+ gene = header[i]
+ if len(line_split) > i:
+ results[sample][gene] = line_split[i]
+ else:
+ results[sample][gene] = "-"
+ else:
+ results = False
+ dbtype = False
+ dbname = False
+ logging.info("Couldn't decide what to do with file results file provided: " + infile)
+
+ else:
+ results = False
+ dbtype = False
+ dbname = False
+ logging.info("Couldn't decide what to do with file results file provided: " + infile)
+
+ return results, dbtype, dbname
+
+def read_scores_file(scores_file):
+ hash_edge_depth = {}
+ avg_depth_allele = {}
+ coverage_allele = {}
+ mismatch_allele = {}
+ indel_allele = {}
+ missing_allele = {}
+ size_allele = {}
+ next_to_del_depth_allele = {}
+ mix_rates = {}
+ scores = {}
+
+ f = file(scores_file,"r")
+
+ for line in f:
+ line_split = line.rstrip().split("\t")
+ allele = line_split[0]
+ if allele != "Allele": # skip header row
+ scores[allele] = float(line_split[1])
+ mix_rates[allele] = float(line_split[11])
+ avg_depth_allele[allele] = float(line_split[2])
+ hash_edge_depth[allele] = (float(line_split[3]),float(line_split[4]))
+ coverage_allele[allele] = float(line_split[5])
+ size_allele[allele] = int(line_split[6])
+ mismatch_allele[allele] = int(line_split[7])
+ indel_allele[allele] = int(line_split[8])
+ missing_allele[allele] = int(line_split[9])
+ next_to_del_depth = line_split[10]
+ next_to_del_depth_allele[allele] = line_split[10]
+
+ return hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, \
+ missing_allele, size_allele, next_to_del_depth_allele, scores, mix_rates
+
+def run_srst2(args, fileSets, dbs, run_type):
+
+ db_reports = [] # list of db-specific output files to return
+ db_results_list = [] # list of results hashes, one per db
+
+ for fasta in dbs:
+ db_reports, db_results_list = process_fasta_db(args, fileSets, run_type, db_reports, db_results_list, fasta)
+
+ return db_reports, db_results_list
+
+def process_fasta_db(args, fileSets, run_type, db_reports, db_results_list, fasta):
+
+ check_command_version(['samtools'],
+ 'Version: 0.1.18',
+ 'samtools',
+ '0.1.18')
+
+ logging.info('Processing database ' + fasta)
+
+ db_path, db_name = os.path.split(fasta) # database
+ (db_name,db_ext) = os.path.splitext(db_name)
+ db_results = "__".join([args.output,run_type,db_name,"results.txt"])
+ db_report = file(db_results,"w")
+ db_reports.append(db_results)
+
+ # Get sequence lengths and gene names
+ # lengths are needed for MLST heuristic to distinguish alleles from their truncated forms
+ # gene names read from here are needed for non-MLST dbs
+ fai_file = fasta + '.fai'
+ if not os.path.exists(fai_file):
+ run_command(['samtools', 'faidx', fasta])
+ size, gene_names, unique_gene_symbols, unique_allele_symbols, cluster_symbols = \
+ parse_fai(fai_file,run_type,args.mlst_delimiter)
+
+ # Prepare for MLST reporting
+ ST_db = False
+ if run_type == "mlst":
+ results = {} # key = sample, value = ST string for printing
+ if args.mlst_definitions:
+ # store MLST profiles, replace gene names (we want the order as they appear in this file)
+ ST_db, gene_names = parse_ST_database(args.mlst_definitions,gene_names)
+ db_report.write("\t".join(["Sample","ST"]+gene_names+["mismatches","uncertainty","depth","maxMAF"]) + "\n")
+ results["Sample"] = "\t".join(["Sample","ST"]+gene_names+["mismatches","uncertainty","depth","maxMAF"])
+
+ else:
+ # store final results for later tabulation
+ results = collections.defaultdict(dict) #key1 = sample, key2 = gene, value = allele
+
+ gene_list = [] # start with empty gene list; will add genes from each genedb test
+
+ # determine maximum mismatches per read to use for pileup
+ if run_type == "mlst":
+ max_mismatch = args.mlst_max_mismatch
+ else:
+ max_mismatch = args.gene_max_mismatch
+
+ # Align and score each read set against this DB
+ for sample_name in fileSets:
+ logging.info('Processing sample ' + sample_name)
+ fastq_inputs = fileSets[sample_name] # reads
+
+ try:
+ # try mapping and scoring this fileset against the current database
+ # update the gene_list list and results dict with data from this strain
+ # __mlst__ will be printed during this routine if this is a mlst run
+ # __fullgenes__ will be printed during this routine if requested and this is a gene_db run
+ gene_list, results = \
+ map_fileSet_to_db(args,sample_name,fastq_inputs,db_name,fasta,size,gene_names,\
+ unique_gene_symbols, unique_allele_symbols,run_type,ST_db,results,gene_list,db_report,cluster_symbols,max_mismatch)
+ # if we get an error from one of the commands we called
+ # log the error message and continue onto the next fasta db
+ except CommandError as e:
+ logging.error(e.message)
+ # record results as unknown, so we know that we did attempt to analyse this readset
+ if run_type == "mlst":
+ st_result_string = "\t".join( [sample_name,"-"] + ["-"] * (len(gene_names)+3)) # record missing results
+ db_report.write( st_result_string + "\n")
+ logging.info(" " + st_result_string)
+ results[sample_name] = st_result_string
+ else:
+ logging.info(" failed gene detection")
+ results[sample_name]["failed"] = True # so we know that we tried this strain
+
+ if run_type != "mlst":
+ # tabulate results across samples for this gene db (i.e. __genes__ file)
+ logging.info('Tabulating results for database {} ...'.format(fasta))
+ gene_list.sort()
+ db_report.write("\t".join(["Sample"]+gene_list)+"\n") # report header row
+ for sample_name in fileSets:
+ db_report.write(sample_name)
+ if sample_name in results:
+ # print results
+ if "failed" not in results[sample_name]:
+ for cluster_id in gene_list:
+ if cluster_id in results[sample_name]:
+ db_report.write("\t"+results[sample_name][cluster_id]) # print full allele name
+ else:
+ db_report.write("\t-") # no hits for this gene cluster
+ else:
+ # no data on this, as the sample failed mapping
+ for cluster_id in gene_list:
+ db_report.write("\t?") #
+ results[sample_name][cluster_id] = "?" # record as unknown
+ else:
+ # no data on this because genes were not found (but no mapping errors)
+ for cluster_id in gene_list:
+ db_report.write("\t?") #
+ results[sample_name][cluster_id] = "-" # record as absent
+ db_report.write("\n")
+
+ # Finished with this database
+ logging.info('Finished processing for database {} ...'.format(fasta))
+ db_report.close()
+ db_results_list.append(results)
+
+ return db_reports, db_results_list
+
+def map_fileSet_to_db(args,sample_name,fastq_inputs,db_name,fasta,size,gene_names,\
+ unique_gene_symbols, unique_allele_symbols,run_type,ST_db,results,gene_list,db_report,cluster_symbols,max_mismatch):
+
+ mapping_files_pre = args.output + '__' + sample_name + '.' + db_name
+ pileup_file = mapping_files_pre + '.pileup'
+ scores_file = mapping_files_pre + '.scores'
+
+ # Get or read scores
+
+ if args.use_existing_scores and os.path.exists(scores_file):
+
+ logging.info(' Using existing scores in ' + scores_file)
+
+ # read in scores and info from existing scores file
+ hash_edge_depth, avg_depth_allele, coverage_allele, \
+ mismatch_allele, indel_allele, missing_allele, size_allele, \
+ next_to_del_depth_allele, scores, mix_rates = read_scores_file(scores_file)
+
+ else:
+
+ # Get or read pileup
+
+ if args.use_existing_pileup and os.path.exists(pileup_file):
+ logging.info(' Using existing pileup in ' + pileup_file)
+
+ else:
+
+ # run bowtie against this db
+ bowtie_sam = run_bowtie(mapping_files_pre,sample_name,fastq_inputs,args,db_name,fasta)
+
+ # Modify Bowtie's SAM formatted output so that we get secondary
+ # alignments in downstream pileup
+ (raw_bowtie_sam,bowtie_sam_mod) = modify_bowtie_sam(bowtie_sam,max_mismatch)
+
+ # generate pileup from sam (via sorted bam)
+ get_pileup(args,mapping_files_pre,raw_bowtie_sam,bowtie_sam_mod,fasta,pileup_file)
+
+ # Get scores
+
+ # Process the pileup and extract info for scoring and reporting on each allele
+ logging.info(' Processing SAMtools pileup...')
+ hash_alignment, hash_max_depth, hash_edge_depth, avg_depth_allele, coverage_allele, \
+ mismatch_allele, indel_allele, missing_allele, size_allele, next_to_del_depth_allele= \
+ read_pileup_data(pileup_file, size, args.prob_err)
+
+ # Generate scores for all alleles (prints these and associated info if verbose)
+ # result = dict, with key=allele, value=score
+ logging.info(' Scoring alleles...')
+ scores, mix_rates = score_alleles(args, mapping_files_pre, hash_alignment, hash_max_depth, hash_edge_depth, \
+ avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele, \
+ size_allele, next_to_del_depth_allele, run_type)
+
+ # GET BEST SCORE for each gene/cluster
+ # result = dict, with key = gene, value = (allele,diffs,depth_problem)
+ # for MLST DBs, key = gene = locus, allele = gene-number
+ # for gene DBs, key = gene = cluster ID, allele = cluster__gene__allele__id
+ # for gene DBs, only those alleles passing the coverage cutoff are returned
+
+ allele_scores = parse_scores(run_type, args, scores, \
+ hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, \
+ indel_allele, missing_allele, size_allele, next_to_del_depth_allele,
+ unique_gene_symbols, unique_allele_symbols, pileup_file)
+
+ # REPORT/RECORD RESULTS
+
+ # Report MLST results to __mlst__ file
+ if run_type == "mlst" and len(allele_scores) > 0:
+
+ # Calculate ST and get info for reporting
+ (st,clean_st,alleles_with_flags,mismatch_flags,uncertainty_flags,mean_depth,max_maf) = \
+ calculate_ST(allele_scores, ST_db, gene_names, sample_name, args.mlst_delimiter, avg_depth_allele, mix_rates)
+
+ # Print to MLST report, log and save the result
+ st_result_string = "\t".join([sample_name,st]+alleles_with_flags+[";".join(mismatch_flags),";".join(uncertainty_flags),str(mean_depth),str(max_maf)])
+ db_report.write( st_result_string + "\n")
+ logging.info(" " + st_result_string)
+ results[sample_name] = st_result_string
+
+ # Make sure scores are printed if there was uncertainty in the call
+ scores_output_file = mapping_files_pre + '.scores'
+ if uncertainty_flags != ["-"] and not args.save_scores and not os.path.exists(scores_output_file):
+ # print full score set
+ logging.info("Printing all MLST scores to " + scores_output_file)
+ scores_output = file(scores_output_file, 'w')
+ scores_output.write("Allele\tScore\tAvg_depth\tEdge1_depth\tEdge2_depth\tPercent_coverage\tSize\tMismatches\tIndels\tTruncated_bases\tDepthNeighbouringTruncation\tMmaxMAF\n")
+ for allele in scores.keys():
+ score = scores[allele]
+ scores_output.write('\t'.join([allele, str(score), str(avg_depth_allele[allele]), \
+ str(hash_edge_depth[allele][0]), str(hash_edge_depth[allele][1]), \
+ str(coverage_allele[allele]), str(size_allele[allele]), str(mismatch_allele[allele]), \
+ str(indel_allele[allele]), str(missing_allele[allele]), str(next_to_del_depth_allele[allele]), str(round(mix_rates[allele],3))]) + '\n')
+ scores_output.close()
+
+ # Record gene results for later processing and optionally print detailed gene results to __fullgenes__ file
+ elif run_type == "genes" and len(allele_scores) > 0:
+ if args.no_gene_details:
+ full_results = "__".join([args.output,"full"+run_type,db_name,"results.txt"])
+ logging.info("Printing verbose gene detection results to " + full_results)
+ f = file(full_results,"w")
+ f.write("\t".join(["Sample","DB","gene","allele","coverage","depth","diffs","uncertainty","divergence","length", "maxMAF","clusterid","seqid","annotation"])+"\n")
+ for gene in allele_scores:
+ (allele,diffs,depth_problem,divergence) = allele_scores[gene] # gene = top scoring alleles for each cluster
+ gene_name, allele_name, cluster_id, seqid = \
+ get_allele_name_from_db(allele,unique_allele_symbols,unique_gene_symbols,run_type,args)
+
+ # store for gene result table only if divergence passes minimum threshold:
+ if divergence*100 <= float(args.max_divergence):
+ column_header = cluster_symbols[cluster_id]
+ results[sample_name][column_header] = allele_name
+ if diffs != "":
+ results[sample_name][column_header] += "*"
+ if depth_problem != "":
+ results[sample_name][column_header] += "?"
+ if gene not in gene_list:
+ gene_list.append(column_header)
+
+ # write details to full genes report
+ if args.no_gene_details:
+
+ # get annotation info
+ header_string = os.popen(" ".join(["grep",allele,fasta]))
+ try:
+ header = header_string.read().rstrip().split()
+ header.pop(0) # remove allele name
+ if len(header) > 0:
+ annotation = " ".join(header) # put back the spaces
+ else:
+ annotation = ""
+
+ except:
+ annotation = ""
+
+ f.write("\t".join([sample_name,db_name,gene_name,allele_name,str(round(coverage_allele[allele],3)),str(avg_depth_allele[allele]),diffs,depth_problem,str(round(divergence*100,3)),str(size_allele[allele]),str(round(mix_rates[allele],3)),cluster_id,seqid,annotation])+"\n")
+
+ # log the gene detection result
+ logging.info(" " + str(len(allele_scores)) + " genes identified in " + sample_name)
+
+ # Finished with this read set
+ logging.info(' Finished processing for read set {} ...'.format(sample_name))
+
+ return gene_list, results
+
+def compile_results(args,mlst_results,db_results,compiled_output_file):
+
+ o = file(compiled_output_file,"w")
+
+ # get list of all samples and genes present in these datasets
+ sample_list = [] # each entry is a sample present in at least one db
+ gene_list = []
+ mlst_cols = 0
+ mlst_header_string = ""
+ blank_mlst_section = ""
+
+ mlst_results_master = {} # compilation of all MLST results
+ db_results_master = collections.defaultdict(dict) # compilation of all gene results
+ st_counts = {} # key = ST, value = count
+
+ if len(mlst_results) > 0:
+
+ for mlst_result in mlst_results:
+
+ # check length of the mlst string
+ if "Sample" in mlst_result:
+ test_string = mlst_result["Sample"]
+ if mlst_cols == 0:
+ mlst_header_string = test_string
+ else:
+ test_string = mlst_result[mlst_result.keys()[0]] # no header line?
+ test_string_split = test_string.split("\t")
+ this_mlst_cols = len(test_string)
+
+ if (mlst_cols == 0) or (mlst_cols == this_mlst_cols):
+ mlst_cols = this_mlst_cols
+ blank_mlst_section = "\t" * (mlst_cols-1) # blank MLST string in case some samples missing
+ # use this data
+ for sample in mlst_result:
+ mlst_results_master[sample] = mlst_result[sample]
+ if sample not in sample_list:
+ sample_list.append(sample)
+ elif mlst_cols != this_mlst_cols:
+ # don't process this data further
+ logging.info("Problem reconciling MLST data from two files, first MLST results encountered had " + str(mlst_cols) + " columns, this one has " + str(this_mlst_cols) + " columns?")
+ if args.mlst_db:
+ logging.info("Compiled report will contain only the MLST data from this run, not previous outputs")
+ else:
+ logging.info("Compiled report will contain only the data from the first MLST result set provided")
+
+ if len(db_results) > 0:
+ for results in db_results:
+ for sample in results:
+ if sample not in sample_list:
+ sample_list.append(sample)
+ for gene in results[sample]:
+ if gene != "failed":
+ db_results_master[sample][gene] = results[sample][gene]
+ if gene not in gene_list:
+ gene_list.append(gene)
+
+ if "Sample" in sample_list:
+ sample_list.remove("Sample")
+ sample_list.sort()
+ gene_list.sort()
+
+ # print header
+ header_elements = []
+ if len(mlst_results) > 0:
+ header_elements.append(mlst_header_string)
+ else:
+ header_elements.append("Sample")
+ if (gene_list) > 0:
+ header_elements += gene_list
+ o.write("\t".join(header_elements)+"\n")
+
+ # print results for all samples
+ for sample in sample_list:
+
+ sample_info = [] # first entry is mlst string OR sample name, rest are genes
+
+ # print mlst if provided, otherwise just print sample name
+ if len(mlst_results_master) > 0:
+ if sample in mlst_results_master:
+ sample_info.append(mlst_results_master[sample])
+ this_st = mlst_results_master[sample].split("\t")[1]
+ else:
+ sample_info.append(sample+blank_mlst_section)
+ this_st = "unknown"
+ # record the MLST result
+ if this_st in st_counts:
+ st_counts[this_st] += 1
+ else:
+ st_counts[this_st] = 1
+ else:
+ sample_info.append(sample)
+
+ # get gene info if provided
+ if sample in db_results_master:
+ for gene in gene_list:
+ if gene in db_results_master[sample]:
+ sample_info.append(db_results_master[sample][gene])
+ else:
+ sample_info.append("-")
+ else:
+ for gene in gene_list:
+ sample_info.append("?") # record no gene data on this strain
+
+ o.write("\t".join(sample_info)+"\n")
+
+ o.close()
+
+ logging.info("Compiled data on " + str(len(sample_list)) + " samples printed to: " + compiled_output_file)
+
+ # log ST counts
+ if len(mlst_results_master) > 0:
+ logging.info("Detected " + str(len(st_counts.keys())) + " STs: ")
+ sts = st_counts.keys()
+ sts.sort()
+ for st in sts:
+ logging.info("ST" + st + "\t" + str(st_counts[st]))
+
+ return True
+
+
+def main():
+ args = parse_args()
+ if args.log is True:
+ logfile = args.output + ".log"
+ else:
+ logfile = None
+ logging.basicConfig(
+ filename=logfile,
+ level=logging.DEBUG,
+ filemode='w',
+ format='%(asctime)s %(message)s',
+ datefmt='%m/%d/%Y %H:%M:%S')
+ logging.info('program started')
+ logging.info('command line: {0}'.format(' '.join(sys.argv)))
+
+ # Delete consensus file if it already exists (so can use append file in funtions)
+ if args.report_new_consensus or args.report_all_consensus:
+ new_alleles_filename = args.output + ".consensus_alleles.fasta"
+ if os.path.exists(new_alleles_filename):
+ os.remove(new_alleles_filename)
+
+ # vars to store results
+ mlst_results_hashes = [] # dict (sample->MLST result string) for each MLST output files created/read
+ gene_result_hashes = [] # dict (sample->gene->result) for each gene typing output files created/read
+
+ # parse list of file sets to analyse
+ fileSets = read_file_sets(args) # get list of files to process
+
+ # run MLST scoring
+ if fileSets and args.mlst_db:
+
+ if not args.mlst_definitions:
+
+ # print warning to screen to alert user, may want to stop and restart
+ print "Warning, MLST allele sequences were provided without ST definitions:"
+ print " allele sequences: " + str(args.mlst_db)
+ print " these will be mapped and scored, but STs can not be calculated"
+
+ # log
+ logging.info("Warning, MLST allele sequences were provided without ST definitions:")
+ logging.info(" allele sequences: " + str(args.mlst_db))
+ logging.info(" these will be mapped and scored, but STs can not be calculated")
+
+ bowtie_index(args.mlst_db) # index the MLST database
+
+ # score file sets against MLST database
+ mlst_report, mlst_results = run_srst2(args,fileSets,args.mlst_db,"mlst")
+
+ logging.info('MLST output printed to ' + mlst_report[0])
+
+ #mlst_reports_files += mlst_report
+ mlst_results_hashes += mlst_results
+
+ # run gene detection
+ if fileSets and args.gene_db:
+
+ bowtie_index(args.gene_db) # index the gene databases
+
+ db_reports, db_results = run_srst2(args,fileSets,args.gene_db,"genes")
+
+ for outfile in db_reports:
+ logging.info('Gene detection output printed to ' + outfile)
+
+ gene_result_hashes += db_results
+
+ # process prior results files
+ if args.prev_output:
+
+ unique_results_files = list(OrderedDict.fromkeys(args.prev_output))
+
+ for results_file in unique_results_files:
+
+ results, dbtype, dbname = read_results_from_file(results_file)
+
+ if dbtype == "mlst":
+ mlst_results_hashes.append(results)
+
+ elif dbtype == "genes":
+ gene_result_hashes.append(results)
+
+ elif dbtype == "compiled":
+ # store mlst in its own db
+ mlst_results = {}
+ for sample in results:
+ if "mlst" in results[sample]:
+ mlst_results[sample] = results[sample]["mlst"]
+ del results[sample]["mlst"]
+ mlst_results_hashes.append(mlst_results)
+ gene_result_hashes.append(results)
+
+ # compile results if multiple databases or datasets provided
+ if ( (len(gene_result_hashes) + len(mlst_results_hashes)) > 1 ):
+ compiled_output_file = args.output + "__compiledResults.txt"
+ compile_results(args,mlst_results_hashes,gene_result_hashes,compiled_output_file)
+
+ elif args.prev_output:
+ logging.info('One previous output file was provided, but there is no other data to compile with.')
+
+ logging.info('SRST2 has finished.')
+
+
+if __name__ == '__main__':
+ main()
diff -r 000000000000 -r 6f870ed59b6e srst2.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/srst2.xml Mon Feb 06 12:31:04 2017 -0500
@@ -0,0 +1,378 @@
+