changeset 0:cc0957c46408 draft

"planemo upload for repository https://github.com/kirstvh/MultiplexCrisprDOE commit b6c1b1860eee82b06ed4a592d1f9eee6886be318-dirty"
author padge
date Thu, 12 May 2022 17:39:18 +0000
parents
children 4a5c94d1d8bb
files MultiplexCrisprDOE.jl README.rst main.jl mcdoe.xml report.jmd test-data/example_data.xlsx test-data/test_ccp_report.html test-data/test_countKOs.xlsx test-data/test_gRNA_edit.xlsx test-data/test_gRNA_reads.xlsx test-data/test_ged_report.html test-data/test_gfd_report.html test-data/test_sim_report.html
diffstat 13 files changed, 4927 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MultiplexCrisprDOE.jl	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,1048 @@
+"""
+    gRNA_frequency_distribution(m, 
+                                sd, 
+                                l, 
+                                u, 
+                                n_gRNA_total; 
+                                normalize = true, 
+                                visualize = false)
+
+Generates vector with frequencies in the combinatorial gRNA/Cas9 construct library for all gRNAs
+
+***INPUT***
+m: the average abundance of the gRNAs (in terms of absolute or relative frequency)
+sd: the standard deviation on the gRNA abundances (in terms of absolute or relative frequency)
+l: minimal gRNA abundance (in terms of absolute or relative frequency)
+u: maximal gRNA abundance (in terms of absolute or relative frequency)
+n_gRNA_total: the total number of gRNAs in the experiment
+normalize: if set to "true", the gRNA abundances (absolute frequencies) are converted into relative frequencies
+visualize: if set to "true", a histogram of all gRNA abundances is plotted
+
+***OUTPUT***
+p_gRNA_freq: vector with frequencies for all gRNAs in the construct library
+"""
+function gRNA_frequency_distribution(m, 
+                                    sd, 
+                                    l, 
+                                    u, 
+                                    n_gRNA_total; 
+                                    normalize = true, 
+                                    visualize = false)
+
+    d_gRNA_freq = truncated(Normal(m, sd), l, u)  # gRNA frequency distribution
+    p_gRNA_freq = collect(rand(d_gRNA_freq, n_gRNA_total))  # sample gRNA frequencies from distribution
+    
+    if normalize # convert into relative frequencies
+        p_gRNA_freq /= sum(p_gRNA_freq)
+    end
+
+    if visualize
+        return histogram(p_gRNA_freq, label="", 
+            xlabel="Number of reads per gRNA", 
+            linecolor="white", 
+            normalize=:probability,
+            xtickfontsize=10,ytickfontsize=10,
+            color=:mediumturquoise, size=(600,350), bins = 25,
+            ylabel="Relative frequency", 
+            title="gRNA frequency distribution")
+    else
+        return p_gRNA_freq
+    end
+end
+
+"""
+    gRNA_edit_distribution(f_act, 
+                            ϵ_edit_act, 
+                            ϵ_edit_inact, 
+                            sd_act, 
+                            n_gRNA_total; 
+                            visualize = false)   
+
+Generates vector with genome editing efficiencies for all the gRNAs in the experiment. 
+
+***INPUT***
+f_act: fraction of all gRNAs that is active
+ϵ_edit_act: Average genome editing efficiency for active gRNAs - mean of the genome editing efficiency distribution for active gRNAs
+ϵ_edit_inact: Average genome editing efficiency for inactive gRNAs - mean of the genome editing efficiency distribution for inactive gRNAs
+sd_act: standard deviation of the genome editing efficiency distributions for active and inactive gRNAs
+n_gRNA_total: the total number of gRNAs in the experiment
+visualize: if set to "true", a histogram of all genome editing efficiency is plotted
+
+***OUTPUT***
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs
+"""
+function gRNA_edit_distribution(f_act, ϵ_edit_act, ϵ_edit_inact, sd_act, n_gRNA_total; visualize=false)   
+    d_act = Binomial(1, f_act) # there is a probability f_act that a gRNA is active
+    d_high_act = truncated(Normal(ϵ_edit_act, sd_act), 0.01, 1)  # average genome editing efficiency for active gRNAs is equal to ϵ_edit_act
+    d_low_act = truncated(Normal(ϵ_edit_inact, sd_act), 0.01, 1) # average genome editing efficiency for inactive gRNAs is equal to ϵ_edit_inact
+    p_gRNA_edit = zeros(n_gRNA_total) # initialize vector with genome editing efficiencies for gRNAs
+    
+    for i in 1:n_gRNA_total
+        if rand(d_act, 1) == [1]  # gRNA is active
+            p_gRNA_edit[i] = rand(d_high_act, 1)[1]
+        else  # gRNA is inactive
+            p_gRNA_edit[i] = rand(d_low_act, 1)[1]
+        end
+    end
+
+    if visualize
+        return histogram(p_gRNA_edit, 
+                normalize = :probability,
+                linecolor = "white",
+                label="", 
+                color=:turquoise4,
+                xtickfontsize=10,ytickfontsize=10, xlim = (0, 1),
+                xticks=(0:0.1:1),
+                bins = 150,
+                xlabel="gRNA editing efficiency", 
+                ylabel="Relative frequency", 
+                title="gRNA genome editing effiency distribution")
+
+    else
+        return p_gRNA_edit
+    end
+end
+
+"""
+    simulate_Nₓ₁(x, 
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO; 
+                iter = 500)
+
+Computes the expected value and the standard deviation of the minimal plant library size for full coverage of all single gene knockouts (E[Nx,1] and σ[Nx,1]) using simulation
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+iter: number of CRISPR/Cas experiments that are simulated to obtain E[Nₓ₁] and σ[Nₓ₁]
+
+***OUTPUT***
+E_Nₓ₁: expected value of the plant library size for full coverage of all single gene knockouts
+sd_Nₓ₁: standard deviation on the plant library size for full coverage of all single gene knockouts
+"""
+function simulate_Nₓ₁(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO; 
+                    iter = 500)
+
+    @assert x * g == n_gRNA_total     
+    Nₓ₁_vec = [] #stores number of plants to reach full coverage for each simulated experiment
+        for i in 1:iter       
+            genes_vec = [] # Initialize vector to store single gene knockouts that are observed in plants
+            Nₓ₁ = 0
+            while genes_vec != collect(1:x) # check if all possible single gene knockouts are present: if no full coverage, sample an additional plant           
+                Nₓ₁ += 1 # count how many plants must be sampled to observe all single gene knockouts
+                
+                # sample combinatorial gRNA/Cas9 construct
+                gRNA_indices_construct = findall((rand(Multinomial(r, p_gRNA_freq))) .!= 0)
+                
+                # execute mutations
+                gRNA_indices_mutations = [gRNA for gRNA in gRNA_indices_construct if rand(Binomial(1, p_gRNA_edit[gRNA])) == 1]
+            
+                # effective gene knockout (loss-of-function) ?
+                gRNA_indices_KO = [gRNA for gRNA in gRNA_indices_mutations if rand(Binomial(1, ϵ_KO)) == 1]
+            
+                # which genes are knocked out?
+                genes_indices_KO = Int.(ceil.(gRNA_indices_KO / g)) 
+                append!(genes_vec, genes_indices_KO)
+
+                # update vector with observed gene knockouts
+                genes_vec = Int.(sort(unique(genes_vec)))
+            end
+            push!(Nₓ₁_vec, Nₓ₁) # add plant library size for full coverage of current experiment to vector         
+        end
+
+    # Calculate expected value and standard deviation
+    E_Nₓ₁ = mean(Nₓ₁_vec); 
+    sd_Nₓ₁ = std(Nₓ₁_vec)
+
+    return E_Nₓ₁, sd_Nₓ₁
+end
+   
+
+"""
+    BioCCP_Nₓ₁(x, 
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the expected value and the standard deviation of the minimal plant library size for 
+full coverage of all single gene knockouts (E[Nx,1] and σ[Nx,1]) using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+
+***OUTPUT***
+E_Nₓ₁ : expected value of the plant library size for full coverage of all single gene knockouts
+sd_Nₓ₁ : standard deviation on the plant library size for full coverage of all single gene knockouts
+"""
+function BioCCP_Nₓ₁(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    # prepare input for BioCCP functions
+    p_gRNAs = p_gRNA_freq .* p_gRNA_edit * ϵ_KO  # calculate probability for each gRNA to induce effective gene knockout
+    p_genes = [sum(p_gRNAs[i:i+g-1]) for i in 1:g:n_gRNA_total]  # obtain probability of single gene knockout by summing up probability of all corresponding gRNAs to induce effective gene knockout
+    
+    # Apply BioCCP functions
+    E_Nₓ₁ = expectation_minsamplesize(x; p=p_genes, r=r, normalize=false)
+    sd_Nₓ₁ = std_minsamplesize(x; p=p_genes, r=r, normalize=false)
+
+    return E_Nₓ₁, sd_Nₓ₁
+end
+
+
+"""
+    simulate_Nₓ₂(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO; 
+                    iter=500)
+
+Computes the expected value and the standard deviation of the minimal plant library size for full coverage of all pairwise combinations of gene knockouts 
+in a multiplex CRISPR/Cas experiment (E[Nx,2] and σ[Nx,2]) using simulation
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+iter: number of CRISPR/Cas experiments that are simulated to obtain E[Nₓ₂] and σ[Nₓ₂]
+
+***OUTPUT***
+E_Nₓ₂ : expected value of the plant library size for full coverage of all pairwise combinations of gene knockouts
+sd_Nₓ₂ : standard deviation on the plant library size for full coverage of all pairwise combinations of gene knockouts
+"""
+function simulate_Nₓ₂(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO; 
+                    iter = 500)
+
+    @assert x * g == n_gRNA_total    
+    Nₓ₂_vec = [] #stores number of plants to reach full coverage of all pairwise combinations of gene knockouts for each simulated experiment
+       
+    for i in 1:iter     
+        X_interactions_count = zeros(x, x) # Initialize matrix to count pairwise interactions
+        Nₓ₂ = 0
+        while X_interactions_count != ones(x, x) # check if all pairwise combinations are present
+            Nₓ₂ += 1 # count how many plants must be sampled to fill pairwise interaction matrix
+                
+            # sample combinatorial gRNA/Cas9 construct
+            gRNA_indices_construct = findall((rand(Multinomial(r, p_gRNA_freq))) .!= 0)
+                
+            # execute mutations
+            gRNA_indices_mutations = [gRNA for gRNA in gRNA_indices_construct if rand(Binomial(1, p_gRNA_edit[gRNA])) == 1]
+            
+            # effective gene knockout (loss-of-function) ?
+            gRNA_indices_KO = [gRNA for gRNA in gRNA_indices_mutations if rand(Binomial(1, ϵ_KO)) == 1]
+            
+            # which genes are knocked out?
+            genes_indices_KO = Int.(ceil.(gRNA_indices_KO / g))
+            
+            # which pairwise combinations are present?
+            interactions = collect(combinations(genes_indices_KO, 2))
+                
+            # Store represented combinations in matrix
+            for interaction in interactions
+                j = interaction[1]; k = interaction[2]
+                X_interactions_count[j,k] = 1; X_interactions_count[k,j] = 1; X_interactions_count[j,j] = 1; X_interactions_count[k,k] = 1          
+            end  
+        end
+
+        push!(Nₓ₂_vec, Nₓ₂)               
+        end
+
+    # Calculate expected value and standard deviation
+    E_Nₓ₂ = mean(Nₓ₂_vec)
+    sd_Nₓ₂ = std(Nₓ₂_vec)
+        
+    return E_Nₓ₂, sd_Nₓ₂
+end
+
+"""
+    BioCCP_Nₓ₂(x, 
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, ϵ_KO)
+
+Computes the expected value and the standard deviation of the minimal plant library size for full coverage of all pairwise combinations of gene knockouts in a multiplex CRISPR/Cas experiment (E[Nx,2] and σ[Nx,2]) using BioCCP
+
+    ***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+
+***OUTPUT***
+E_Nₓ₂: expected value of the plant library size for full coverage of all pairwise combinations of gene knockouts
+sd_Nₓ₂: standard deviation on the plant library size for full coverage of all pairwise combinations of gene knockouts
+"""
+function BioCCP_Nₓ₂(x, 
+                                         g, 
+                                         r, 
+                                         n_gRNA_total, 
+                                         p_gRNA_freq, 
+                                         p_gRNA_edit, ϵ_KO)
+    
+    # how many pairwise combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 2))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select pairwise gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^2
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        p_genes_matrix[gene1, gene2] += p_combinations_gRNA[i]
+    end
+    p_genes = collect([p_genes_matrix[i, j] for j in 2:size(p_genes_matrix, 1) for i in 1:j-1])  
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 2)))
+    
+    # Apply BioCCP functions
+    E_Nₓ₂ = expectation_minsamplesize(n_combinations_genes; p=p_genes, r=combinations_pp, normalize=false)
+    sd_Nₓ₂ = std_minsamplesize(n_combinations_genes; p=p_genes, r=combinations_pp, normalize=false)
+
+    return E_Nₓ₂, sd_Nₓ₂
+end
+
+"""
+    simulate_Nₓ₂_countKOs(x, 
+                                         g, 
+                                         r, 
+                                         n_gRNA_total, 
+                                         p_gRNA_freq, 
+                                         p_gRNA_edit, ϵ_KO; iter=100000)
+
+Counts the number of knockouts per plant in the experiment.
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+iter: number of plants that are sampled 
+
+***OUTPUT***
+n_KOs_vec: vector with the number of knockouts for each plant 
+"""
+function simulate_Nₓ₂_countKOs(x, 
+                                g, 
+                                r, 
+                                n_gRNA_total, 
+                                p_gRNA_freq, 
+                                p_gRNA_edit, 
+                                ϵ_KO; 
+                                iter = 100000)
+     
+    @assert x * g == n_gRNA_total 
+
+    n_KOs_vec = []  
+
+    for j in 1:iter                           
+        # sample combinatorial gRNA/Cas9 construct
+        gRNA_indices_construct = findall((rand(Multinomial(r, p_gRNA_freq))) .!= 0)
+                
+        # execute mutations
+        gRNA_indices_mutations = [gRNA for gRNA in gRNA_indices_construct if rand(Binomial(1, p_gRNA_edit[gRNA])) == 1]
+            
+        # effective gene knockout (loss-of-function) ?
+        gRNA_indices_KO = [gRNA for gRNA in gRNA_indices_mutations if rand(Binomial(1, ϵ_KO)) == 1]
+            
+        # which genes are knocked out?
+        genes_indices_KO = Int.(ceil.(gRNA_indices_KO / g))
+            
+        push!(n_KOs_vec, length(unique((genes_indices_KO))))
+    end  
+
+    return n_KOs_vec
+end
+
+"""
+    simulate_Nₓ₃(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO; 
+                    iter=500)
+
+Computes the expected value and the standard deviation of the minimal plant library size for full coverage of all triple combinations of gene knockouts in 
+a multiplex CRISPR/Cas experiment (E[Nx,3] and σ[Nx,3]) using simulation
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+iter: number of CRISPR/Cas experiments that are simulated to obtain E[Nₓ₃] and σ[Nₓ₃]
+
+***OUTPUT***
+E_Nₓ₃: expecteded value of the plant library size for full coverage of all triple combinations of gene knockouts
+sd_Nₓ₃: standard deviation on the plant library size for full coverage of all triple combinations of gene knockouts
+"""
+function simulate_Nₓ₃(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO; 
+                    iter = 500)
+
+    @assert x * g == n_gRNA_total
+
+    Nₓ₃_vec = [] # stores number of plants required for each experiment
+
+    for i in 1:iter       
+        # println("got till here")
+        X_interactions_count = zeros(x, x, x) # Initialize matrix to count triple interactions
+        # println(X_interactions_count)
+        # println(ones(x, x, x))
+        Nₓ₃ = 0
+
+        while X_interactions_count != ones(x, x, x) # check if all triple combinations are present
+            Nₓ₃ += 1 # count how many plants must be sampled to fill triple interaction matrix
+                
+            # sample combinatorial gRNA/Cas9 construct
+            gRNA_indices_construct = findall((rand(Multinomial(r, p_gRNA_freq))) .!= 0)
+                
+            # execute mutations
+            gRNA_indices_mutations = [gRNA for gRNA in gRNA_indices_construct if rand(Binomial(1, p_gRNA_edit[gRNA])) == 1]
+            
+            # effective gene knockout (loss-of-function) ?
+            gRNA_indices_KO = [gRNA for gRNA in gRNA_indices_mutations if rand(Binomial(1, ϵ_KO)) == 1]
+            
+            # which genes are knocked out?
+            genes_indices_KO = Int.(ceil.(gRNA_indices_KO / g))
+            
+            # which triple combinations are present?
+            interactions = collect(combinations(genes_indices_KO, 3))
+                
+            # Store represented triple combinations in 3D-matrix
+            for interaction in interactions
+                j = interaction[1]
+                k = interaction[2]
+                l = interaction[3]
+                X_interactions_count[j,k,l] = 1
+                X_interactions_count[k,j,l] = 1
+                X_interactions_count[l,j,k] = 1
+                X_interactions_count[l,k,j] = 1
+                X_interactions_count[j,l,k] = 1
+                X_interactions_count[k,l,j] = 1
+        
+                X_interactions_count[:,l,l] .= 1
+                X_interactions_count[:,k,k] .= 1
+                X_interactions_count[:,j,j] .= 1
+                X_interactions_count[l,:,l] .= 1
+                X_interactions_count[k,:,k] .= 1
+                X_interactions_count[j,:,j] .= 1
+        
+                X_interactions_count[j,j,:] .= 1
+                X_interactions_count[k,k,:] .= 1
+                X_interactions_count[l,l,:] .= 1
+            end  
+        end
+        push!(Nₓ₃_vec, Nₓ₃)       
+    end
+
+    # calculate expected value and standard deviation
+    E_Nₓ₃ = mean(Nₓ₃_vec); sd_Nₓ₃ = std(Nₓ₃_vec)
+
+    return E_Nₓ₃, sd_Nₓ₃
+end
+   
+
+"""
+    BioCCP_Nₓ₃(x, 
+            g, 
+            r, 
+            n_gRNA_total, 
+            p_gRNA_freq, 
+            p_gRNA_edit, 
+            ϵ_KO)
+
+Computes the expected value and the standard deviation of the minimal plant library size 
+for full coverage of all triple combinations of gene knockouts in a multiplex CRISPR/Cas experiment (E[Nx,3] and σ[Nx,3]) using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+
+***OUTPUT***
+E_Nₓ₃: expecteded value of the plant library size for full coverage of all triple combinations of gene knockouts
+sd_Nₓ₃: standard deviation on the plant library size for full coverage of all triple combinations of gene knockouts
+"""
+function BioCCP_Nₓ₃(x, 
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    # how many triple combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 3))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of triple gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]] * p_gRNA_freq[ind_combinations_gRNA[i][3]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]] * p_gRNA_edit[ind_combinations_gRNA[i][3]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select triple gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g) && ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][3]/g) && ceil(ind_combinations_gRNA[i][3]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^3
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        gene3 = Int(ceil(ind_combinations_gRNA_interest[i][3]/g))
+        p_genes_matrix[gene1, gene2, gene3] += p_combinations_gRNA[i]
+    end
+    
+    combinations_genes = collect(combinations(1:x, 3))
+    p_genes = []
+        for combination in combinations_genes
+            push!(p_genes, p_genes_matrix[combination[1], combination[2], combination[3]])
+        end
+        
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 3)))
+    
+    # apply BioCCP functions
+    E_Nₓ₃ = expectation_minsamplesize(n_combinations_genes; p=p_genes, r=combinations_pp, normalize=false)
+    sd_Nₓ₃ = std_minsamplesize(n_combinations_genes; p=p_genes, r=combinations_pp, normalize=false)
+
+    return E_Nₓ₃, sd_Nₓ₃
+end
+
+"""
+    BioCCP_Pₓ₁(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the probability of full coverage of all single gene knockouts (Px,1) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+
+***OUTPUT***
+Pₓ₁: probability of full coverage of all single gene knockouts
+
+"""
+function BioCCP_Pₓ₁(x, 
+                    N,
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    # prepare input
+    p_gRNAs = p_gRNA_freq .* p_gRNA_edit * ϵ_KO
+    p_genes = [sum(p_gRNAs[i:i+g-1]) for i in 1:g:n_gRNA_total]
+    
+    # apply BioCCP function
+    Pₓ₁ = success_probability(x, N; p=p_genes, r=r, normalize=false) 
+
+    return Pₓ₁
+end
+
+"""
+BioCCP_γₓ₁(x, 
+            N,
+            g, 
+            r, 
+            n_gRNA_total, 
+            p_gRNA_freq, 
+            p_gRNA_edit, 
+            ϵ_KO)
+
+Computes the expected coverage of all single gene knockouts (Px,1) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+
+***OUTPUT***
+γₓ₁: expected coverage of all single gene knockouts
+"""
+function BioCCP_γₓ₁(x, 
+                    N,
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    p_gRNAs = p_gRNA_freq .* p_gRNA_edit * ϵ_KO
+    p_genes = [sum(p_gRNAs[i:i+g-1]) for i in 1:g:n_gRNA_total]
+
+    # Apply BioCCP function
+    γₓ₁ = expectation_fraction_collected(x, N; p=p_genes, r=r, normalize=false) 
+
+    return γₓ₁ 
+end
+
+
+"""
+    BioCCP_Pₓ₂(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the probability of full coverage of all pairwise combinations of gene knockouts (Px,2) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+                
+***OUTPUT***
+Pₓ₂: probability of full coverage of all pairwise combinations of gene knockouts
+"""
+function BioCCP_Pₓ₂(x, 
+                    N,
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    # how many pairwise combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 2))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select pairwise gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^2
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        p_genes_matrix[gene1, gene2] += p_combinations_gRNA[i]
+    end
+
+    p_genes = collect([p_genes_matrix[i, j] for j in 2:size(p_genes_matrix, 1) for i in 1:j-1])  
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 2)))
+    
+    # Apply BioCCP function
+    Pₓ₂ = success_probability(n_combinations_genes, N; p=p_genes, r=combinations_pp, normalize=false)
+
+    return Pₓ₂ 
+end
+
+"""
+    BioCCP_γₓ₂(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the expected coverage of all pairwise combinations of gene knockouts (γx,2) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+                
+***OUTPUT***
+γₓ₂: expected coverage of all pairwise combinations of gene knockouts
+"""
+function BioCCP_γₓ₂(x, 
+                    N,
+                    g, 
+                    r, 
+                    n_gRNA_total, 
+                    p_gRNA_freq, 
+                    p_gRNA_edit, 
+                    ϵ_KO)
+    
+    # how many pairwise combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 2))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select pairwise gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^2
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        p_genes_matrix[gene1, gene2] += p_combinations_gRNA[i]
+    end
+
+    p_genes = collect([p_genes_matrix[i, j] for j in 2:size(p_genes_matrix, 1) for i in 1:j-1])  
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 2)))
+    
+    # Apply BioCCP function
+    γₓ₂ = expectation_fraction_collected(n_combinations_genes, N; p=p_genes, r=combinations_pp, normalize=false)
+
+    return γₓ₂ 
+end
+
+
+"""
+    BioCCP_γₓ₃(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the expected coverage of all triple combinations of gene knockouts (γx,3) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+                
+***OUTPUT***
+γₓ₃: expected coverage of all triple combinations of gene knockouts
+"""
+function BioCCP_γₓ₃(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+    
+    # how many triple combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 3))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of triple gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]] * p_gRNA_freq[ind_combinations_gRNA[i][3]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]] * p_gRNA_edit[ind_combinations_gRNA[i][3]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select triple gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g) && ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][3]/g) && ceil(ind_combinations_gRNA[i][3]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^3
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        gene3 = Int(ceil(ind_combinations_gRNA_interest[i][3]/g))
+        p_genes_matrix[gene1, gene2, gene3] += p_combinations_gRNA[i]
+    end
+    
+    combinations_genes = collect(combinations(1:x, 3))
+    p_genes = []
+        for combination in combinations_genes
+            push!(p_genes, p_genes_matrix[combination[1], combination[2], combination[3]])
+        end
+        
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 3)))
+    
+    # Apply BioCCP function
+    γₓ₃ = expectation_fraction_collected(n_combinations_genes, N; p=p_genes, r=combinations_pp, normalize=false)
+
+    return γₓ₃ 
+end
+
+"""
+    BioCCP_Pₓ₃(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+
+Computes the probability of full coverage of all triple combinations of gene knockouts (Px,3) for an experiment with given plant library size using BioCCP
+
+***INPUT***
+x: number of target genes in the experiment
+N: plant library size
+g: number of gRNAs designed per target gene
+r: number of gRNA sequences per combinatorial gRNA/Cas construct
+n_gRNA_total: total number of gRNAs in the experiment
+p_gRNA_freq: vector with relative frequencies for all gRNAs in the construct library (normalized!)
+p_gRNA_edit: vector with genome editing efficiencies for all gRNAs 
+ϵ_KO: global knockout efficiency; fraction of mutations leading to effective gene knockout
+                
+***OUTPUT***
+Pₓ₃: probability of full coverage of all triple combinations of gene knockouts
+"""
+function BioCCP_Pₓ₃(x, 
+                N,
+                g, 
+                r, 
+                n_gRNA_total, 
+                p_gRNA_freq, 
+                p_gRNA_edit, 
+                ϵ_KO)
+    
+    # how many triple combinations of gRNAs
+    ind_combinations_gRNA = collect(combinations(1:n_gRNA_total, 3))
+    n_combinations_gRNA = length(ind_combinations_gRNA)
+    
+    # calculate probability and activity of triple gRNA combinations
+    p_combinations_gRNA_library = zeros(n_combinations_gRNA)
+    p_combinations_gRNA_act = zeros(n_combinations_gRNA)
+    for i in 1:n_combinations_gRNA
+        p_combinations_gRNA_library[i] = p_gRNA_freq[ind_combinations_gRNA[i][1]] * p_gRNA_freq[ind_combinations_gRNA[i][2]] * p_gRNA_freq[ind_combinations_gRNA[i][3]]
+        p_combinations_gRNA_act[i] = p_gRNA_edit[ind_combinations_gRNA[i][1]] * p_gRNA_edit[ind_combinations_gRNA[i][2]] * p_gRNA_edit[ind_combinations_gRNA[i][3]]
+    end
+    
+    # normalize probability gRNA combinations
+    p_combinations_gRNA_library /= sum(p_combinations_gRNA_library)
+
+    # select triple gRNA combinations of which each component codes for different gene (goal is to study combinations of knockouts in different genes)
+    p_combinations_gRNA_library_interest = []
+    p_combinations_gRNA_act_interest = []
+    ind_combinations_gRNA_interest = []
+    for i in 1:n_combinations_gRNA
+        if ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][2]/g) && ceil(ind_combinations_gRNA[i][1]/g) != ceil(ind_combinations_gRNA[i][3]/g) && ceil(ind_combinations_gRNA[i][3]/g) != ceil(ind_combinations_gRNA[i][2]/g)
+            push!(p_combinations_gRNA_library_interest, p_combinations_gRNA_library[i])
+            push!(p_combinations_gRNA_act_interest, p_combinations_gRNA_act[i])
+            push!(ind_combinations_gRNA_interest, ind_combinations_gRNA[i])
+        end
+    end
+        
+    n_combinations_gRNA_interest = length(p_combinations_gRNA_library_interest)
+    p_combinations_gRNA = p_combinations_gRNA_library_interest .* p_combinations_gRNA_act_interest * ϵ_KO^3
+
+    # sum up probabilities or gRNA combinations for corresponding gene knockout combinations
+    p_genes_matrix = zeros(x, x, x)
+    for i in 1:n_combinations_gRNA_interest
+        gene1 = Int(ceil(ind_combinations_gRNA_interest[i][1]/g))
+        gene2 = Int(ceil(ind_combinations_gRNA_interest[i][2]/g))
+        gene3 = Int(ceil(ind_combinations_gRNA_interest[i][3]/g))
+        p_genes_matrix[gene1, gene2, gene3] += p_combinations_gRNA[i]
+    end
+    
+    combinations_genes = collect(combinations(1:x, 3))
+    p_genes = []
+        for combination in combinations_genes
+            push!(p_genes, p_genes_matrix[combination[1], combination[2], combination[3]])
+        end
+        
+    n_combinations_genes = length(p_genes)
+    combinations_pp = length(collect(combinations(1:r, 3)))
+    
+    # Apply BioCCP function
+    Pₓ₃ = success_probability(n_combinations_genes, N; p=p_genes, r=combinations_pp, normalize=false)
+
+    return Pₓ₃ 
+end
+      
+      
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.rst	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,4 @@
+MultiplexCrisprDOE
+==================
+provides simulation- and BioCCP-based approaches for computing the minimal plant library size 
+that guarantees full combinatorial coverage (and other relevant statistics) for multiplex CRISPR/Cas experiments in plants.
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.jl	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,612 @@
+using Pkg
+Pkg.add("Plots");
+Pkg.add("Distributions");
+Pkg.add("LinearAlgebra");
+Pkg.add("Combinatorics");
+Pkg.add("BioCCP");
+Pkg.add("ArgParse");
+Pkg.add("XLSX");
+Pkg.add("DataFrames");
+Pkg.add("Weave");
+Pkg.add("DataStructures");
+Pkg.add("PrettyTables");
+
+using Random
+using Plots
+using Distributions
+using LinearAlgebra
+using Combinatorics
+using BioCCP
+using ArgParse
+using XLSX
+using DataFrames
+using Weave
+using DataStructures
+using PrettyTables
+
+global current_dir = pwd()
+include("MultiplexCrisprDOE.jl");
+
+function main(args)
+
+    aps = ArgParseSettings("MultiplexCrisprDOE")
+
+    @add_arg_table! aps begin
+        "gfd" #, "gRNA_freq_dist"
+            action = :command        # adds a command which will be read from an argument
+            help = "gRNA/Cas9 frequencies"
+        "ged" #, "gRNA_edit_dist" 
+            action = :command
+            help = "gRNA/Cas9 editing efficiencies"
+        "sim"  # simulation
+            action = :command
+            help = "simulation-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage (and other relevant statistics)"
+        "ccp" # bioccp
+            action = :command
+            help = "BioCCP-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage (and other relevant statistics)"
+    end
+
+    @add_arg_table! aps["gfd"] begin    # add command arg_table: same as usual, but invoked on s["grna"]
+        "m"
+            arg_type = Int
+            help = "plant library size"
+        "sd"
+            arg_type = Int
+            help = "the standard deviation on the gRNA abundances (in terms of absolute or relative frequency)"
+        "l"
+            arg_type = Int
+            help = "minimal gRNA abundance (in terms of absolute or relative frequency)"
+        "u"
+            arg_type = Int
+            help = "maximal gRNA abundance (in terms of absolute or relative frequency)"
+        "n" #, "--n_gRNA_total"
+            arg_type = Int
+            help = "the total number of gRNAs in the experiment"
+        "--normalize"
+            action = :store_true
+            # arg_type = Bool
+            # default = true
+            help = "if provided, the gRNA abundances (absolute frequencies) are converted into relative frequencies"
+        "--visualize"
+            action = :store_true
+            # arg_type = Bool
+            # default = false
+            help = "if provided, a histogram of all gRNA abundances is plotted"
+        "--out_file"
+            arg_type = String
+            default = "gRNA_reads"
+            help = "Output excel file prefix"
+    end
+
+    @add_arg_table! aps["ged"] begin    # add command arg_table: same as usual, but invoked on s["grna"]
+        "f_act"
+            arg_type = Float16
+            help = "fraction of all gRNAs that is active"
+        "eps_edit_act"
+            arg_type = Float16
+            help = "Average genome editing efficiency for active gRNAs - mean of the genome editing efficiency distribution for active gRNAs"
+        "eps_edit_inact"
+            arg_type = Float16
+            help = "Average genome editing efficiency for inactive gRNAs - mean of the genome editing efficiency distribution for inactive gRNAs"
+        "sd_act"
+            arg_type = Float16
+            help = "standard deviation of the genome editing efficiency distributions for active and inactive gRNAs"
+        "n_gRNA_total"
+            arg_type = Int
+            help = "the total number of gRNAs in the experiment"
+        "--visualize"
+            action = :store_true
+            # arg_type = Bool
+            # default = false
+            help = "if provided a histogram of all genome editing efficiency is plotted"
+        "--out_file"
+            arg_type = String
+            default = "gRNA_edit"
+            help = "Output excel file prefix"
+    end
+    
+    @add_arg_table! aps["sim"] begin
+        "M" #, "--mode"
+            # action = :command 
+            # dest_name = "M"
+            arg_type = Int
+            range_tester = x -> 1 <= x <= 4
+            help = """Select simulation mode (1: simulate_Nₓ₁; 2: simulate_Nₓ₂; 3: simulate_Nₓ₃; 4: simulate_Nₓ₂_countKOs)"""
+        "x"
+            arg_type = Int
+            help = "number of target genes in the experiment"
+        "g"
+            arg_type = Int
+            help = "number of gRNAs designed per target gene"
+        "r"
+            arg_type = Int
+            help = "number of gRNA sequences per combinatorial gRNA/Cas construct"
+        "t"#, "--n_gRNA_total"
+            arg_type = Int
+            help = "total number of gRNAs in the experiment"
+        "f"#, "--p_gRNA_freq"
+            arg_type = String #Vector{Float64}
+            help = "vector with relative frequencies for all gRNAs in the construct library (normalized!)"
+        "e"#, "--p_gRNA_edit"
+            arg_type = String #Vector{Float64}
+            help = "vector with genome editing efficiencies for all gRNAs"
+        "E"#, "--ϵ_KO"
+            arg_type=Float16
+            help = "global knockout efficiency; fraction of mutations leading to effective gene knockout"
+        "--i", "--iter"
+            arg_type = Int
+            default = 500
+            help = "number of CRISPR/Cas experiments that are simulated"
+    end
+
+    @add_arg_table! aps["ccp"] begin
+        "M"#, "--mode"
+            arg_type = Int
+            range_tester = x -> 1 <= x <= 9
+            help = """Select BioCCP mode (1: BioCCP_Nₓ₁; 2: BioCCP_Nₓ₂; 3: BioCCP_Nₓ₃; 4: BioCCP_Pₓ₁; 5: BioCCP_Pₓ₂ ;
+            6: BioCCP_Pₓ₃; 7: BioCCP_γₓ₁; 8: BioCCP_γₓ₂; 9: BioCCP_γₓ₃)"""
+        "x"
+            arg_type = Int
+            help = "number of target genes in the experiment"
+        "N"
+            arg_type = Int
+            help = "(Minimum) plant library size"
+        "--s", "--step"
+            arg_type = Int
+            default = 5
+            range_tester = x -> 1 <= x <= 10
+            help = "Step size for plant library size (optional for calculating expected combinatorial coverage / plant library size)"
+        "--MN", "--max_pl_size"
+            arg_type = Int
+            default = 4000
+            help = "Maximum plant library size (optional for calculating expected combinatorial coverage / plant library size)"
+        "g"
+            arg_type = Int
+            help = "number of gRNAs designed per target gene"
+        "r"
+            arg_type = Int
+            help = "number of gRNA sequences per combinatorial gRNA/Cas construct"
+        "t"#, "--n_gRNA_total"
+            arg_type = Int
+            help = "total number of gRNAs in the experiment"
+        "f"#, "--p_gRNA_freq"
+            arg_type = String #Vector{Float64}
+            help = "File containing vector with relative frequencies for all gRNAs in the construct library (normalized!)"
+        "e"#, "--p_gRNA_edit"
+            arg_type = String #Vector{Float64}
+            help = "File containing vector with genome editing efficiencies for all gRNAs"
+        "E"#, "--ϵ_KO"
+            arg_type=Float16
+            help = "global knockout efficiency; fraction of mutations leading to effective gene knockout"
+    end
+
+    parsed_args = parse_args(args, aps)
+    command_args = parsed_args[parsed_args["%COMMAND%"]]
+    println(command_args)
+
+    tool_info = OrderedDict()
+    args_info = OrderedDict()
+    grna_dict = Dict()
+    out_dict = Dict()
+    if parsed_args["%COMMAND%"] == "gfd"
+        tool_info["method"] = "gRNA_ frequency _distribution"
+        tool_info["description"] = "Generates vector with frequencies in the combinatorial "* 
+                                    "gRNA/Cas9 construct library for all gRNAs"
+        tool_info["mode"] = ""
+        tool_info["mode_description"] = ""
+        args_info["Plant library size"] = command_args["m"]
+        args_info["SD on the gRNA abundances"] = command_args["sd"]
+        args_info["Minimal gRNA abundance"] = command_args["l"]
+        args_info["Maximal gRNA abundance"] = command_args["u"]
+        args_info["Total number of gRNAs"] = command_args["n"]
+        args_info["Convert gRNA abundances to relative frequencies"] = string(command_args["normalize"])
+        args_info["Plot gRNA abundances"] = string(command_args["visualize"])
+
+        m = command_args["m"]
+        sd = command_args["sd"]
+        l = command_args["l"]
+        u = command_args["u"]
+        n_gRNA_total = command_args["n"]
+        norm = command_args["normalize"]
+        viz = command_args["visualize"]
+
+        println(string(norm))
+        println(string(viz))
+
+        p_gRNA_reads = gRNA_frequency_distribution(m, sd, l, u, n_gRNA_total; normalize = norm, visualize = false)
+        grna_dict["p_gRNA_reads"] = p_gRNA_reads
+
+        # println(p_gRNA_reads)
+        # write to excel file
+        fn = command_args["out_file"] * ".xlsx"
+        labels = ["gRNA_read"]
+        columns = Vector()
+        push!(columns, p_gRNA_reads)
+        XLSX.openxlsx(fn, mode="w") do xf
+            sheet = xf[1]
+            XLSX.writetable!(sheet, columns, labels)
+        end
+
+        out_dict["output file"] = fn
+
+    elseif parsed_args["%COMMAND%"] == "ged"
+        tool_info["method"] = "gRNA_ edit _distribution"
+        tool_info["description"] = "Generates vector with genome editing efficiencies "*
+                                    "for all the gRNAs in the experiment"
+        tool_info["mode"] = ""
+        tool_info["mode_description"] = ""
+        args_info["Fraction of active gRNAs"] = command_args["f_act"]
+        args_info["Average genome editing efficiency of active gRNAs"] = command_args["eps_edit_act"]
+        args_info["Average genome editing efficiency of inactive gRNAs"] = command_args["eps_edit_inact"]
+        args_info["Standard deviation"] = command_args["sd_act"]
+        args_info["Total number of gRNAs"] = command_args["n_gRNA_total"]
+        args_info["Plot genome editing efficiency"] = string(command_args["visualize"])
+
+        f_act = command_args["f_act"]
+        eps_edit_act = command_args["eps_edit_act"]
+        eps_edit_inact = command_args["eps_edit_inact"]
+        sd_act = command_args["sd_act"]
+        n_gRNA_total = command_args["n_gRNA_total"]
+        viz = ["visualize"]
+
+        p_gRNA_edit = gRNA_edit_distribution(f_act, eps_edit_act, eps_edit_inact, sd_act, n_gRNA_total; visualize=false)
+        grna_dict["p_gRNA_edit"] = p_gRNA_edit
+        # write to excel file
+        fn = command_args["out_file"] * ".xlsx"
+        labels = ["gRNA_edit_efficiency"]
+        columns = Vector()
+        push!(columns, p_gRNA_edit)
+        XLSX.openxlsx(fn, mode="w") do xf
+            sheet = xf[1]
+            XLSX.writetable!(sheet, columns, labels)
+        end
+
+        out_dict["output file"] = fn
+
+    elseif parsed_args["%COMMAND%"] == "sim" || parsed_args["%COMMAND%"] == "ccp"
+
+        filename = command_args["f"]
+        sheet = 1
+        data = DataFrame(XLSX.readtable(filename, sheet)...)
+        p_gRNA_reads = data[!,"gRNA_read"]
+        p_gRNA_reads_normalized = p_gRNA_reads/sum(p_gRNA_reads)  # normalize
+        f = p_gRNA_reads_normalized
+        grna_dict["p_gRNA_reads"] = f
+
+        filename = command_args["e"]
+        sheet = 1
+        data = DataFrame(XLSX.readtable(filename, sheet)...)
+        p_gRNA_edit = data[!,"gRNA_edit_efficiency"]
+        e = p_gRNA_edit
+        grna_dict["p_gRNA_edit"] = e
+
+        x = command_args["x"]
+        g = command_args["g"]
+        r = command_args["r"]
+        t = command_args["t"] # n_gRNA_total
+        E = command_args["E"] # ϵ_KO # iter = 500
+        
+        args_info["# of target genes in the experiment"] = command_args["x"]
+        args_info["# of gRNAs designed per target gene"] = command_args["g"]
+        args_info["# of gRNAs / combi gRNA/Cas construct"] = command_args["r"]
+        args_info["Total number of gRNAs"] = command_args["t"]
+        args_info["Relative frequencies for all gRNAs"] = command_args["f"]
+        args_info["Genome editing efficiencies for all gRNAs"] = command_args["e"]
+        args_info["Global knockout efficiency"] = command_args["E"]
+
+        if parsed_args["%COMMAND%"] == "sim"
+            tool_info["method"] = "simulation"
+            tool_info["description"] = "simulation-based approaches for computing the minimal "* 
+                                        "plant library size that guarantees full combinatorial "*
+                                        "coverage (and other relevant statistics)"
+            i = command_args["i"] # iter = 500
+            args_info["# of simulated experiments"] = command_args["i"]
+            
+            if command_args["M"] == 1
+                tool_info["mode"] = "simulate_Nx1"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation "* 
+                                                "of the minimal plant library size for full coverage of "*
+                                                "all single gene knockouts (E[Nx,1] and σ[Nx,1]) using simulation"
+                E_sim, sd_sim = simulate_Nₓ₁(x, g, r, t, f, e, E; iter=i)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 2
+                tool_info["mode"] = "simulate_Nx2"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation of "* 
+                    "the minimal plant library size for full coverage of "*
+                    "all pairwise combinations of gene knockouts in a "*
+                    "multiplex CRISPR/Cas experiment (E[Nx,2] and σ[Nx,2]) using simulation"
+
+                E_sim, sd_sim = simulate_Nₓ₂(x, g, r, t, f, e, E; iter=i)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 3
+                tool_info["mode"] = "simulate_Nx3"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation of "*
+                    "the minimal plant library size for full coverage of "*
+                    "all triple combinations of gene knockouts in a "*
+                    "multiplex CRISPR/Cas experiment (E[Nx,3] and σ[Nx,3]) using simulation"
+
+                E_sim, sd_sim = simulate_Nₓ₃(x, g, r, t, f, e, E; iter=i)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 4
+                tool_info["mode"] = "simulate_Nx2_countKOs"
+                tool_info["mode_description"] = "Counts of the number of knockouts per plant in the experiment"
+
+                n_KOs_vec = simulate_Nₓ₂_countKOs(x, g, r, t, f, e, E; iter=i)
+                out_dict["n_KOs_vec"] = n_KOs_vec
+
+                # write to excel file
+                fn = "countKOs.xlsx"
+                labels = ["countKOs"]
+                columns = Vector()
+                push!(columns, n_KOs_vec)
+                XLSX.openxlsx(fn, mode="w") do xf
+                    sheet = xf[1]
+                    XLSX.writetable!(sheet, columns, labels)
+                end
+
+                out_dict["output file"] = fn
+            
+            end
+
+        elseif parsed_args["%COMMAND%"] == "ccp"
+            tool_info["method"] = "BioCCP"
+            tool_info["description"] = "BioCCP-based approaches for computing the minimal "* 
+                                        "plant library size that guarantees full combinatorial "*
+                                        "coverage (and other relevant statistics)"
+            
+            N = command_args["N"]
+            if haskey(command_args,"s") && haskey(command_args,"MN")
+                s = command_args["s"]
+                MN = command_args["MN"]
+                args_info["Step size"] = command_args["s"]
+                args_info["Maximum Plant library size"] = command_args["MN"]
+            end
+            args_info["Plant library size"] = command_args["N"]
+            
+
+            if command_args["M"] == 1
+                tool_info["mode"] = "BioCCP_Nx1"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation of "*
+                    "the minimal plant library size for full coverage of all "*
+                    "single gene knockouts (E[Nx,1] and σ[Nx,1]) using BioCCP"
+
+                E_sim, sd_sim = BioCCP_Nₓ₁(x, g, r, t, f, e, E)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 2
+                tool_info["mode"] = "BioCCP_Nx2"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation of "*
+                    "the minimal plant library size for full coverage of all "*
+                    "pairwise combinations of gene knockouts in a multiplex "*
+                    "CRISPR/Cas experiment (E[Nx,2] and σ[Nx,2]) using BioCCP"
+
+                E_sim, sd_sim = BioCCP_Nₓ₂(x, g, r, t, f, e, E)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 3
+                tool_info["mode"] = "BioCCP_Nx3"
+                tool_info["mode_description"] = "Computes the expected value and the standard deviation of "*
+                    "the minimal plant library size for full coverage of all triple combinations of "*
+                    "gene knockouts in a multiplex CRISPR/Cas experiment (E[Nx,3] and σ[Nx,3]) using BioCCP"
+
+                E_sim, sd_sim = BioCCP_Nₓ₃(x, g, r, t, f, e, E)
+                out_dict["E_sim"] = E_sim
+                out_dict["sd_sim"] = sd_sim
+
+            elseif command_args["M"] == 4
+                tool_info["mode"] = "BioCCP_Px1"
+                tool_info["mode_description"] = "Computes the probability of full coverage of "* 
+                    "all single gene knockouts (Px,1) for an experiment with given "*
+                    "plant library size using BioCCP"
+
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                PT = []
+                global N_95_P = nothing
+                for N in plant_library_sizes
+                    Pr = BioCCP_Pₓ₁(x, N, g, r, t, f, e, E)
+                    push!(PT, Pr)
+                    if Pr < 0.95
+                        N_95_P = N
+                    end
+                end
+                # P = BioCCP_Pₓ₁(x, N, g, r, t, f, e, E)
+                out_dict["P_sim"] = PT
+                out_dict["N_95_P"] = N_95_P
+                out_dict["pls"] = plant_library_sizes
+
+            elseif command_args["M"] == 5
+                tool_info["mode"] = "BioCCP_Px2"
+                tool_info["mode_description"] = "Computes the probability of full coverage of "*
+                    "all pairwise combinations of gene knockouts (Px,2) "* 
+                    "for an experiment with given plant library size using BioCCP"
+
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                PT = []
+                global N_95_P = nothing
+                for N in plant_library_sizes  
+                    Pr = BioCCP_Pₓ₂(x, N, g, r, t, f, e, E)
+                    push!(PT, Pr)
+                    if Pr < 0.95
+                        N_95_P = N
+                    end
+                end
+                # P = BioCCP_Pₓ₂(x, N, g, r, t, f, e, E)
+                out_dict["P_sim"] = PT
+                out_dict["N_95_P"] = N_95_P
+                out_dict["pls"] = plant_library_sizes
+
+            elseif command_args["M"] == 6
+                tool_info["mode"] = "BioCCP_Px3"
+                tool_info["mode_description"] = "Computes the probability of full coverage of all "*
+                    "triple combinations of gene knockouts (Px,3) for an experiment "*
+                    "with given plant library size using BioCCP"
+
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                PT = []
+                global N_95_P = nothing
+                for N in plant_library_sizes  
+                    Pr = BioCCP_Pₓ₃(x, N, g, r, t, f, e, E)
+                    push!(PT, Pr)
+                    if Pr < 0.95
+                        N_95_P = N
+                    end
+                end
+                # P = BioCCP_Pₓ₃(x, N, g, r, t, f, e, E)
+                out_dict["P_sim"] = PT
+                out_dict["N_95_P"] = N_95_P
+                out_dict["pls"] = plant_library_sizes
+
+            elseif command_args["M"] == 7
+                tool_info["mode"] = "BioCCP_γx1"
+                tool_info["mode_description"] = "Computes the expected coverage of all "*
+                    "single gene knockouts (E[γx,1]) for an experiment "*
+                    "with given plant library size using BioCCP"
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                exp_cov = []
+                global N_95 = nothing
+                for N in plant_library_sizes  
+                    E_cov = BioCCP_γₓ₁(x, N, g, r, t, f, e, E)
+                    push!(exp_cov, E_cov)
+                    if E_cov < 0.95
+                        N_95 = N
+                    end
+                end
+                # E_sim, sd_sim = BioCCP_γₓ₁(x, N, g, r, t, f, e, E)
+                out_dict["E_cov"] = exp_cov
+                out_dict["N_95"] = N_95
+                out_dict["pls"] = plant_library_sizes
+
+            elseif command_args["M"] == 8
+                tool_info["mode"] = "BioCCP_γx2"
+                tool_info["mode_description"] = "Computes the expected coverage of all "*
+                    "pairwise combinations of gene knockouts (E[γx,2]) for an experiment with "*
+                    "given plant library size using BioCCP"
+                
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                exp_cov = []
+                global  N_95 = nothing
+                for N in plant_library_sizes  
+                    E_cov = BioCCP_γₓ₂(x, N, g, r, t, f, e, E)
+                    push!(exp_cov, E_cov)
+                    if E_cov < 0.95
+                        N_95 = N
+                    end
+                end
+                # E_sim, sd_sim = BioCCP_γₓ₂(x, N, g, r, t, f, e, E)
+                out_dict["E_cov"] = exp_cov
+                out_dict["N_95"] = N_95
+                out_dict["pls"] = plant_library_sizes
+
+            elseif command_args["M"] == 9
+                tool_info["mode"] = "BioCCP_γx3"
+                tool_info["mode_description"] = "Computes the expected coverage of all "*
+                    "triple combinations of gene knockouts (E[γx,3]) for an experiment with "*
+                    "given plant library size using BioCCP"
+
+                if s != nothing && MN != nothing
+                    plant_library_sizes = N:s:MN
+                else
+                    plant_library_sizes = N
+                end
+                exp_cov = []
+                global  N_95 = nothing
+                for N in plant_library_sizes  
+                    E_cov = BioCCP_γₓ₃(x, N, g, r, t, f, e, E)
+                    push!(exp_cov, E_cov)
+                    if E_cov < 0.95
+                        N_95 = N
+                    end
+                end
+                # E_sim, sd_sim = BioCCP_γₓ₃(x, N, g, r, t, f, e, E)
+                out_dict["E_cov"] = exp_cov
+                out_dict["N_95"] = N_95
+                out_dict["pls"] = plant_library_sizes
+
+            end
+        end
+    end
+
+    println(parsed_args)
+    println("Parsed args:")
+    for (key,val) in parsed_args
+        println("  $key  =>  $(repr(val))")
+    end
+    println()
+    println("Command: ", parsed_args["%COMMAND%"])
+    # h1 = histogram(grna_dict["p_gRNA_reads"], label="", 
+    #                 xlabel="Number of reads per gRNA", 
+    #                 linecolor="white", 
+    #                 normalize=:probability,
+    #                 xtickfontsize=10,ytickfontsize=10,
+    #                 color=:mediumturquoise, size=(600,350), bins = 25,
+    #                 ylabel="Relative frequency", 
+    #                 title="gRNA frequency distribution")
+    
+    # h2 = histogram(grna_dict["p_gRNA_edit"], 
+    #                 normalize = :probability,
+    #                 linecolor = "white",
+    #                 label="", 
+    #                 color=:turquoise4,
+    #                 xtickfontsize=10,ytickfontsize=10, xlim = (0, 1),
+    #                 xticks=(0:0.1:1),
+    #                 bins = 150,
+    #                 xlabel="gRNA editing efficiency", 
+    #                 ylabel="Relative frequency", 
+    #                 title="gRNA genome editing effiency distribution")
+
+    # p_plot = plot(plant_library_sizes, Pₓ₂, label="Pₓ₂", 
+    #             title="Probability of full combinatorial coverage with respect to plant library size",
+    #             xlabel="N", ylabel="Pₓₖ", 
+    #             xticks = (0:500:50000, string.(0:500:50000)),
+    #             size=(900,400), color=:turquoise4, linewidth=2)
+    #             hline!([0.95], linestyle=:dash, color=:grey, label="Pₓₖ = 0.95", legend=:bottomright)
+
+    # exp_plot = plot(plant_library_sizes, expected_γₓ₂,
+    #             label="E[γₓ₂]", title="Expected combinatorial coverage w.r.t. plant library size",
+    #             xlabel="N", ylabel="E[γₓₖ]", 
+    #             xticks = (0:500:50000, string.(0:500:50000)),
+    #             size=(800,400), color=:turquoise4, linewidth=2)
+    #             hline!([0.95], linestyle=:dash, color=:grey, label="E[γₓₖ] = 0.95", legend=:bottomright)
+    
+
+    ENV["GKSwstype"]="nul"
+    weave(string(@__DIR__) * "/report.jmd", 
+            args = (parsed_args = parsed_args,
+                    tool_info = tool_info,
+                    args_info = args_info,
+                    grna_dict = grna_dict,
+                    #h1 = h1, h2 = h2,
+                    output = out_dict); 
+            doctype = "md2html", out_path = :pwd)
+    ENV["GKSwstype"]="gksqt"
+end
+
+main(ARGS)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mcdoe.xml	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,341 @@
+<tool id="mcdoe" name="MultiplexCrisprDOE - simulation- and BioCCP-based approaches for computing the minimal plant library size" version="0.1.0" python_template_version="3.5">
+    <requirements>
+        <requirement type="package" version="1.7.2">julia</requirement>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+        
+        ## method $t $x $g $r $n_gRNA_total $filename $filename $ϵ_KO --i 10
+
+        #if $tools.tool_selector == "gfd"
+            julia '$__tool_directory__/main.jl' gfd $tools.pls $tools.sd $tools.min_gRNA_abundance 
+            $tools.max_gRNA_abundance $tools.n_gRNA_total $tools.normalize
+            &&
+            mv ./gRNA_reads.xlsx $gRNA_reads
+        #elif $tools.tool_selector == "ged"
+            julia '$__tool_directory__/main.jl' ged $tools.f_act $tools.eps_edit_act $tools.eps_edit_inact 
+            $tools.sd_act $tools.n_gRNA_total
+            &&
+            mv ./gRNA_edit.xlsx $gRNA_edit
+        #elif $tools.tool_selector == "sim"
+            julia '$__tool_directory__/main.jl' sim $tools.simulation_mode.simulation_mode_selector $tools.n_target_genes 
+            $tools.n_designed_gRNAs $tools.simulation_mode.n_gRNA_seqs $tools.n_gRNA_total $tools.p_gRNA_freq 
+            $tools.p_gRNA_edit $tools.g_KO --iter $tools.iter
+            #if $tools.simulation_mode.simulation_mode_selector == "4"
+                &&
+                mv ./countKOs.xlsx $countKOs
+            #end if
+        #elif $tools.tool_selector == "ccp"
+            julia '$__tool_directory__/main.jl' ccp $tools.bioccp_mode.bioccp_mode_selector $tools.n_target_genes $tools.pls 
+            $tools.n_designed_gRNAs $tools.bioccp_mode.n_gRNA_seqs $tools.n_gRNA_total $tools.p_gRNA_freq 
+            $tools.p_gRNA_edit $tools.g_KO --step $tools.step --MN $tools.max_pls
+        #end if
+        &&
+        mv ./report.html $report
+
+    ]]></command>
+    <inputs>
+        <conditional name="tools">
+            <param name="tool_selector" type="select" label="Select tool for processing the alignment(s)">
+                <option value="gfd">Generate vector with frequencies in the combinatorial gRNA/Cas9 construct library for all gRNAs</option>
+                <option value="ged">Generate vector with genome editing efficiencies for all the gRNAs in the experiment</option>
+                <option value="sim">Simulation-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage</option>
+                <option value="ccp">BioCCP-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage</option>
+            </param>
+            <when value="gfd">
+                <param name="pls" type="integer" value="75" optional="false" />
+                <param name="sd" type="integer" value="25" optional="false" />
+                <param name="min_gRNA_abundance" value="50" type="integer" optional="false" />
+                <param name="max_gRNA_abundance" value="100" type="integer" optional="false" />
+                <param name="n_gRNA_total" value="120" type="integer" optional="false" />
+                <param name="normalize" type="boolean" truevalue="--normalize" falsevalue="" checked="False" label="Convert gRNA abundances into relative frequencies" />
+            </when>
+            <when value="ged">
+                <param name="f_act" type="float" value="0.9" optional="false" />
+                <param name="eps_edit_act" type="float" value="0.95" optional="false" />
+                <param name="eps_edit_inact" type="float" value="0.1" optional="false" />
+                <param name="sd_act" type="float" value="0.01" optional="false" />
+                <param name="n_gRNA_total" type="integer" value="120" optional="false" />
+            </when>
+            <when value="sim">
+                <conditional name="simulation_mode">
+                    <param name="simulation_mode_selector" type="select" label="Select simulation mode:">
+                        <option value="1">simulate_Nₓ₁</option>
+                        <option value="2">simulate_Nₓ₂</option>
+                        <option value="3">simulate_Nₓ₃</option>
+                        <option value="4">simulate_Nₓ₂_countKOs</option>
+                    </param>
+                    <when value="1">
+                        <param name="n_gRNA_seqs" value="1" min="1" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="2">
+                        <param name="n_gRNA_seqs" value="2" min="2" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="3">
+                        <param name="n_gRNA_seqs" value="3" min="3" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="4">
+                        <param name="n_gRNA_seqs" value="2" min="2" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                </conditional>
+                <param name="n_target_genes" value="20" label="Number of target genes in the experiment" type="integer" optional="false" />
+                <param name="n_designed_gRNAs" value="6" label="Number of gRNAs designed per target gene" type="integer" optional="false" />
+                <param name="n_gRNA_total" value="120" label="Total number of gRNAs in the experiment" type="integer" optional="false" />
+                <param name="p_gRNA_freq" label="Vector (excel file) with relative frequencies for all gRNAs in the construct library (normalized!)" type="data" format="xlsx" optional="false" />
+                <param name="p_gRNA_edit" label="Vector (excel file) with genome editing efficiencies for all gRNAs" type="data" format="xlsx" optional="false" />
+                <param name="g_KO" value="0.8" label="Global knockout efficiency; fraction of mutations leading to effective gene knockout" type="float" optional="false" />
+                <param name="iter" value="400" label="Number of CRISPR/Cas experiments that are simulated" type="integer" />
+            </when>
+            <when value="ccp">
+                <conditional name="bioccp_mode">
+                    <param name="bioccp_mode_selector" type="select" label="Select BioCCP mode:">
+                        <option value="1">BioCCP_Nₓ₁</option>
+                        <option value="2">BioCCP_Nₓ₂</option>
+                        <option value="3">BioCCP_Nₓ₃</option>
+                        <option value="4">BioCCP_Pₓ₁</option>
+                        <option value="5">BioCCP_Pₓ₂</option>
+                        <option value="6">BioCCP_Pₓ₃</option>
+                        <option value="7">BioCCP_γₓ₁</option>
+                        <option value="8">BioCCP_γₓ₂</option>
+                        <option value="9">BioCCP_γₓ₃</option>
+                    </param>
+                    <when value="1">
+                        <param name="n_gRNA_seqs" value="1" min="1" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="2">
+                        <param name="n_gRNA_seqs" value="2" min="2" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="3">
+                        <param name="n_gRNA_seqs" value="3" min="3" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="4">
+                        <param name="n_gRNA_seqs" value="1" min="1" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="5">
+                        <param name="n_gRNA_seqs" value="2" min="2" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="6">
+                        <param name="n_gRNA_seqs" value="3" min="3" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="7">
+                        <param name="n_gRNA_seqs" value="1" min="1" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="8">
+                        <param name="n_gRNA_seqs" value="2" min="2" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                    <when value="9">
+                        <param name="n_gRNA_seqs" value="3" min="3" label="Number of gRNA sequences per combinatorial gRNA/Cas construct" type="integer" optional="false" />
+                    </when>
+                </conditional>
+                <param name="n_target_genes" value="20" label="Number of target genes in the experiment" type="integer" optional="false" />
+                <param name="n_designed_gRNAs" value="6" label="Number of gRNAs designed per target gene" type="integer" optional="false" />
+                <param name="n_gRNA_total" value="120" label="Total number of gRNAs in the experiment" type="integer" optional="false" />
+                <param name="p_gRNA_freq" label="Vector (excel file) with relative frequencies for all gRNAs in the construct library (normalized!)" type="data" format="xlsx" optional="false" />
+                <param name="p_gRNA_edit" label="Vector (excel file) with genome editing efficiencies for all gRNAs" type="data" format="xlsx" optional="false" />
+                <param name="g_KO"  value="0.8" label="Global knockout efficiency; fraction of mutations leading to effective gene knockout" type="float" optional="false" />
+                <param name="pls" value="0" label="(Minimum) plant library size" type="integer" optional="true" />
+                <param name="step"  value="5" label="Step size for plant library size (optional for calculating expected combinatorial coverage / plant library size)" type="integer" optional="true" />
+                <param name="max_pls"  value="4000" label="Maximum plant library size (optional for calculating expected combinatorial coverage / plant library size)" type="integer" optional="true" />
+           </when>
+        </conditional>
+    </inputs>
+    <outputs>
+        <data name="report" format="html" label="report" />
+        <data name="gRNA_reads" format="xlsx" label="Vector with relative frequencies for all gRNAs in the construct library (normalized!)">
+            <filter>tools['tool_selector']=='gfd'</filter>
+        </data>
+        <data name="gRNA_edit" format="xlsx" label="Vector with genome editing efficiencies for all gRNAs">
+            <filter>tools['tool_selector']=='ged'</filter>
+        </data>
+        <data name="countKOs" format="xlsx" label="Vector with counts of the number of knockouts per plant in the experiment" >
+            <filter>tools['tool_selector']=='sim' and tools['bioccp_mode_selector']=='4'</filter>
+        </data>
+    </outputs>
+    <tests>
+        <test>
+            <param name="tool_selector" value="gfd" />
+            <param name="pls" value="75"/>
+            <param name="sd" value="25" />
+            <param name="min_gRNA_abundance" value="50" />
+            <param name="max_gRNA_abundance" value="100" />
+            <param name="n_gRNA_total" value="120" />
+            <param name="normalize" value="false" />
+            <output name="report" file="test_gfd_report.html" compare="sim_size" />
+            <output name="gRNA_reads" file="test_gRNA_reads.xlsx" ftype="xlsx" compare="sim_size"/>
+        </test>
+        <test>
+            <param name="tool_selector" value="ged" />
+            <param name="f_act" value="0.9"/>
+            <param name="eps_edit_act" value="0.95" />
+            <param name="eps_edit_inact" value="0.1" />
+            <param name="sd_act" value="0.01" />
+            <param name="n_gRNA_total" value="120" />
+            <output name="report" file="test_ged_report.html" compare="sim_size" />
+            <output name="gRNA_edit" file="test_gRNA_edit.xlsx" ftype="xlsx" compare="sim_size"/>
+        </test>
+        <test>
+            <param name="tool_selector" value="sim" />
+            <param name="simulation_mode_selector" value="4" />
+            <param name="n_gRNA_seqs" value="2" />
+            <param name="n_target_genes" value="20" />
+            <param name="n_designed_gRNAs" value="6" />
+            <param name="n_gRNA_total" value="120" />
+            <param name="p_gRNA_freq" value="example_data.xlsx" />
+            <param name="p_gRNA_edit" value="example_data.xlsx" />
+            <param name="g_KO" value="0.8" />
+            <param name="iter" value="10" />
+            <output name="report" file="test_sim_report.html" compare="sim_size" />
+            <output name="countKOs" file="test_countKOs.xlsx" ftype="xlsx" compare="sim_size"/>
+        </test>
+        <test>
+            <param name="tool_selector" value="ccp" />
+            <param name="bioccp_mode_selector" value="9" />
+            <param name="n_gRNA_seqs" value="3" />
+            <param name="n_target_genes" value="20" />
+            <param name="n_designed_gRNAs" value="6" />
+            <param name="n_gRNA_total" value="120" />
+            <param name="p_gRNA_freq" value="example_data.xlsx" />
+            <param name="p_gRNA_edit" value="example_data.xlsx" />
+            <param name="g_KO" value="0.8" />
+            <param name="pls" value="0" />
+            <param name="step"  value="5" />
+            <param name="max_pls"  value="4000" />
+            <output name="report" file="test_ccp_report.html" compare="sim_size" />
+        </test>
+    </tests>
+    <help><![CDATA[
+usage: main.jl [-h] {gfd|ged|sim|ccp}
+
+MultiplexCrisprDOE
+
+commands:
+  gfd         gRNA/Cas9 frequencies
+  ged         gRNA/Cas9 editing efficiencies
+  sim         simulation-based approaches for computing the minimal
+              plant library size that guarantees full combinatorial
+              coverage (and other relevant statistics)
+  ccp         BioCCP-based approaches for computing the minimal plant
+              library size that guarantees full combinatorial coverage
+              (and other relevant statistics)
+
+usage: main.jl gfd [--normalize] [--visualize] [--out_file OUT_FILE]
+                   [-h] [m] [sd] [l] [u] [n]
+
+positional arguments:
+  m                    plant library size (type: Int64)
+  sd                   the standard deviation on the gRNA abundances
+                       (in terms of absolute or relative frequency)
+                       (type: Int64)
+  l                    minimal gRNA abundance (in terms of absolute or
+                       relative frequency) (type: Int64)
+  u                    maximal gRNA abundance (in terms of absolute or
+                       relative frequency) (type: Int64)
+  n                    the total number of gRNAs in the experiment
+                       (type: Int64)
+
+optional arguments:
+  --normalize          if provided, the gRNA abundances (absolute
+                       frequencies) are converted into relative
+                       frequencies
+  --visualize          if provided, a histogram of all gRNA abundances
+                       is plotted
+  --out_file OUT_FILE  Output excel file prefix (default:
+                       "gRNA_reads")
+  -h, --help           show this help message and exit
+
+                   [eps_edit_act] [eps_edit_inact] [sd_act]
+                   [n_gRNA_total]
+
+positional arguments:
+  f_act                fraction of all gRNAs that is active (type:
+                       Float16)
+  eps_edit_act         Average genome editing efficiency for active
+                       gRNAs - mean of the genome editing efficiency
+                       distribution for active gRNAs (type: Float16)
+  eps_edit_inact       Average genome editing efficiency for inactive
+                       gRNAs - mean of the genome editing efficiency
+                       distribution for inactive gRNAs (type: Float16)
+  sd_act               standard deviation of the genome editing
+                       efficiency distributions for active and
+                       inactive gRNAs (type: Float16)
+  n_gRNA_total         the total number of gRNAs in the experiment
+                       (type: Int64)
+
+optional arguments:
+  --visualize          if provided a histogram of all genome editing
+                       efficiency is plotted
+  --out_file OUT_FILE  Output excel file prefix (default: "gRNA_edit")
+  -h, --help           show this help message and exit
+
+usage: main.jl sim [--i I] [-h] [M] [x] [g] [r] [t] [f] [e] [E]
+
+positional arguments:
+  M              Select simulation mode (1: simulate_Nₓ₁; 2:
+                 simulate_Nₓ₂; 3: simulate_Nₓ₃; 4:
+                 simulate_Nₓ₂_countKOs) (type: Int64)
+  x              number of target genes in the experiment (type:
+                 Int64)
+  g              number of gRNAs designed per target gene (type:
+                 Int64)
+  r              number of gRNA sequences per combinatorial gRNA/Cas
+                 construct (type: Int64)
+  t              total number of gRNAs in the experiment (type: Int64)
+  f              vector with relative frequencies for all gRNAs in the
+                 construct library (normalized!)
+  e              vector with genome editing efficiencies for all gRNAs
+  E              global knockout efficiency; fraction of mutations
+                 leading to effective gene knockout (type: Float16)
+
+optional arguments:
+  --i, --iter I  number of CRISPR/Cas experiments that are simulated
+                 (type: Int64, default: 500)
+  -h, --help     show this help message and exit
+
+usage: main.jl ccp [--s S] [--MN MN] [-h] [M] [x] [N] [g] [r] [t] [f]
+                   [e] [E]
+
+positional arguments:
+  M                     Select BioCCP mode (1: BioCCP_Nₓ₁; 2:
+                        BioCCP_Nₓ₂; 3: BioCCP_Nₓ₃; 4: BioCCP_Pₓ₁; 5:
+                        BioCCP_Pₓ₂ ; 6: BioCCP_Pₓ₃; 7: BioCCP_γₓ₁; 8:
+                        BioCCP_γₓ₂; 9: BioCCP_γₓ₃) (type: Int64)
+  x                     number of target genes in the experiment
+                        (type: Int64)
+  N                     (Minimum) plant library size (type: Int64)
+  g                     number of gRNAs designed per target gene
+                        (type: Int64)
+  r                     number of gRNA sequences per combinatorial
+                        gRNA/Cas construct (type: Int64)
+  t                     total number of gRNAs in the experiment (type:
+                        Int64)
+  f                     File containing vector with relative
+                        frequencies for all gRNAs in the construct
+                        library (normalized!)
+  e                     File containing vector with genome editing
+                        efficiencies for all gRNAs
+  E                     global knockout efficiency; fraction of
+                        mutations leading to effective gene knockout
+                        (type: Float16)
+
+optional arguments:
+  --s, --step S         Step size for plant library size (optional for
+                        calculating expected combinatorial coverage /
+                        plant library size) (type: Int64, default: 5)
+  --MN, --max_pl_size MN
+                        Maximum plant library size (optional for
+                        calculating expected combinatorial coverage /
+                        plant library size) (type: Int64, default:
+                        4000)
+  -h, --help            show this help message and exit
+    ]]></help>
+    <citations>
+        <citation type="bibtex">
+@misc{githubMultiplexCrisprDOE,
+  author = {LastTODO, FirstTODO},
+  year = {TODO},
+  title = {MultiplexCrisprDOE},
+  publisher = {GitHub},
+  journal = {GitHub repository},
+  url = {https://github.com/kirstvh/MultiplexCrisprDOE},
+}</citation>
+    </citations>
+</tool>
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/report.jmd	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,102 @@
+---
+title: MultiplexCrisprDOE
+---
+
+<!-- this setup dependencies, but doesn't appear in the generated document -->
+```julia; echo = false; results = "hidden"
+using Pkg
+"Plots" ∉ keys(Pkg.project().dependencies) && Pkg.add("Plots")
+#"DSP" ∉ keys(Pkg.project().dependencies) && Pkg.add("DSP")
+#"Images" ∉ keys(Pkg.project().dependencies) && Pkg.add("Images")
+"DataStructures" ∉ keys(Pkg.project().dependencies) && Pkg.add("DataStructures")
+"PrettyTables" ∉ keys(Pkg.project().dependencies) && Pkg.add("PrettyTables")
+"DataFrames" ∉ keys(Pkg.project().dependencies) && Pkg.add("DataFrames")
+"Latexify" ∉ keys(Pkg.project().dependencies) && Pkg.add("Latexify")
+```
+## Tool
+
+* **Method:**     `j println(WEAVE_ARGS.tool_info["method"])`
+
+* **Description:** `j println(WEAVE_ARGS.tool_info["description"])`
+
+* **Mode:** `j println(WEAVE_ARGS.tool_info["mode"])`
+
+* **Mode description:** `j println(WEAVE_ARGS.tool_info["mode_description"])`
+
+## Variables
+
+```julia; echo = false
+using DataFrames
+using PrettyTables
+df = DataFrame("Argument" => collect(keys(WEAVE_ARGS.args_info)), "Value" => collect(values(WEAVE_ARGS.args_info)))
+#pt = pretty_table(df, nosubheader=true; alignment=:l)
+```
+
+```julia; echo = false
+    using Plots
+    if haskey(WEAVE_ARGS.grna_dict,"p_gRNA_reads")
+        h1 = histogram(WEAVE_ARGS.grna_dict["p_gRNA_reads"], label="", 
+                        xlabel="Number of reads per gRNA", 
+                        linecolor="white", 
+                        normalize=:probability,
+                        xtickfontsize=10,ytickfontsize=10,
+                        color=:mediumturquoise, size=(600,350), bins = 25,
+                        ylabel="Relative frequency", 
+                        title="gRNA frequency distribution")
+        display(h1)
+    end
+```
+
+```julia; echo = false
+    using Plots
+    if haskey(WEAVE_ARGS.grna_dict,"p_gRNA_edit")
+        h2 = histogram(WEAVE_ARGS.grna_dict["p_gRNA_edit"], 
+                        normalize = :probability,
+                        linecolor = "white",
+                        label="", 
+                        color=:turquoise4,
+                        xtickfontsize=10,ytickfontsize=10, xlim = (0, 1),
+                        xticks=(0:0.1:1),
+                        bins = 150,
+                        xlabel="gRNA editing efficiency", 
+                        ylabel="Relative frequency", 
+                        title="gRNA genome editing effiency distribution")
+        display(h2)
+    end
+```
+
+```julia; echo = false
+    using Plots
+    if haskey(WEAVE_ARGS.output,"output file")
+        println("Output written to:")
+        println(WEAVE_ARGS.output["output file"])
+    elseif haskey(WEAVE_ARGS.output,"E_sim")
+        E_sim = WEAVE_ARGS.output["E_sim"]
+        sd_sim = WEAVE_ARGS.output["sd_sim"]
+        k = WEAVE_ARGS.args_info["# of gRNAs / combi gRNA/Cas construct"]
+        x = WEAVE_ARGS.args_info["# of target genes in the experiment"]
+        println("**How many plants need to be included in the plant library (on average) to obtain full coverage of all k-combinations of gene knockouts?**")
+        println("On average, ", Int(ceil(E_sim)), " plants need to be sampled at random to observe all ", k, "-combinations of ", x, " gene knockouts. Standard deviation = ", Int(ceil(sd_sim)), " plants")
+    elseif haskey(WEAVE_ARGS.output,"P_sim")
+        p = plot(WEAVE_ARGS.output["pls"], WEAVE_ARGS.output["P_sim"], label="Pₓ₂", 
+                title="Probability of full combinatorial coverage with respect to plant library size",
+                xlabel="N", ylabel="Pₓₖ", 
+                xticks = (0:500:50000, string.(0:500:50000)),
+                size=(900,400), color=:turquoise4, linewidth=2)
+                hline!([0.95], linestyle=:dash, color=:grey, label="Pₓₖ = 0.95", legend=:bottomright)
+        display(p)
+        println("At a given number of plants, what is the probability that all pairwise combinations of gene knockouts are observed?")
+        println("N_95_P: ", WEAVE_ARGS.output["N_95_P"])
+    elseif haskey(WEAVE_ARGS.output,"E_cov")
+        p = plot(WEAVE_ARGS.output["pls"], WEAVE_ARGS.output["E_cov"],
+                label="E[γₓ₂]", title="Expected combinatorial coverage w.r.t. plant library size",
+                xlabel="N", ylabel="E[γₓₖ]", 
+                xticks = (0:500:50000, string.(0:500:50000)),
+                size=(800,400), color=:turquoise4, linewidth=2)
+                hline!([0.95], linestyle=:dash, color=:grey, label="E[γₓₖ] = 0.95", legend=:bottomright)
+        display(p)
+        println("At a given number of plants, what is the expected coverage of pairwise gene knockout combinations?")
+        println("N_95: ", WEAVE_ARGS.output["N_95"])
+    end
+```
+
Binary file test-data/example_data.xlsx has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test_ccp_report.html	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,707 @@
+<!DOCTYPE html>
+<HTML lang = "en">
+<HEAD>
+  <meta charset="UTF-8"/>
+  <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+  <title>MultiplexCrisprDOE</title>
+  
+
+  <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+      tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
+      TeX: { equationNumbers: { autoNumber: "AMS" } }
+    });
+  </script>
+
+  <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+  </script>
+
+  
+<style>
+pre.hljl {
+    border: 1px solid #ccc;
+    margin: 5px;
+    padding: 5px;
+    overflow-x: auto;
+    color: rgb(68,68,68); background-color: rgb(251,251,251); }
+pre.hljl > span.hljl-t { }
+pre.hljl > span.hljl-w { }
+pre.hljl > span.hljl-e { }
+pre.hljl > span.hljl-eB { }
+pre.hljl > span.hljl-o { }
+pre.hljl > span.hljl-k { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kc { color: rgb(59,151,46); font-style: italic; }
+pre.hljl > span.hljl-kd { color: rgb(214,102,97); font-style: italic; }
+pre.hljl > span.hljl-kn { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kp { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kr { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kt { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-n { }
+pre.hljl > span.hljl-na { }
+pre.hljl > span.hljl-nb { }
+pre.hljl > span.hljl-nbp { }
+pre.hljl > span.hljl-nc { }
+pre.hljl > span.hljl-ncB { }
+pre.hljl > span.hljl-nd { color: rgb(214,102,97); }
+pre.hljl > span.hljl-ne { }
+pre.hljl > span.hljl-neB { }
+pre.hljl > span.hljl-nf { color: rgb(66,102,213); }
+pre.hljl > span.hljl-nfm { color: rgb(66,102,213); }
+pre.hljl > span.hljl-np { }
+pre.hljl > span.hljl-nl { }
+pre.hljl > span.hljl-nn { }
+pre.hljl > span.hljl-no { }
+pre.hljl > span.hljl-nt { }
+pre.hljl > span.hljl-nv { }
+pre.hljl > span.hljl-nvc { }
+pre.hljl > span.hljl-nvg { }
+pre.hljl > span.hljl-nvi { }
+pre.hljl > span.hljl-nvm { }
+pre.hljl > span.hljl-l { }
+pre.hljl > span.hljl-ld { color: rgb(148,91,176); font-style: italic; }
+pre.hljl > span.hljl-s { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sa { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sb { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sc { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sd { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdC { color: rgb(201,61,57); }
+pre.hljl > span.hljl-se { color: rgb(59,151,46); }
+pre.hljl > span.hljl-sh { color: rgb(201,61,57); }
+pre.hljl > span.hljl-si { }
+pre.hljl > span.hljl-so { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sr { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ss { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ssB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-nB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nbB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nfB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nh { color: rgb(59,151,46); }
+pre.hljl > span.hljl-ni { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nil { color: rgb(59,151,46); }
+pre.hljl > span.hljl-noB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-oB { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-ow { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-p { }
+pre.hljl > span.hljl-c { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-ch { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cm { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cp { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cpB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cs { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-csB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-g { }
+pre.hljl > span.hljl-gd { }
+pre.hljl > span.hljl-ge { }
+pre.hljl > span.hljl-geB { }
+pre.hljl > span.hljl-gh { }
+pre.hljl > span.hljl-gi { }
+pre.hljl > span.hljl-go { }
+pre.hljl > span.hljl-gp { }
+pre.hljl > span.hljl-gs { }
+pre.hljl > span.hljl-gsB { }
+pre.hljl > span.hljl-gt { }
+</style>
+
+
+
+  <style type="text/css">
+  @font-face {
+  font-style: normal;
+  font-weight: 300;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 400;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 600;
+}
+html {
+  font-family: sans-serif; /* 1 */
+  -ms-text-size-adjust: 100%; /* 2 */
+  -webkit-text-size-adjust: 100%; /* 2 */
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block; /* 1 */
+  vertical-align: baseline; /* 2 */
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  -moz-box-sizing: content-box;
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit; /* 1 */
+  font: inherit; /* 2 */
+  margin: 0; /* 3 */
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"], /* 1 */
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button; /* 2 */
+  cursor: pointer; /* 3 */
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box; /* 1 */
+  padding: 0; /* 2 */
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield; /* 1 */
+  -moz-box-sizing: content-box;
+  -webkit-box-sizing: content-box; /* 2 */
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0; /* 1 */
+  padding: 0; /* 2 */
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  font-family: monospace, monospace;
+  font-size : 0.8em;
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+thead th {
+    border-bottom: 1px solid black;
+    background-color: white;
+}
+tr:nth-child(odd){
+  background-color: rgb(248,248,248);
+}
+
+
+/*
+* Skeleton V2.0.4
+* Copyright 2014, Dave Gamache
+* www.getskeleton.com
+* Free to use under the MIT license.
+* http://www.opensource.org/licenses/mit-license.php
+* 12/29/2014
+*/
+.container {
+  position: relative;
+  width: 100%;
+  max-width: 960px;
+  margin: 0 auto;
+  padding: 0 20px;
+  box-sizing: border-box; }
+.column,
+.columns {
+  width: 100%;
+  float: left;
+  box-sizing: border-box; }
+@media (min-width: 400px) {
+  .container {
+    width: 85%;
+    padding: 0; }
+}
+@media (min-width: 550px) {
+  .container {
+    width: 80%; }
+  .column,
+  .columns {
+    margin-left: 4%; }
+  .column:first-child,
+  .columns:first-child {
+    margin-left: 0; }
+
+  .one.column,
+  .one.columns                    { width: 4.66666666667%; }
+  .two.columns                    { width: 13.3333333333%; }
+  .three.columns                  { width: 22%;            }
+  .four.columns                   { width: 30.6666666667%; }
+  .five.columns                   { width: 39.3333333333%; }
+  .six.columns                    { width: 48%;            }
+  .seven.columns                  { width: 56.6666666667%; }
+  .eight.columns                  { width: 65.3333333333%; }
+  .nine.columns                   { width: 74.0%;          }
+  .ten.columns                    { width: 82.6666666667%; }
+  .eleven.columns                 { width: 91.3333333333%; }
+  .twelve.columns                 { width: 100%; margin-left: 0; }
+
+  .one-third.column               { width: 30.6666666667%; }
+  .two-thirds.column              { width: 65.3333333333%; }
+
+  .one-half.column                { width: 48%; }
+
+  /* Offsets */
+  .offset-by-one.column,
+  .offset-by-one.columns          { margin-left: 8.66666666667%; }
+  .offset-by-two.column,
+  .offset-by-two.columns          { margin-left: 17.3333333333%; }
+  .offset-by-three.column,
+  .offset-by-three.columns        { margin-left: 26%;            }
+  .offset-by-four.column,
+  .offset-by-four.columns         { margin-left: 34.6666666667%; }
+  .offset-by-five.column,
+  .offset-by-five.columns         { margin-left: 43.3333333333%; }
+  .offset-by-six.column,
+  .offset-by-six.columns          { margin-left: 52%;            }
+  .offset-by-seven.column,
+  .offset-by-seven.columns        { margin-left: 60.6666666667%; }
+  .offset-by-eight.column,
+  .offset-by-eight.columns        { margin-left: 69.3333333333%; }
+  .offset-by-nine.column,
+  .offset-by-nine.columns         { margin-left: 78.0%;          }
+  .offset-by-ten.column,
+  .offset-by-ten.columns          { margin-left: 86.6666666667%; }
+  .offset-by-eleven.column,
+  .offset-by-eleven.columns       { margin-left: 95.3333333333%; }
+
+  .offset-by-one-third.column,
+  .offset-by-one-third.columns    { margin-left: 34.6666666667%; }
+  .offset-by-two-thirds.column,
+  .offset-by-two-thirds.columns   { margin-left: 69.3333333333%; }
+
+  .offset-by-one-half.column,
+  .offset-by-one-half.columns     { margin-left: 52%; }
+
+}
+html {
+  font-size: 62.5%; }
+body {
+  font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
+  line-height: 1.6;
+  font-weight: 400;
+  font-family: "Raleway", "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
+  color: #222; }
+h1, h2, h3, h4, h5, h6 {
+  margin-top: 0;
+  margin-bottom: 2rem;
+  font-weight: 300; }
+h1 { font-size: 3.6rem; line-height: 1.2;  letter-spacing: -.1rem;}
+h2 { font-size: 3.4rem; line-height: 1.25; letter-spacing: -.1rem; }
+h3 { font-size: 3.2rem; line-height: 1.3;  letter-spacing: -.1rem; }
+h4 { font-size: 2.8rem; line-height: 1.35; letter-spacing: -.08rem; }
+h5 { font-size: 2.4rem; line-height: 1.5;  letter-spacing: -.05rem; }
+h6 { font-size: 1.5rem; line-height: 1.6;  letter-spacing: 0; }
+
+p {
+  margin-top: 0; }
+a {
+  color: #1EAEDB; }
+a:hover {
+  color: #0FA0CE; }
+.button,
+button,
+input[type="submit"],
+input[type="reset"],
+input[type="button"] {
+  display: inline-block;
+  height: 38px;
+  padding: 0 30px;
+  color: #555;
+  text-align: center;
+  font-size: 11px;
+  font-weight: 600;
+  line-height: 38px;
+  letter-spacing: .1rem;
+  text-transform: uppercase;
+  text-decoration: none;
+  white-space: nowrap;
+  background-color: transparent;
+  border-radius: 4px;
+  border: 1px solid #bbb;
+  cursor: pointer;
+  box-sizing: border-box; }
+.button:hover,
+button:hover,
+input[type="submit"]:hover,
+input[type="reset"]:hover,
+input[type="button"]:hover,
+.button:focus,
+button:focus,
+input[type="submit"]:focus,
+input[type="reset"]:focus,
+input[type="button"]:focus {
+  color: #333;
+  border-color: #888;
+  outline: 0; }
+.button.button-primary,
+button.button-primary,
+input[type="submit"].button-primary,
+input[type="reset"].button-primary,
+input[type="button"].button-primary {
+  color: #FFF;
+  background-color: #33C3F0;
+  border-color: #33C3F0; }
+.button.button-primary:hover,
+button.button-primary:hover,
+input[type="submit"].button-primary:hover,
+input[type="reset"].button-primary:hover,
+input[type="button"].button-primary:hover,
+.button.button-primary:focus,
+button.button-primary:focus,
+input[type="submit"].button-primary:focus,
+input[type="reset"].button-primary:focus,
+input[type="button"].button-primary:focus {
+  color: #FFF;
+  background-color: #1EAEDB;
+  border-color: #1EAEDB; }
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea,
+select {
+  height: 38px;
+  padding: 6px 10px; /* The 6px vertically centers text on FF, ignored by Webkit */
+  background-color: #fff;
+  border: 1px solid #D1D1D1;
+  border-radius: 4px;
+  box-shadow: none;
+  box-sizing: border-box; }
+/* Removes awkward default styles on some inputs for iOS */
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea {
+  -webkit-appearance: none;
+     -moz-appearance: none;
+          appearance: none; }
+textarea {
+  min-height: 65px;
+  padding-top: 6px;
+  padding-bottom: 6px; }
+input[type="email"]:focus,
+input[type="number"]:focus,
+input[type="search"]:focus,
+input[type="text"]:focus,
+input[type="tel"]:focus,
+input[type="url"]:focus,
+input[type="password"]:focus,
+textarea:focus,
+select:focus {
+  border: 1px solid #33C3F0;
+  outline: 0; }
+label,
+legend {
+  display: block;
+  margin-bottom: .5rem;
+  font-weight: 600; }
+fieldset {
+  padding: 0;
+  border-width: 0; }
+input[type="checkbox"],
+input[type="radio"] {
+  display: inline; }
+label > .label-body {
+  display: inline-block;
+  margin-left: .5rem;
+  font-weight: normal; }
+ul {
+  list-style: circle; }
+ol {
+  list-style: decimal; }
+ul ul,
+ul ol,
+ol ol,
+ol ul {
+  margin: 1.5rem 0 1.5rem 3rem;
+  font-size: 90%; }
+li > p {margin : 0;}
+th,
+td {
+  padding: 12px 15px;
+  text-align: left;
+  border-bottom: 1px solid #E1E1E1; }
+th:first-child,
+td:first-child {
+  padding-left: 0; }
+th:last-child,
+td:last-child {
+  padding-right: 0; }
+button,
+.button {
+  margin-bottom: 1rem; }
+input,
+textarea,
+select,
+fieldset {
+  margin-bottom: 1.5rem; }
+pre,
+blockquote,
+dl,
+figure,
+table,
+p,
+ul,
+ol,
+form {
+  margin-bottom: 1.0rem; }
+.u-full-width {
+  width: 100%;
+  box-sizing: border-box; }
+.u-max-full-width {
+  max-width: 100%;
+  box-sizing: border-box; }
+.u-pull-right {
+  float: right; }
+.u-pull-left {
+  float: left; }
+hr {
+  margin-top: 3rem;
+  margin-bottom: 3.5rem;
+  border-width: 0;
+  border-top: 1px solid #E1E1E1; }
+.container:after,
+.row:after,
+.u-cf {
+  content: "";
+  display: table;
+  clear: both; }
+
+pre {
+  display: block;
+  padding: 9.5px;
+  margin: 0 0 10px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  border: 1px solid #ccc;
+  border-radius: 4px;
+}
+
+pre.hljl {
+  margin: 0 0 10px;
+  display: block;
+  background: #f5f5f5;
+  border-radius: 4px;
+  padding : 5px;
+}
+
+pre.output {
+  background: #ffffff;
+}
+
+pre.code {
+  background: #ffffff;
+}
+
+pre.julia-error {
+  color : red
+}
+
+code,
+kbd,
+pre,
+samp {
+  font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
+  font-size: 0.9em;
+}
+
+
+@media (min-width: 400px) {}
+@media (min-width: 550px) {}
+@media (min-width: 750px) {}
+@media (min-width: 1000px) {}
+@media (min-width: 1200px) {}
+
+h1.title {margin-top : 20px}
+img {max-width : 100%}
+div.title {text-align: center;}
+
+  </style>
+</HEAD>
+
+<BODY>
+  <div class ="container">
+    <div class = "row">
+      <div class = "col-md-12 twelve columns">
+        <div class="title">
+          <h1 class="title">MultiplexCrisprDOE</h1>
+          
+          
+        </div>
+
+        
+<!--  this setup dependencies, but doesn't appear in the generated document  -->
+
+
+
+<h2>Tool</h2>
+<ul>
+<li><p><strong>Method:</strong>     BioCCP</p>
+</li>
+<li><p><strong>Description:</strong> BioCCP-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage &#40;and other relevant statistics&#41;</p>
+</li>
+<li><p><strong>Mode:</strong> BioCCP_γx3</p>
+</li>
+<li><p><strong>Mode description:</strong> Computes the expected coverage of all triple combinations of gene knockouts &#40;E&#91;γx,3&#93;&#41; for an experiment with given plant library size using BioCCP</p>
+</li>
+</ul>
+<h2>Variables</h2>
+
+
+<div class="data-frame"><p>10 rows × 2 columns</p><table class="data-frame"><thead><tr><th></th><th>Argument</th><th>Value</th></tr><tr><th></th><th title="Any">Any</th><th title="Any">Any</th></tr></thead><tbody><tr><th>1</th><td># of target genes in the experiment</td><td>20</td></tr><tr><th>2</th><td># of gRNAs designed per target gene</td><td>6</td></tr><tr><th>3</th><td># of gRNAs / combi gRNA/Cas construct</td><td>3</td></tr><tr><th>4</th><td>Total number of gRNAs</td><td>120</td></tr><tr><th>5</th><td>Relative frequencies for all gRNAs</td><td>example_data.xlsx</td></tr><tr><th>6</th><td>Genome editing efficiencies for all gRNAs</td><td>example_data.xlsx</td></tr><tr><th>7</th><td>Global knockout efficiency</td><td>0.8</td></tr><tr><th>8</th><td>Step size</td><td>5</td></tr><tr><th>9</th><td>Maximum Plant library size</td><td>6000</td></tr><tr><th>10</th><td>Plant library size</td><td>0</td></tr></tbody></table></div>
+
+<img src=""  />
+
+<img src=""  />
+
+<pre class="output">
+At a given number of plants, what is the expected coverage of pairwise gene
+ knockout combinations?
+N_95: 6000
+</pre>
+
+<img src=""  />
+
+
+        <HR/>
+        <div class="footer">
+          <p>
+            Published from <a href="report.jmd">report.jmd</a>
+            using <a href="http://github.com/JunoLab/Weave.jl">Weave.jl</a> v0.10.10 on 2022-05-12.
+          </p>
+        </div>
+      </div>
+    </div>
+  </div>
+</BODY>
+
+</HTML>
Binary file test-data/test_countKOs.xlsx has changed
Binary file test-data/test_gRNA_edit.xlsx has changed
Binary file test-data/test_gRNA_reads.xlsx has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test_ged_report.html	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,704 @@
+<!DOCTYPE html>
+<HTML lang = "en">
+<HEAD>
+  <meta charset="UTF-8"/>
+  <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+  <title>MultiplexCrisprDOE</title>
+  
+
+  <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+      tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
+      TeX: { equationNumbers: { autoNumber: "AMS" } }
+    });
+  </script>
+
+  <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+  </script>
+
+  
+<style>
+pre.hljl {
+    border: 1px solid #ccc;
+    margin: 5px;
+    padding: 5px;
+    overflow-x: auto;
+    color: rgb(68,68,68); background-color: rgb(251,251,251); }
+pre.hljl > span.hljl-t { }
+pre.hljl > span.hljl-w { }
+pre.hljl > span.hljl-e { }
+pre.hljl > span.hljl-eB { }
+pre.hljl > span.hljl-o { }
+pre.hljl > span.hljl-k { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kc { color: rgb(59,151,46); font-style: italic; }
+pre.hljl > span.hljl-kd { color: rgb(214,102,97); font-style: italic; }
+pre.hljl > span.hljl-kn { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kp { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kr { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kt { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-n { }
+pre.hljl > span.hljl-na { }
+pre.hljl > span.hljl-nb { }
+pre.hljl > span.hljl-nbp { }
+pre.hljl > span.hljl-nc { }
+pre.hljl > span.hljl-ncB { }
+pre.hljl > span.hljl-nd { color: rgb(214,102,97); }
+pre.hljl > span.hljl-ne { }
+pre.hljl > span.hljl-neB { }
+pre.hljl > span.hljl-nf { color: rgb(66,102,213); }
+pre.hljl > span.hljl-nfm { color: rgb(66,102,213); }
+pre.hljl > span.hljl-np { }
+pre.hljl > span.hljl-nl { }
+pre.hljl > span.hljl-nn { }
+pre.hljl > span.hljl-no { }
+pre.hljl > span.hljl-nt { }
+pre.hljl > span.hljl-nv { }
+pre.hljl > span.hljl-nvc { }
+pre.hljl > span.hljl-nvg { }
+pre.hljl > span.hljl-nvi { }
+pre.hljl > span.hljl-nvm { }
+pre.hljl > span.hljl-l { }
+pre.hljl > span.hljl-ld { color: rgb(148,91,176); font-style: italic; }
+pre.hljl > span.hljl-s { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sa { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sb { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sc { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sd { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdC { color: rgb(201,61,57); }
+pre.hljl > span.hljl-se { color: rgb(59,151,46); }
+pre.hljl > span.hljl-sh { color: rgb(201,61,57); }
+pre.hljl > span.hljl-si { }
+pre.hljl > span.hljl-so { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sr { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ss { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ssB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-nB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nbB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nfB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nh { color: rgb(59,151,46); }
+pre.hljl > span.hljl-ni { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nil { color: rgb(59,151,46); }
+pre.hljl > span.hljl-noB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-oB { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-ow { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-p { }
+pre.hljl > span.hljl-c { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-ch { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cm { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cp { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cpB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cs { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-csB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-g { }
+pre.hljl > span.hljl-gd { }
+pre.hljl > span.hljl-ge { }
+pre.hljl > span.hljl-geB { }
+pre.hljl > span.hljl-gh { }
+pre.hljl > span.hljl-gi { }
+pre.hljl > span.hljl-go { }
+pre.hljl > span.hljl-gp { }
+pre.hljl > span.hljl-gs { }
+pre.hljl > span.hljl-gsB { }
+pre.hljl > span.hljl-gt { }
+</style>
+
+
+
+  <style type="text/css">
+  @font-face {
+  font-style: normal;
+  font-weight: 300;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 400;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 600;
+}
+html {
+  font-family: sans-serif; /* 1 */
+  -ms-text-size-adjust: 100%; /* 2 */
+  -webkit-text-size-adjust: 100%; /* 2 */
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block; /* 1 */
+  vertical-align: baseline; /* 2 */
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  -moz-box-sizing: content-box;
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit; /* 1 */
+  font: inherit; /* 2 */
+  margin: 0; /* 3 */
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"], /* 1 */
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button; /* 2 */
+  cursor: pointer; /* 3 */
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box; /* 1 */
+  padding: 0; /* 2 */
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield; /* 1 */
+  -moz-box-sizing: content-box;
+  -webkit-box-sizing: content-box; /* 2 */
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0; /* 1 */
+  padding: 0; /* 2 */
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  font-family: monospace, monospace;
+  font-size : 0.8em;
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+thead th {
+    border-bottom: 1px solid black;
+    background-color: white;
+}
+tr:nth-child(odd){
+  background-color: rgb(248,248,248);
+}
+
+
+/*
+* Skeleton V2.0.4
+* Copyright 2014, Dave Gamache
+* www.getskeleton.com
+* Free to use under the MIT license.
+* http://www.opensource.org/licenses/mit-license.php
+* 12/29/2014
+*/
+.container {
+  position: relative;
+  width: 100%;
+  max-width: 960px;
+  margin: 0 auto;
+  padding: 0 20px;
+  box-sizing: border-box; }
+.column,
+.columns {
+  width: 100%;
+  float: left;
+  box-sizing: border-box; }
+@media (min-width: 400px) {
+  .container {
+    width: 85%;
+    padding: 0; }
+}
+@media (min-width: 550px) {
+  .container {
+    width: 80%; }
+  .column,
+  .columns {
+    margin-left: 4%; }
+  .column:first-child,
+  .columns:first-child {
+    margin-left: 0; }
+
+  .one.column,
+  .one.columns                    { width: 4.66666666667%; }
+  .two.columns                    { width: 13.3333333333%; }
+  .three.columns                  { width: 22%;            }
+  .four.columns                   { width: 30.6666666667%; }
+  .five.columns                   { width: 39.3333333333%; }
+  .six.columns                    { width: 48%;            }
+  .seven.columns                  { width: 56.6666666667%; }
+  .eight.columns                  { width: 65.3333333333%; }
+  .nine.columns                   { width: 74.0%;          }
+  .ten.columns                    { width: 82.6666666667%; }
+  .eleven.columns                 { width: 91.3333333333%; }
+  .twelve.columns                 { width: 100%; margin-left: 0; }
+
+  .one-third.column               { width: 30.6666666667%; }
+  .two-thirds.column              { width: 65.3333333333%; }
+
+  .one-half.column                { width: 48%; }
+
+  /* Offsets */
+  .offset-by-one.column,
+  .offset-by-one.columns          { margin-left: 8.66666666667%; }
+  .offset-by-two.column,
+  .offset-by-two.columns          { margin-left: 17.3333333333%; }
+  .offset-by-three.column,
+  .offset-by-three.columns        { margin-left: 26%;            }
+  .offset-by-four.column,
+  .offset-by-four.columns         { margin-left: 34.6666666667%; }
+  .offset-by-five.column,
+  .offset-by-five.columns         { margin-left: 43.3333333333%; }
+  .offset-by-six.column,
+  .offset-by-six.columns          { margin-left: 52%;            }
+  .offset-by-seven.column,
+  .offset-by-seven.columns        { margin-left: 60.6666666667%; }
+  .offset-by-eight.column,
+  .offset-by-eight.columns        { margin-left: 69.3333333333%; }
+  .offset-by-nine.column,
+  .offset-by-nine.columns         { margin-left: 78.0%;          }
+  .offset-by-ten.column,
+  .offset-by-ten.columns          { margin-left: 86.6666666667%; }
+  .offset-by-eleven.column,
+  .offset-by-eleven.columns       { margin-left: 95.3333333333%; }
+
+  .offset-by-one-third.column,
+  .offset-by-one-third.columns    { margin-left: 34.6666666667%; }
+  .offset-by-two-thirds.column,
+  .offset-by-two-thirds.columns   { margin-left: 69.3333333333%; }
+
+  .offset-by-one-half.column,
+  .offset-by-one-half.columns     { margin-left: 52%; }
+
+}
+html {
+  font-size: 62.5%; }
+body {
+  font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
+  line-height: 1.6;
+  font-weight: 400;
+  font-family: "Raleway", "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
+  color: #222; }
+h1, h2, h3, h4, h5, h6 {
+  margin-top: 0;
+  margin-bottom: 2rem;
+  font-weight: 300; }
+h1 { font-size: 3.6rem; line-height: 1.2;  letter-spacing: -.1rem;}
+h2 { font-size: 3.4rem; line-height: 1.25; letter-spacing: -.1rem; }
+h3 { font-size: 3.2rem; line-height: 1.3;  letter-spacing: -.1rem; }
+h4 { font-size: 2.8rem; line-height: 1.35; letter-spacing: -.08rem; }
+h5 { font-size: 2.4rem; line-height: 1.5;  letter-spacing: -.05rem; }
+h6 { font-size: 1.5rem; line-height: 1.6;  letter-spacing: 0; }
+
+p {
+  margin-top: 0; }
+a {
+  color: #1EAEDB; }
+a:hover {
+  color: #0FA0CE; }
+.button,
+button,
+input[type="submit"],
+input[type="reset"],
+input[type="button"] {
+  display: inline-block;
+  height: 38px;
+  padding: 0 30px;
+  color: #555;
+  text-align: center;
+  font-size: 11px;
+  font-weight: 600;
+  line-height: 38px;
+  letter-spacing: .1rem;
+  text-transform: uppercase;
+  text-decoration: none;
+  white-space: nowrap;
+  background-color: transparent;
+  border-radius: 4px;
+  border: 1px solid #bbb;
+  cursor: pointer;
+  box-sizing: border-box; }
+.button:hover,
+button:hover,
+input[type="submit"]:hover,
+input[type="reset"]:hover,
+input[type="button"]:hover,
+.button:focus,
+button:focus,
+input[type="submit"]:focus,
+input[type="reset"]:focus,
+input[type="button"]:focus {
+  color: #333;
+  border-color: #888;
+  outline: 0; }
+.button.button-primary,
+button.button-primary,
+input[type="submit"].button-primary,
+input[type="reset"].button-primary,
+input[type="button"].button-primary {
+  color: #FFF;
+  background-color: #33C3F0;
+  border-color: #33C3F0; }
+.button.button-primary:hover,
+button.button-primary:hover,
+input[type="submit"].button-primary:hover,
+input[type="reset"].button-primary:hover,
+input[type="button"].button-primary:hover,
+.button.button-primary:focus,
+button.button-primary:focus,
+input[type="submit"].button-primary:focus,
+input[type="reset"].button-primary:focus,
+input[type="button"].button-primary:focus {
+  color: #FFF;
+  background-color: #1EAEDB;
+  border-color: #1EAEDB; }
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea,
+select {
+  height: 38px;
+  padding: 6px 10px; /* The 6px vertically centers text on FF, ignored by Webkit */
+  background-color: #fff;
+  border: 1px solid #D1D1D1;
+  border-radius: 4px;
+  box-shadow: none;
+  box-sizing: border-box; }
+/* Removes awkward default styles on some inputs for iOS */
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea {
+  -webkit-appearance: none;
+     -moz-appearance: none;
+          appearance: none; }
+textarea {
+  min-height: 65px;
+  padding-top: 6px;
+  padding-bottom: 6px; }
+input[type="email"]:focus,
+input[type="number"]:focus,
+input[type="search"]:focus,
+input[type="text"]:focus,
+input[type="tel"]:focus,
+input[type="url"]:focus,
+input[type="password"]:focus,
+textarea:focus,
+select:focus {
+  border: 1px solid #33C3F0;
+  outline: 0; }
+label,
+legend {
+  display: block;
+  margin-bottom: .5rem;
+  font-weight: 600; }
+fieldset {
+  padding: 0;
+  border-width: 0; }
+input[type="checkbox"],
+input[type="radio"] {
+  display: inline; }
+label > .label-body {
+  display: inline-block;
+  margin-left: .5rem;
+  font-weight: normal; }
+ul {
+  list-style: circle; }
+ol {
+  list-style: decimal; }
+ul ul,
+ul ol,
+ol ol,
+ol ul {
+  margin: 1.5rem 0 1.5rem 3rem;
+  font-size: 90%; }
+li > p {margin : 0;}
+th,
+td {
+  padding: 12px 15px;
+  text-align: left;
+  border-bottom: 1px solid #E1E1E1; }
+th:first-child,
+td:first-child {
+  padding-left: 0; }
+th:last-child,
+td:last-child {
+  padding-right: 0; }
+button,
+.button {
+  margin-bottom: 1rem; }
+input,
+textarea,
+select,
+fieldset {
+  margin-bottom: 1.5rem; }
+pre,
+blockquote,
+dl,
+figure,
+table,
+p,
+ul,
+ol,
+form {
+  margin-bottom: 1.0rem; }
+.u-full-width {
+  width: 100%;
+  box-sizing: border-box; }
+.u-max-full-width {
+  max-width: 100%;
+  box-sizing: border-box; }
+.u-pull-right {
+  float: right; }
+.u-pull-left {
+  float: left; }
+hr {
+  margin-top: 3rem;
+  margin-bottom: 3.5rem;
+  border-width: 0;
+  border-top: 1px solid #E1E1E1; }
+.container:after,
+.row:after,
+.u-cf {
+  content: "";
+  display: table;
+  clear: both; }
+
+pre {
+  display: block;
+  padding: 9.5px;
+  margin: 0 0 10px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  border: 1px solid #ccc;
+  border-radius: 4px;
+}
+
+pre.hljl {
+  margin: 0 0 10px;
+  display: block;
+  background: #f5f5f5;
+  border-radius: 4px;
+  padding : 5px;
+}
+
+pre.output {
+  background: #ffffff;
+}
+
+pre.code {
+  background: #ffffff;
+}
+
+pre.julia-error {
+  color : red
+}
+
+code,
+kbd,
+pre,
+samp {
+  font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
+  font-size: 0.9em;
+}
+
+
+@media (min-width: 400px) {}
+@media (min-width: 550px) {}
+@media (min-width: 750px) {}
+@media (min-width: 1000px) {}
+@media (min-width: 1200px) {}
+
+h1.title {margin-top : 20px}
+img {max-width : 100%}
+div.title {text-align: center;}
+
+  </style>
+</HEAD>
+
+<BODY>
+  <div class ="container">
+    <div class = "row">
+      <div class = "col-md-12 twelve columns">
+        <div class="title">
+          <h1 class="title">MultiplexCrisprDOE</h1>
+          
+          
+        </div>
+
+        
+<!--  this setup dependencies, but doesn't appear in the generated document  -->
+
+
+
+<h2>Tool</h2>
+<ul>
+<li><p><strong>Method:</strong>     gRNA_ edit _distribution</p>
+</li>
+<li><p><strong>Description:</strong> Generates vector with genome editing efficiencies for all the gRNAs in the experiment</p>
+</li>
+<li><p><strong>Mode:</strong> </p>
+</li>
+<li><p><strong>Mode description:</strong> </p>
+</li>
+</ul>
+<h2>Variables</h2>
+
+
+<div class="data-frame"><p>6 rows × 2 columns</p><table class="data-frame"><thead><tr><th></th><th>Argument</th><th>Value</th></tr><tr><th></th><th title="Any">Any</th><th title="Any">Any</th></tr></thead><tbody><tr><th>1</th><td>Fraction of active gRNAs</td><td>0.9</td></tr><tr><th>2</th><td>Average genome editing efficiency of active gRNAs</td><td>0.95</td></tr><tr><th>3</th><td>Average genome editing efficiency of inactive gRNAs</td><td>0.1</td></tr><tr><th>4</th><td>Standard deviation</td><td>0.01</td></tr><tr><th>5</th><td>Total number of gRNAs</td><td>120</td></tr><tr><th>6</th><td>Plot genome editing efficiency</td><td>false</td></tr></tbody></table></div>
+
+
+<img src=""  />
+
+<pre class="output">
+Output written to:
+gRNA_edit.xlsx
+</pre>
+
+
+
+        <HR/>
+        <div class="footer">
+          <p>
+            Published from <a href="report.jmd">report.jmd</a>
+            using <a href="http://github.com/JunoLab/Weave.jl">Weave.jl</a> v0.10.10 on 2022-05-12.
+          </p>
+        </div>
+      </div>
+    </div>
+  </div>
+</BODY>
+
+</HTML>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test_gfd_report.html	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,704 @@
+<!DOCTYPE html>
+<HTML lang = "en">
+<HEAD>
+  <meta charset="UTF-8"/>
+  <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+  <title>MultiplexCrisprDOE</title>
+  
+
+  <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+      tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
+      TeX: { equationNumbers: { autoNumber: "AMS" } }
+    });
+  </script>
+
+  <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+  </script>
+
+  
+<style>
+pre.hljl {
+    border: 1px solid #ccc;
+    margin: 5px;
+    padding: 5px;
+    overflow-x: auto;
+    color: rgb(68,68,68); background-color: rgb(251,251,251); }
+pre.hljl > span.hljl-t { }
+pre.hljl > span.hljl-w { }
+pre.hljl > span.hljl-e { }
+pre.hljl > span.hljl-eB { }
+pre.hljl > span.hljl-o { }
+pre.hljl > span.hljl-k { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kc { color: rgb(59,151,46); font-style: italic; }
+pre.hljl > span.hljl-kd { color: rgb(214,102,97); font-style: italic; }
+pre.hljl > span.hljl-kn { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kp { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kr { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kt { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-n { }
+pre.hljl > span.hljl-na { }
+pre.hljl > span.hljl-nb { }
+pre.hljl > span.hljl-nbp { }
+pre.hljl > span.hljl-nc { }
+pre.hljl > span.hljl-ncB { }
+pre.hljl > span.hljl-nd { color: rgb(214,102,97); }
+pre.hljl > span.hljl-ne { }
+pre.hljl > span.hljl-neB { }
+pre.hljl > span.hljl-nf { color: rgb(66,102,213); }
+pre.hljl > span.hljl-nfm { color: rgb(66,102,213); }
+pre.hljl > span.hljl-np { }
+pre.hljl > span.hljl-nl { }
+pre.hljl > span.hljl-nn { }
+pre.hljl > span.hljl-no { }
+pre.hljl > span.hljl-nt { }
+pre.hljl > span.hljl-nv { }
+pre.hljl > span.hljl-nvc { }
+pre.hljl > span.hljl-nvg { }
+pre.hljl > span.hljl-nvi { }
+pre.hljl > span.hljl-nvm { }
+pre.hljl > span.hljl-l { }
+pre.hljl > span.hljl-ld { color: rgb(148,91,176); font-style: italic; }
+pre.hljl > span.hljl-s { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sa { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sb { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sc { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sd { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdC { color: rgb(201,61,57); }
+pre.hljl > span.hljl-se { color: rgb(59,151,46); }
+pre.hljl > span.hljl-sh { color: rgb(201,61,57); }
+pre.hljl > span.hljl-si { }
+pre.hljl > span.hljl-so { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sr { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ss { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ssB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-nB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nbB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nfB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nh { color: rgb(59,151,46); }
+pre.hljl > span.hljl-ni { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nil { color: rgb(59,151,46); }
+pre.hljl > span.hljl-noB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-oB { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-ow { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-p { }
+pre.hljl > span.hljl-c { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-ch { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cm { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cp { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cpB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cs { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-csB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-g { }
+pre.hljl > span.hljl-gd { }
+pre.hljl > span.hljl-ge { }
+pre.hljl > span.hljl-geB { }
+pre.hljl > span.hljl-gh { }
+pre.hljl > span.hljl-gi { }
+pre.hljl > span.hljl-go { }
+pre.hljl > span.hljl-gp { }
+pre.hljl > span.hljl-gs { }
+pre.hljl > span.hljl-gsB { }
+pre.hljl > span.hljl-gt { }
+</style>
+
+
+
+  <style type="text/css">
+  @font-face {
+  font-style: normal;
+  font-weight: 300;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 400;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 600;
+}
+html {
+  font-family: sans-serif; /* 1 */
+  -ms-text-size-adjust: 100%; /* 2 */
+  -webkit-text-size-adjust: 100%; /* 2 */
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block; /* 1 */
+  vertical-align: baseline; /* 2 */
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  -moz-box-sizing: content-box;
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit; /* 1 */
+  font: inherit; /* 2 */
+  margin: 0; /* 3 */
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"], /* 1 */
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button; /* 2 */
+  cursor: pointer; /* 3 */
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box; /* 1 */
+  padding: 0; /* 2 */
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield; /* 1 */
+  -moz-box-sizing: content-box;
+  -webkit-box-sizing: content-box; /* 2 */
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0; /* 1 */
+  padding: 0; /* 2 */
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  font-family: monospace, monospace;
+  font-size : 0.8em;
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+thead th {
+    border-bottom: 1px solid black;
+    background-color: white;
+}
+tr:nth-child(odd){
+  background-color: rgb(248,248,248);
+}
+
+
+/*
+* Skeleton V2.0.4
+* Copyright 2014, Dave Gamache
+* www.getskeleton.com
+* Free to use under the MIT license.
+* http://www.opensource.org/licenses/mit-license.php
+* 12/29/2014
+*/
+.container {
+  position: relative;
+  width: 100%;
+  max-width: 960px;
+  margin: 0 auto;
+  padding: 0 20px;
+  box-sizing: border-box; }
+.column,
+.columns {
+  width: 100%;
+  float: left;
+  box-sizing: border-box; }
+@media (min-width: 400px) {
+  .container {
+    width: 85%;
+    padding: 0; }
+}
+@media (min-width: 550px) {
+  .container {
+    width: 80%; }
+  .column,
+  .columns {
+    margin-left: 4%; }
+  .column:first-child,
+  .columns:first-child {
+    margin-left: 0; }
+
+  .one.column,
+  .one.columns                    { width: 4.66666666667%; }
+  .two.columns                    { width: 13.3333333333%; }
+  .three.columns                  { width: 22%;            }
+  .four.columns                   { width: 30.6666666667%; }
+  .five.columns                   { width: 39.3333333333%; }
+  .six.columns                    { width: 48%;            }
+  .seven.columns                  { width: 56.6666666667%; }
+  .eight.columns                  { width: 65.3333333333%; }
+  .nine.columns                   { width: 74.0%;          }
+  .ten.columns                    { width: 82.6666666667%; }
+  .eleven.columns                 { width: 91.3333333333%; }
+  .twelve.columns                 { width: 100%; margin-left: 0; }
+
+  .one-third.column               { width: 30.6666666667%; }
+  .two-thirds.column              { width: 65.3333333333%; }
+
+  .one-half.column                { width: 48%; }
+
+  /* Offsets */
+  .offset-by-one.column,
+  .offset-by-one.columns          { margin-left: 8.66666666667%; }
+  .offset-by-two.column,
+  .offset-by-two.columns          { margin-left: 17.3333333333%; }
+  .offset-by-three.column,
+  .offset-by-three.columns        { margin-left: 26%;            }
+  .offset-by-four.column,
+  .offset-by-four.columns         { margin-left: 34.6666666667%; }
+  .offset-by-five.column,
+  .offset-by-five.columns         { margin-left: 43.3333333333%; }
+  .offset-by-six.column,
+  .offset-by-six.columns          { margin-left: 52%;            }
+  .offset-by-seven.column,
+  .offset-by-seven.columns        { margin-left: 60.6666666667%; }
+  .offset-by-eight.column,
+  .offset-by-eight.columns        { margin-left: 69.3333333333%; }
+  .offset-by-nine.column,
+  .offset-by-nine.columns         { margin-left: 78.0%;          }
+  .offset-by-ten.column,
+  .offset-by-ten.columns          { margin-left: 86.6666666667%; }
+  .offset-by-eleven.column,
+  .offset-by-eleven.columns       { margin-left: 95.3333333333%; }
+
+  .offset-by-one-third.column,
+  .offset-by-one-third.columns    { margin-left: 34.6666666667%; }
+  .offset-by-two-thirds.column,
+  .offset-by-two-thirds.columns   { margin-left: 69.3333333333%; }
+
+  .offset-by-one-half.column,
+  .offset-by-one-half.columns     { margin-left: 52%; }
+
+}
+html {
+  font-size: 62.5%; }
+body {
+  font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
+  line-height: 1.6;
+  font-weight: 400;
+  font-family: "Raleway", "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
+  color: #222; }
+h1, h2, h3, h4, h5, h6 {
+  margin-top: 0;
+  margin-bottom: 2rem;
+  font-weight: 300; }
+h1 { font-size: 3.6rem; line-height: 1.2;  letter-spacing: -.1rem;}
+h2 { font-size: 3.4rem; line-height: 1.25; letter-spacing: -.1rem; }
+h3 { font-size: 3.2rem; line-height: 1.3;  letter-spacing: -.1rem; }
+h4 { font-size: 2.8rem; line-height: 1.35; letter-spacing: -.08rem; }
+h5 { font-size: 2.4rem; line-height: 1.5;  letter-spacing: -.05rem; }
+h6 { font-size: 1.5rem; line-height: 1.6;  letter-spacing: 0; }
+
+p {
+  margin-top: 0; }
+a {
+  color: #1EAEDB; }
+a:hover {
+  color: #0FA0CE; }
+.button,
+button,
+input[type="submit"],
+input[type="reset"],
+input[type="button"] {
+  display: inline-block;
+  height: 38px;
+  padding: 0 30px;
+  color: #555;
+  text-align: center;
+  font-size: 11px;
+  font-weight: 600;
+  line-height: 38px;
+  letter-spacing: .1rem;
+  text-transform: uppercase;
+  text-decoration: none;
+  white-space: nowrap;
+  background-color: transparent;
+  border-radius: 4px;
+  border: 1px solid #bbb;
+  cursor: pointer;
+  box-sizing: border-box; }
+.button:hover,
+button:hover,
+input[type="submit"]:hover,
+input[type="reset"]:hover,
+input[type="button"]:hover,
+.button:focus,
+button:focus,
+input[type="submit"]:focus,
+input[type="reset"]:focus,
+input[type="button"]:focus {
+  color: #333;
+  border-color: #888;
+  outline: 0; }
+.button.button-primary,
+button.button-primary,
+input[type="submit"].button-primary,
+input[type="reset"].button-primary,
+input[type="button"].button-primary {
+  color: #FFF;
+  background-color: #33C3F0;
+  border-color: #33C3F0; }
+.button.button-primary:hover,
+button.button-primary:hover,
+input[type="submit"].button-primary:hover,
+input[type="reset"].button-primary:hover,
+input[type="button"].button-primary:hover,
+.button.button-primary:focus,
+button.button-primary:focus,
+input[type="submit"].button-primary:focus,
+input[type="reset"].button-primary:focus,
+input[type="button"].button-primary:focus {
+  color: #FFF;
+  background-color: #1EAEDB;
+  border-color: #1EAEDB; }
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea,
+select {
+  height: 38px;
+  padding: 6px 10px; /* The 6px vertically centers text on FF, ignored by Webkit */
+  background-color: #fff;
+  border: 1px solid #D1D1D1;
+  border-radius: 4px;
+  box-shadow: none;
+  box-sizing: border-box; }
+/* Removes awkward default styles on some inputs for iOS */
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea {
+  -webkit-appearance: none;
+     -moz-appearance: none;
+          appearance: none; }
+textarea {
+  min-height: 65px;
+  padding-top: 6px;
+  padding-bottom: 6px; }
+input[type="email"]:focus,
+input[type="number"]:focus,
+input[type="search"]:focus,
+input[type="text"]:focus,
+input[type="tel"]:focus,
+input[type="url"]:focus,
+input[type="password"]:focus,
+textarea:focus,
+select:focus {
+  border: 1px solid #33C3F0;
+  outline: 0; }
+label,
+legend {
+  display: block;
+  margin-bottom: .5rem;
+  font-weight: 600; }
+fieldset {
+  padding: 0;
+  border-width: 0; }
+input[type="checkbox"],
+input[type="radio"] {
+  display: inline; }
+label > .label-body {
+  display: inline-block;
+  margin-left: .5rem;
+  font-weight: normal; }
+ul {
+  list-style: circle; }
+ol {
+  list-style: decimal; }
+ul ul,
+ul ol,
+ol ol,
+ol ul {
+  margin: 1.5rem 0 1.5rem 3rem;
+  font-size: 90%; }
+li > p {margin : 0;}
+th,
+td {
+  padding: 12px 15px;
+  text-align: left;
+  border-bottom: 1px solid #E1E1E1; }
+th:first-child,
+td:first-child {
+  padding-left: 0; }
+th:last-child,
+td:last-child {
+  padding-right: 0; }
+button,
+.button {
+  margin-bottom: 1rem; }
+input,
+textarea,
+select,
+fieldset {
+  margin-bottom: 1.5rem; }
+pre,
+blockquote,
+dl,
+figure,
+table,
+p,
+ul,
+ol,
+form {
+  margin-bottom: 1.0rem; }
+.u-full-width {
+  width: 100%;
+  box-sizing: border-box; }
+.u-max-full-width {
+  max-width: 100%;
+  box-sizing: border-box; }
+.u-pull-right {
+  float: right; }
+.u-pull-left {
+  float: left; }
+hr {
+  margin-top: 3rem;
+  margin-bottom: 3.5rem;
+  border-width: 0;
+  border-top: 1px solid #E1E1E1; }
+.container:after,
+.row:after,
+.u-cf {
+  content: "";
+  display: table;
+  clear: both; }
+
+pre {
+  display: block;
+  padding: 9.5px;
+  margin: 0 0 10px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  border: 1px solid #ccc;
+  border-radius: 4px;
+}
+
+pre.hljl {
+  margin: 0 0 10px;
+  display: block;
+  background: #f5f5f5;
+  border-radius: 4px;
+  padding : 5px;
+}
+
+pre.output {
+  background: #ffffff;
+}
+
+pre.code {
+  background: #ffffff;
+}
+
+pre.julia-error {
+  color : red
+}
+
+code,
+kbd,
+pre,
+samp {
+  font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
+  font-size: 0.9em;
+}
+
+
+@media (min-width: 400px) {}
+@media (min-width: 550px) {}
+@media (min-width: 750px) {}
+@media (min-width: 1000px) {}
+@media (min-width: 1200px) {}
+
+h1.title {margin-top : 20px}
+img {max-width : 100%}
+div.title {text-align: center;}
+
+  </style>
+</HEAD>
+
+<BODY>
+  <div class ="container">
+    <div class = "row">
+      <div class = "col-md-12 twelve columns">
+        <div class="title">
+          <h1 class="title">MultiplexCrisprDOE</h1>
+          
+          
+        </div>
+
+        
+<!--  this setup dependencies, but doesn't appear in the generated document  -->
+
+
+
+<h2>Tool</h2>
+<ul>
+<li><p><strong>Method:</strong>     gRNA_ frequency _distribution</p>
+</li>
+<li><p><strong>Description:</strong> Generates vector with frequencies in the combinatorial gRNA/Cas9 construct library for all gRNAs</p>
+</li>
+<li><p><strong>Mode:</strong> </p>
+</li>
+<li><p><strong>Mode description:</strong> </p>
+</li>
+</ul>
+<h2>Variables</h2>
+
+
+<div class="data-frame"><p>7 rows × 2 columns</p><table class="data-frame"><thead><tr><th></th><th>Argument</th><th>Value</th></tr><tr><th></th><th title="Any">Any</th><th title="Any">Any</th></tr></thead><tbody><tr><th>1</th><td>Plant library size</td><td>75</td></tr><tr><th>2</th><td>SD on the gRNA abundances</td><td>25</td></tr><tr><th>3</th><td>Minimal gRNA abundance</td><td>50</td></tr><tr><th>4</th><td>Maximal gRNA abundance</td><td>100</td></tr><tr><th>5</th><td>Total number of gRNAs</td><td>120</td></tr><tr><th>6</th><td>Convert gRNA abundances to relative frequencies</td><td>false</td></tr><tr><th>7</th><td>Plot gRNA abundances</td><td>false</td></tr></tbody></table></div>
+
+<img src=""  />
+
+
+<pre class="output">
+Output written to:
+gRNA_reads.xlsx
+</pre>
+
+
+
+        <HR/>
+        <div class="footer">
+          <p>
+            Published from <a href="report.jmd">report.jmd</a>
+            using <a href="http://github.com/JunoLab/Weave.jl">Weave.jl</a> v0.10.10 on 2022-05-11.
+          </p>
+        </div>
+      </div>
+    </div>
+  </div>
+</BODY>
+
+</HTML>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/test_sim_report.html	Thu May 12 17:39:18 2022 +0000
@@ -0,0 +1,705 @@
+<!DOCTYPE html>
+<HTML lang = "en">
+<HEAD>
+  <meta charset="UTF-8"/>
+  <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+  <title>MultiplexCrisprDOE</title>
+  
+
+  <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+      tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
+      TeX: { equationNumbers: { autoNumber: "AMS" } }
+    });
+  </script>
+
+  <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+  </script>
+
+  
+<style>
+pre.hljl {
+    border: 1px solid #ccc;
+    margin: 5px;
+    padding: 5px;
+    overflow-x: auto;
+    color: rgb(68,68,68); background-color: rgb(251,251,251); }
+pre.hljl > span.hljl-t { }
+pre.hljl > span.hljl-w { }
+pre.hljl > span.hljl-e { }
+pre.hljl > span.hljl-eB { }
+pre.hljl > span.hljl-o { }
+pre.hljl > span.hljl-k { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kc { color: rgb(59,151,46); font-style: italic; }
+pre.hljl > span.hljl-kd { color: rgb(214,102,97); font-style: italic; }
+pre.hljl > span.hljl-kn { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kp { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kr { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-kt { color: rgb(148,91,176); font-weight: bold; }
+pre.hljl > span.hljl-n { }
+pre.hljl > span.hljl-na { }
+pre.hljl > span.hljl-nb { }
+pre.hljl > span.hljl-nbp { }
+pre.hljl > span.hljl-nc { }
+pre.hljl > span.hljl-ncB { }
+pre.hljl > span.hljl-nd { color: rgb(214,102,97); }
+pre.hljl > span.hljl-ne { }
+pre.hljl > span.hljl-neB { }
+pre.hljl > span.hljl-nf { color: rgb(66,102,213); }
+pre.hljl > span.hljl-nfm { color: rgb(66,102,213); }
+pre.hljl > span.hljl-np { }
+pre.hljl > span.hljl-nl { }
+pre.hljl > span.hljl-nn { }
+pre.hljl > span.hljl-no { }
+pre.hljl > span.hljl-nt { }
+pre.hljl > span.hljl-nv { }
+pre.hljl > span.hljl-nvc { }
+pre.hljl > span.hljl-nvg { }
+pre.hljl > span.hljl-nvi { }
+pre.hljl > span.hljl-nvm { }
+pre.hljl > span.hljl-l { }
+pre.hljl > span.hljl-ld { color: rgb(148,91,176); font-style: italic; }
+pre.hljl > span.hljl-s { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sa { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sb { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sc { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sd { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sdC { color: rgb(201,61,57); }
+pre.hljl > span.hljl-se { color: rgb(59,151,46); }
+pre.hljl > span.hljl-sh { color: rgb(201,61,57); }
+pre.hljl > span.hljl-si { }
+pre.hljl > span.hljl-so { color: rgb(201,61,57); }
+pre.hljl > span.hljl-sr { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ss { color: rgb(201,61,57); }
+pre.hljl > span.hljl-ssB { color: rgb(201,61,57); }
+pre.hljl > span.hljl-nB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nbB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nfB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nh { color: rgb(59,151,46); }
+pre.hljl > span.hljl-ni { color: rgb(59,151,46); }
+pre.hljl > span.hljl-nil { color: rgb(59,151,46); }
+pre.hljl > span.hljl-noB { color: rgb(59,151,46); }
+pre.hljl > span.hljl-oB { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-ow { color: rgb(102,102,102); font-weight: bold; }
+pre.hljl > span.hljl-p { }
+pre.hljl > span.hljl-c { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-ch { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cm { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cp { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cpB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-cs { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-csB { color: rgb(153,153,119); font-style: italic; }
+pre.hljl > span.hljl-g { }
+pre.hljl > span.hljl-gd { }
+pre.hljl > span.hljl-ge { }
+pre.hljl > span.hljl-geB { }
+pre.hljl > span.hljl-gh { }
+pre.hljl > span.hljl-gi { }
+pre.hljl > span.hljl-go { }
+pre.hljl > span.hljl-gp { }
+pre.hljl > span.hljl-gs { }
+pre.hljl > span.hljl-gsB { }
+pre.hljl > span.hljl-gt { }
+</style>
+
+
+
+  <style type="text/css">
+  @font-face {
+  font-style: normal;
+  font-weight: 300;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 400;
+}
+@font-face {
+  font-style: normal;
+  font-weight: 600;
+}
+html {
+  font-family: sans-serif; /* 1 */
+  -ms-text-size-adjust: 100%; /* 2 */
+  -webkit-text-size-adjust: 100%; /* 2 */
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block; /* 1 */
+  vertical-align: baseline; /* 2 */
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  -moz-box-sizing: content-box;
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit; /* 1 */
+  font: inherit; /* 2 */
+  margin: 0; /* 3 */
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"], /* 1 */
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button; /* 2 */
+  cursor: pointer; /* 3 */
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box; /* 1 */
+  padding: 0; /* 2 */
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield; /* 1 */
+  -moz-box-sizing: content-box;
+  -webkit-box-sizing: content-box; /* 2 */
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0; /* 1 */
+  padding: 0; /* 2 */
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  font-family: monospace, monospace;
+  font-size : 0.8em;
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+thead th {
+    border-bottom: 1px solid black;
+    background-color: white;
+}
+tr:nth-child(odd){
+  background-color: rgb(248,248,248);
+}
+
+
+/*
+* Skeleton V2.0.4
+* Copyright 2014, Dave Gamache
+* www.getskeleton.com
+* Free to use under the MIT license.
+* http://www.opensource.org/licenses/mit-license.php
+* 12/29/2014
+*/
+.container {
+  position: relative;
+  width: 100%;
+  max-width: 960px;
+  margin: 0 auto;
+  padding: 0 20px;
+  box-sizing: border-box; }
+.column,
+.columns {
+  width: 100%;
+  float: left;
+  box-sizing: border-box; }
+@media (min-width: 400px) {
+  .container {
+    width: 85%;
+    padding: 0; }
+}
+@media (min-width: 550px) {
+  .container {
+    width: 80%; }
+  .column,
+  .columns {
+    margin-left: 4%; }
+  .column:first-child,
+  .columns:first-child {
+    margin-left: 0; }
+
+  .one.column,
+  .one.columns                    { width: 4.66666666667%; }
+  .two.columns                    { width: 13.3333333333%; }
+  .three.columns                  { width: 22%;            }
+  .four.columns                   { width: 30.6666666667%; }
+  .five.columns                   { width: 39.3333333333%; }
+  .six.columns                    { width: 48%;            }
+  .seven.columns                  { width: 56.6666666667%; }
+  .eight.columns                  { width: 65.3333333333%; }
+  .nine.columns                   { width: 74.0%;          }
+  .ten.columns                    { width: 82.6666666667%; }
+  .eleven.columns                 { width: 91.3333333333%; }
+  .twelve.columns                 { width: 100%; margin-left: 0; }
+
+  .one-third.column               { width: 30.6666666667%; }
+  .two-thirds.column              { width: 65.3333333333%; }
+
+  .one-half.column                { width: 48%; }
+
+  /* Offsets */
+  .offset-by-one.column,
+  .offset-by-one.columns          { margin-left: 8.66666666667%; }
+  .offset-by-two.column,
+  .offset-by-two.columns          { margin-left: 17.3333333333%; }
+  .offset-by-three.column,
+  .offset-by-three.columns        { margin-left: 26%;            }
+  .offset-by-four.column,
+  .offset-by-four.columns         { margin-left: 34.6666666667%; }
+  .offset-by-five.column,
+  .offset-by-five.columns         { margin-left: 43.3333333333%; }
+  .offset-by-six.column,
+  .offset-by-six.columns          { margin-left: 52%;            }
+  .offset-by-seven.column,
+  .offset-by-seven.columns        { margin-left: 60.6666666667%; }
+  .offset-by-eight.column,
+  .offset-by-eight.columns        { margin-left: 69.3333333333%; }
+  .offset-by-nine.column,
+  .offset-by-nine.columns         { margin-left: 78.0%;          }
+  .offset-by-ten.column,
+  .offset-by-ten.columns          { margin-left: 86.6666666667%; }
+  .offset-by-eleven.column,
+  .offset-by-eleven.columns       { margin-left: 95.3333333333%; }
+
+  .offset-by-one-third.column,
+  .offset-by-one-third.columns    { margin-left: 34.6666666667%; }
+  .offset-by-two-thirds.column,
+  .offset-by-two-thirds.columns   { margin-left: 69.3333333333%; }
+
+  .offset-by-one-half.column,
+  .offset-by-one-half.columns     { margin-left: 52%; }
+
+}
+html {
+  font-size: 62.5%; }
+body {
+  font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
+  line-height: 1.6;
+  font-weight: 400;
+  font-family: "Raleway", "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
+  color: #222; }
+h1, h2, h3, h4, h5, h6 {
+  margin-top: 0;
+  margin-bottom: 2rem;
+  font-weight: 300; }
+h1 { font-size: 3.6rem; line-height: 1.2;  letter-spacing: -.1rem;}
+h2 { font-size: 3.4rem; line-height: 1.25; letter-spacing: -.1rem; }
+h3 { font-size: 3.2rem; line-height: 1.3;  letter-spacing: -.1rem; }
+h4 { font-size: 2.8rem; line-height: 1.35; letter-spacing: -.08rem; }
+h5 { font-size: 2.4rem; line-height: 1.5;  letter-spacing: -.05rem; }
+h6 { font-size: 1.5rem; line-height: 1.6;  letter-spacing: 0; }
+
+p {
+  margin-top: 0; }
+a {
+  color: #1EAEDB; }
+a:hover {
+  color: #0FA0CE; }
+.button,
+button,
+input[type="submit"],
+input[type="reset"],
+input[type="button"] {
+  display: inline-block;
+  height: 38px;
+  padding: 0 30px;
+  color: #555;
+  text-align: center;
+  font-size: 11px;
+  font-weight: 600;
+  line-height: 38px;
+  letter-spacing: .1rem;
+  text-transform: uppercase;
+  text-decoration: none;
+  white-space: nowrap;
+  background-color: transparent;
+  border-radius: 4px;
+  border: 1px solid #bbb;
+  cursor: pointer;
+  box-sizing: border-box; }
+.button:hover,
+button:hover,
+input[type="submit"]:hover,
+input[type="reset"]:hover,
+input[type="button"]:hover,
+.button:focus,
+button:focus,
+input[type="submit"]:focus,
+input[type="reset"]:focus,
+input[type="button"]:focus {
+  color: #333;
+  border-color: #888;
+  outline: 0; }
+.button.button-primary,
+button.button-primary,
+input[type="submit"].button-primary,
+input[type="reset"].button-primary,
+input[type="button"].button-primary {
+  color: #FFF;
+  background-color: #33C3F0;
+  border-color: #33C3F0; }
+.button.button-primary:hover,
+button.button-primary:hover,
+input[type="submit"].button-primary:hover,
+input[type="reset"].button-primary:hover,
+input[type="button"].button-primary:hover,
+.button.button-primary:focus,
+button.button-primary:focus,
+input[type="submit"].button-primary:focus,
+input[type="reset"].button-primary:focus,
+input[type="button"].button-primary:focus {
+  color: #FFF;
+  background-color: #1EAEDB;
+  border-color: #1EAEDB; }
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea,
+select {
+  height: 38px;
+  padding: 6px 10px; /* The 6px vertically centers text on FF, ignored by Webkit */
+  background-color: #fff;
+  border: 1px solid #D1D1D1;
+  border-radius: 4px;
+  box-shadow: none;
+  box-sizing: border-box; }
+/* Removes awkward default styles on some inputs for iOS */
+input[type="email"],
+input[type="number"],
+input[type="search"],
+input[type="text"],
+input[type="tel"],
+input[type="url"],
+input[type="password"],
+textarea {
+  -webkit-appearance: none;
+     -moz-appearance: none;
+          appearance: none; }
+textarea {
+  min-height: 65px;
+  padding-top: 6px;
+  padding-bottom: 6px; }
+input[type="email"]:focus,
+input[type="number"]:focus,
+input[type="search"]:focus,
+input[type="text"]:focus,
+input[type="tel"]:focus,
+input[type="url"]:focus,
+input[type="password"]:focus,
+textarea:focus,
+select:focus {
+  border: 1px solid #33C3F0;
+  outline: 0; }
+label,
+legend {
+  display: block;
+  margin-bottom: .5rem;
+  font-weight: 600; }
+fieldset {
+  padding: 0;
+  border-width: 0; }
+input[type="checkbox"],
+input[type="radio"] {
+  display: inline; }
+label > .label-body {
+  display: inline-block;
+  margin-left: .5rem;
+  font-weight: normal; }
+ul {
+  list-style: circle; }
+ol {
+  list-style: decimal; }
+ul ul,
+ul ol,
+ol ol,
+ol ul {
+  margin: 1.5rem 0 1.5rem 3rem;
+  font-size: 90%; }
+li > p {margin : 0;}
+th,
+td {
+  padding: 12px 15px;
+  text-align: left;
+  border-bottom: 1px solid #E1E1E1; }
+th:first-child,
+td:first-child {
+  padding-left: 0; }
+th:last-child,
+td:last-child {
+  padding-right: 0; }
+button,
+.button {
+  margin-bottom: 1rem; }
+input,
+textarea,
+select,
+fieldset {
+  margin-bottom: 1.5rem; }
+pre,
+blockquote,
+dl,
+figure,
+table,
+p,
+ul,
+ol,
+form {
+  margin-bottom: 1.0rem; }
+.u-full-width {
+  width: 100%;
+  box-sizing: border-box; }
+.u-max-full-width {
+  max-width: 100%;
+  box-sizing: border-box; }
+.u-pull-right {
+  float: right; }
+.u-pull-left {
+  float: left; }
+hr {
+  margin-top: 3rem;
+  margin-bottom: 3.5rem;
+  border-width: 0;
+  border-top: 1px solid #E1E1E1; }
+.container:after,
+.row:after,
+.u-cf {
+  content: "";
+  display: table;
+  clear: both; }
+
+pre {
+  display: block;
+  padding: 9.5px;
+  margin: 0 0 10px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  border: 1px solid #ccc;
+  border-radius: 4px;
+}
+
+pre.hljl {
+  margin: 0 0 10px;
+  display: block;
+  background: #f5f5f5;
+  border-radius: 4px;
+  padding : 5px;
+}
+
+pre.output {
+  background: #ffffff;
+}
+
+pre.code {
+  background: #ffffff;
+}
+
+pre.julia-error {
+  color : red
+}
+
+code,
+kbd,
+pre,
+samp {
+  font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
+  font-size: 0.9em;
+}
+
+
+@media (min-width: 400px) {}
+@media (min-width: 550px) {}
+@media (min-width: 750px) {}
+@media (min-width: 1000px) {}
+@media (min-width: 1200px) {}
+
+h1.title {margin-top : 20px}
+img {max-width : 100%}
+div.title {text-align: center;}
+
+  </style>
+</HEAD>
+
+<BODY>
+  <div class ="container">
+    <div class = "row">
+      <div class = "col-md-12 twelve columns">
+        <div class="title">
+          <h1 class="title">MultiplexCrisprDOE</h1>
+          
+          
+        </div>
+
+        
+<!--  this setup dependencies, but doesn't appear in the generated document  -->
+
+
+
+<h2>Tool</h2>
+<ul>
+<li><p><strong>Method:</strong>     simulation</p>
+</li>
+<li><p><strong>Description:</strong> simulation-based approaches for computing the minimal plant library size that guarantees full combinatorial coverage &#40;and other relevant statistics&#41;</p>
+</li>
+<li><p><strong>Mode:</strong> simulate<em>Nx2</em>countKOs</p>
+</li>
+<li><p><strong>Mode description:</strong> Counts of the number of knockouts per plant in the experiment</p>
+</li>
+</ul>
+<h2>Variables</h2>
+
+
+<div class="data-frame"><p>8 rows × 2 columns</p><table class="data-frame"><thead><tr><th></th><th>Argument</th><th>Value</th></tr><tr><th></th><th title="Any">Any</th><th title="Any">Any</th></tr></thead><tbody><tr><th>1</th><td># of target genes in the experiment</td><td>20</td></tr><tr><th>2</th><td># of gRNAs designed per target gene</td><td>6</td></tr><tr><th>3</th><td># of gRNAs / combi gRNA/Cas construct</td><td>2</td></tr><tr><th>4</th><td>Total number of gRNAs</td><td>120</td></tr><tr><th>5</th><td>Relative frequencies for all gRNAs</td><td>example_data.xlsx</td></tr><tr><th>6</th><td>Genome editing efficiencies for all gRNAs</td><td>example_data.xlsx</td></tr><tr><th>7</th><td>Global knockout efficiency</td><td>0.8</td></tr><tr><th>8</th><td># of simulated experiments</td><td>10</td></tr></tbody></table></div>
+
+<img src=""  />
+
+<img src=""  />
+
+<pre class="output">
+Output written to:
+countKOs.xlsx
+</pre>
+
+
+
+        <HR/>
+        <div class="footer">
+          <p>
+            Published from <a href="report.jmd">report.jmd</a>
+            using <a href="http://github.com/JunoLab/Weave.jl">Weave.jl</a> v0.10.10 on 2022-05-12.
+          </p>
+        </div>
+      </div>
+    </div>
+  </div>
+</BODY>
+
+</HTML>