Mercurial > repos > pedro_araujo > phage_host
diff phage_host_prediction/feature_construction.py @ 2:3e1e8be4e65c draft default tip
Uploaded
author | pedro_araujo |
---|---|
date | Fri, 02 Apr 2021 10:11:13 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/phage_host_prediction/feature_construction.py Fri Apr 02 10:11:13 2021 +0000 @@ -0,0 +1,702 @@ + +class FeatureConstruction: + + def __init__(self): + """ + In development. Extract features from proteins. + """ + import pandas as pd + import json + import ast + from pathlib import Path + import os + from random import randint + data = pd.read_csv('files/NCBI_Phage_Bacteria_Data.csv', header=0, index_col=0) + with open('files/phagesProteins.json', encoding='utf-8') as F: + self.phagesProteins = json.loads(F.read()) + self._filter_phage_domains() + # with open('files/bactProteins.json', encoding='utf-8') as F: + # self.bactProteins = json.loads(F.read()) + # self._filter_bacteria() + all_phages = {} + ecoli = {} + kpneumoniae = {} + abaumannii = {} + my_file = Path("files/FeatureDataset") + if not my_file.is_file(): + for phage in self.phageTails: + if phage in data.index and self.phageTails[phage]: + for bact in ast.literal_eval(data.loc[phage, 'Host_ID']): + bact = bact[:-2] + if bact + '.json' in os.listdir('files/bacteria'): + # if self.externalProts[bact]: # This verification is not necessary for carbohydrates + all_phages[phage + '--' + bact] = 'Yes' + name = data.loc[phage, 'Host'] + if 'escherichia' in name.lower() or 'coli' in name.lower(): + ecoli[bact] = 0 + elif 'klebsiella' in name.lower() or 'pneumoniae' in name.lower(): + kpneumoniae[bact] = 0 + elif 'acinetobacter' in name.lower() or 'baumannii' in name.lower(): + abaumannii[bact] = 0 + for phage in self.phageTails: + if phage in data.index and self.phageTails[phage]: + # if self.phageTails[phage]: + name = data.loc[phage, 'Host'] + if 'escherichia' in name.lower() or 'coli' in name.lower(): + i = 0 + while i < 12: + bact = list(kpneumoniae.keys())[randint(0, len(kpneumoniae.keys()) - 1)] + all_phages[phage + '--' + bact] = 'No' + i += 1 + elif 'klebsiella' in name.lower() or 'pneumoniae' in name.lower(): + i = 0 + while i < 12: + bact = list(ecoli.keys())[randint(0, len(ecoli.keys()) - 1)] + all_phages[phage + '--' + bact] = 'No' + i += 1 + elif 'acinetobacter' in name.lower() or 'baumannii' in name.lower(): + i = 0 + while i < 12: + bact = list(kpneumoniae.keys())[randint(0, len(kpneumoniae.keys()) - 1)] + all_phages[phage + '--' + bact] = 'No' + i += 1 + self.features_data = pd.DataFrame({'ID': list(all_phages.keys()), 'Infects': list(all_phages.values())}) + self.features_data = self.features_data.set_index('ID') + else: + self.import_feat_data() + + def _filter_phage_domains(self): + import json + from pathlib import Path + ''' + Filters out unwanted proteins. Domains that are unknown or are not associated with fibers, spikes, tails, enzymatic or binding are not considered. + Still in development. + :return: phageTails, a dictionary containing only + ''' + my_file = Path("files/phageTails.json") + if not my_file.is_file(): + self.phageTails = {} + for phage in self.phagesProteins: + self.phageTails[phage] = {} + for protein in self.phagesProteins[phage]: + if any(z in self.phagesProteins[phage][protein][0].lower() for z in ['fiber', 'fibre', 'spike', 'hydrolase', 'bind', 'depolymerase', 'peptidase', 'lyase', 'sialidase', 'dextranase', 'lipase', 'adhesin', 'baseplate', 'protein h', 'recognizing' + 'protein j', 'protein g', 'gpe', 'duf4035', 'host specifity', 'cor protein', 'specificity', 'baseplate component', 'gp38', 'gp12 tail', 'receptor', 'recognition', 'tail']) \ + and not any(z in self.phagesProteins[phage][protein][0].lower() for z in ['nucle', 'dna', 'rna', 'ligase', 'transferase', 'inhibitor', 'assembly', 'connect', 'nudix', 'atp', 'nad', 'transpos', 'ntp', 'molybdenum', 'hns', + 'gtp', 'riib', 'inhibitor', 'replicat', 'codon', 'pyruvate', 'catalyst', 'hinge', 'sheath completion', 'head', 'capsid', 'tape', 'tip', 'strand', 'matur', 'portal' + 'terminase', 'nucl', 'promot', 'block', 'olfact', 'wedge', 'lysozyme', 'mur', 'sheat']): + self.phageTails[phage][protein] = self.phagesProteins[phage][protein] + '''else: + for i in self.phagesProteins[phage][protein]: + if type(i) == str: + if any(z in str(i).lower() for z in ['fiber', 'fibre', 'spike', 'hydrolase', 'bind', 'depolymerase', 'peptidase', 'lyase', 'sialidase', 'dextranase', 'lipase', 'adhesin', 'baseplate', 'protein h', 'recognizing' + 'protein j', 'protein g', 'gpe', 'duf4035', 'host specifity', 'cor protein', 'specificity', 'baseplate component', 'gp38', 'gp12 tail', 'receptor', 'recognition', 'tail']) \ + and not any(z in str(i).lower() for z in ['nucle', 'dna', 'rna', 'ligase', 'transferase', 'inhibitor', 'assembly', 'connect', 'nudix', 'atp', 'nad', 'transpos', 'ntp', 'molybdenum', 'hns', 'gtp', + 'riib', 'inhibitor', 'replicat', 'codon', 'pyruvate', 'catalyst', 'hinge', 'sheath completion', 'head', 'capsid', 'tape', 'tip', 'strand', 'matur', 'portal' + 'terminase', 'nucl']): + self.phageTails[phage][protein] = self.phagesProteins[phage][protein] + else: + for j in i: + if any(z in str(j).lower() for z in ['fiber', 'fibre', 'spike', 'hydrolase', 'bind', 'depolymerase', 'peptidase', 'lyase', 'sialidase', 'dextranase', 'lipase', 'adhesin', 'baseplate', 'protein h', 'recognizing' + 'protein j', 'protein g', 'gpe', 'duf4035', 'host specifity', 'cor protein', 'specificity', 'baseplate component', 'gp38', 'gp12 tail', 'receptor', 'recognition', 'tail']) \ + and not any(z in str(j).lower() for z in ['nucle', 'dna', 'rna', 'ligase', 'transferase', 'inhibitor', 'assembly', 'connect', 'nudix', 'atp', 'nad', 'transpos', 'ntp', 'molybdenum', 'hns', 'gtp', + 'riib', 'inhibitor', 'replicat', 'codon', 'pyruvate', 'catalyst', 'hinge', 'sheath completion', 'head', 'capsid', 'tape', 'tip', 'strand', 'matur', 'portal' + 'terminase', 'nucl']): + self.phageTails[phage][protein] = self.phagesProteins[phage][protein]''' + with open('files/phageTails.json', 'w') as f: + json.dump(self.phageTails, f) + self.__create_phage_fasta() + else: + with open('files/phageTails.json', encoding='utf-8') as F: + self.phageTails = json.loads(F.read()) + return self.phageTails + + def _filter_bacteria(self): + import json + from pathlib import Path + import pandas as pd + my_file = Path("files/externalProts.json") + if not my_file.is_file(): + self.externalProts = {} + predictions = pd.read_csv('files/results_psort.txt', sep='\t', index_col=False) + predictions = predictions.set_index('SeqID') + predictions = predictions.drop_duplicates() + for bac in self.bactProteins: + self.externalProts[bac] = {} + for protein in self.bactProteins[bac]: + if protein + ' ' in predictions.index: + maxScore = 0.0 + for loc in ['Cytoplasmic_Score', 'CytoplasmicMembrane_Score', 'Periplasmic_Score', 'OuterMembrane_Score', 'Extracellular_Score']: + if predictions.loc[protein + ' ', loc] > maxScore: + maxScore = predictions.loc[protein + ' ', loc] + location = loc + if location == 'CytoplasmicMembrane_Score' or location == 'OuterMembrane_Score' or location == 'Extracellular_Score': + self.externalProts[bac][protein] = self.bactProteins[bac][protein][1] + if self.externalProts != {}: + del self.bactProteins + with open('files/externalProts.json', 'w') as f: + json.dump(self.externalProts, f) + else: + with open('files/externalProts.json', encoding='utf-8') as F: + self.externalProts = json.loads(F.read()) + return self.externalProts + + def __create_phage_fasta(self): + """ + Creates a fasta file containing every protein sequence for every phage. + :return: + """ + with open('files/tails.fasta', 'w') as F: + for phage in self.phageTails: + for prot in self.phageTails[phage]: + F.write('>' + prot + '\n' + self.phageTails[phage][prot][1] + '\n') + + def add_kmers(self): + from skbio import Sequence + import json + groups = '0123456' + freqs = {} + for i in groups: + for j in groups: + freqs[i+j] = 0.0 + for i in freqs: + exec('phage_group_{0} = []'.format(i)) + exec('bact_group_{0} = []'.format(i)) + phage = '' + bact = '' + for ID in self.features_data.index: + done_phage = False + done_bact = False + if ID[:ID.find('--')] == phage: + for i in freqs.keys(): + exec('phage_group_{0}.append(phage_group_{0}[-1])'.format(i)) + done_phage = True + if ID[ID.find('--') + 2:] == bact: + for i in freqs.keys(): + exec('bact_group_{0}.append(bact_group_{0}[-1])'.format(i)) + done_bact = True + bact = ID[ID.find('--') + 2:] + phage = ID[:ID.find('--')] + + if not done_phage: + totalKmers = freqs.copy() + count_prots = 0 + for prot in self.list_prot[phage]: + max_freq = 0.0 + min_freq = 1000000.0 + count_prots += 1 + seq = self.__get_conjoint_triad(self.list_prot[phage][prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C').replace('J', 'L')) + seq = Sequence(seq) + temp = seq.kmer_frequencies(2, overlap=True, relative=True) + for i in temp.keys(): # para normalizar + if temp[i] < min_freq: + min_freq = temp[i] + if temp[i] > max_freq: + max_freq = temp[i] + for i in temp.keys(): + totalKmers[i] += temp[i] - (min_freq / max_freq) + if count_prots != 0: + for i in totalKmers.keys(): + totalKmers[i] = totalKmers[i] / count_prots + temp_value = totalKmers[i] + exec('phage_group_{0}.append(temp_value)'.format(i)) + else: + for i in totalKmers.keys(): + exec('phage_group_{0}.append(0.0)'.format(i)) + + if not done_bact: + totalKmers = freqs.copy() + count_prots = 0 + with open('files/bacteria/' + bact + '.json', encoding='utf-8') as F: + bact_prots = json.loads(F.read()) + for prot in bact_prots: + max_freq = 0.0 + min_freq = 1000000.0 + count_prots += 1 + seq = bact_prots[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C').replace('J', 'L')) + seq = Sequence(seq) + temp = seq.kmer_frequencies(2, overlap=True, relative=True) + for i in temp.keys(): # para normalizar + if temp[i] < min_freq: + min_freq = temp[i] + if temp[i] > max_freq: + max_freq = temp[i] + for i in temp.keys(): + totalKmers[i] += temp[i] - (min_freq / max_freq) + if count_prots != 0: + for i in totalKmers.keys(): + totalKmers[i] = totalKmers[i] / count_prots + temp_value = totalKmers[i] + exec('bact_group_{0}.append(temp_value)'.format(i)) + else: + for i in freqs.keys(): + exec('bact_group_{0}.append(0.0)'.format(i)) + + for i in freqs.keys(): + exec('self.features_data["phage_kmer_{0}"] = phage_group_{0}'.format(i)) + exec('self.features_data["bact_kmer_{0}"] = bact_group_{0}'.format(i)) + + def get_kmers(self, phage, bacteria): + from skbio import Sequence + solution = [] + groups = '0123456' + freqs = {} + for i in groups: + for j in groups: + freqs[i+j] = 0.0 + for i in freqs: + exec('phage_group_{0} = 0.0'.format(i)) + exec('bact_group_{0} = 0.0'.format(i)) + + totalKmers = freqs.copy() + count_prots = 0 + for prot in phage: + max_freq = 0.0 + min_freq = 1000000.0 + count_prots += 1 + seq = self.__get_conjoint_triad(phage[prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + temp = seq.kmer_frequencies(2, overlap=True, relative=True) + for i in temp.keys(): # para normalizar + if temp[i] < min_freq: + min_freq = temp[i] + if temp[i] > max_freq: + max_freq = temp[i] + for i in temp.keys(): + totalKmers[i] += temp[i] - (min_freq / max_freq) + if count_prots != 0: + for i in totalKmers.keys(): + totalKmers[i] = totalKmers[i] / count_prots + temp_value = totalKmers[i] + exec('phage_group_{0} += temp_value'.format(i)) + + totalKmers = freqs.copy() + count_prots = 0 + for prot in bacteria: + max_freq = 0.0 + min_freq = 1000000.0 + count_prots += 1 + seq = bacteria[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + temp = seq.kmer_frequencies(2, overlap=True, relative=True) + for i in temp.keys(): # para normalizar + if temp[i] < min_freq: + min_freq = temp[i] + if temp[i] > max_freq: + max_freq = temp[i] + for i in temp.keys(): + totalKmers[i] += temp[i] - (min_freq / max_freq) + if count_prots != 0: + for i in totalKmers.keys(): + totalKmers[i] = totalKmers[i] / count_prots + temp_value = totalKmers[i] + exec('bact_group_{0} += temp_value'.format(i)) + + for i in freqs.keys(): + exec('solution.append(phage_group_{0})'.format(i)) + exec('solution.append(bact_group_{0})'.format(i)) + return solution + + def add_composition(self): + from skbio import Sequence + import json + bact_comp = {} + phage_comp = {} + groups = '0123456' + for i in groups: + bact_comp['comp_' + i] = [] + phage_comp['comp_' + i] = [] + phage = '' + bact = '' + count = -1 + for ID in self.features_data.index: + done_phage = False + done_bact = False + count += 1 + if ID[:ID.find('--')] == phage: + for i in groups: + phage_comp['comp_' + i].append(phage_comp['comp_' + i][-1]) + done_phage = True + if ID[ID.find('--') + 2:] == bact: + for i in groups: + bact_comp['comp_' + i].append(bact_comp['comp_' + i][-1]) + done_bact = True + bact = ID[ID.find('--') + 2:] + phage = ID[:ID.find('--')] + + if not done_phage: + count_prots = 0 + for i in groups: + phage_comp['comp_' + i].append(0) + for prot in self.list_prot[phage]: + max_comp = 0.0 + min_comp = 1000000.0 + count_prots += 1 + seq = self.__get_conjoint_triad(self.list_prot[phage][prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for i in groups: # para normalizar + if seq.count(i) < min_comp: + min_comp = seq.count(i) + if seq.count(i) > max_comp: + max_comp = seq.count(i) + for i in groups: + phage_comp['comp_' + i][count] += seq.count(i) - (min_comp / max_comp) + total = 0 + if count_prots != 0: + for i in groups: + phage_comp['comp_' + i][count] = phage_comp['comp_' + i][count] / count_prots + total += phage_comp['comp_' + i][count] + for i in groups: + phage_comp['comp_' + i][count] = phage_comp['comp_' + i][count] / total + else: + for i in groups: + phage_comp['comp_' + i][count] = 0.0 + + if not done_bact: + count_prots = 0 + for i in groups: + bact_comp['comp_' + i].append(0) + with open('files/bacteria/' + bact + '.json', encoding='utf-8') as F: + bact_prots = json.loads(F.read()) + for prot in bact_prots: + max_comp = 0.0 + min_comp = 1000000.0 + count_prots += 1 + seq = bact_prots[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for i in groups: + if seq.count(i) < min_comp: + min_comp = seq.count(i) + if seq.count(i) > max_comp: + max_comp = seq.count(i) + for i in groups: + bact_comp['comp_' + i][count] += seq.count(i) - (min_comp / max_comp) + total = 0 + if count_prots != 0: + for i in groups: + bact_comp['comp_' + i][count] = bact_comp['comp_' + i][count] / count_prots + total += bact_comp['comp_' + i][count] + else: + for i in groups: + bact_comp['comp_' + i][count] = 0.0 + if total != 0: + for i in groups: + bact_comp['comp_' + i][count] = bact_comp['comp_' + i][count] / total + else: + for i in groups: + bact_comp['comp_' + i][count] = 0.0 + + for i in groups: + self.features_data['bact_comp_' + i] = bact_comp['comp_' + i] + self.features_data['phage_comp_' + i] = phage_comp['comp_' + i] + + def get_composition(self, phage, bacteria): + from skbio import Sequence + solution = [] + bact_comp = {} + phage_comp = {} + phage_comp_carb = {} + groups = '0123456' + for i in groups: + bact_comp['comp_' + i] = 0 + phage_comp['comp_' + i] = 0 + count_prots = 0 + for prot in phage: + max_comp = 0.0 + min_comp = 1000000.0 + count_prots += 1 + seq = self.__get_conjoint_triad(phage[prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for i in groups: # para normalizar + if seq.count(i) < min_comp: + min_comp = seq.count(i) + if seq.count(i) > max_comp: + max_comp = seq.count(i) + for i in groups: + phage_comp['comp_' + i] += seq.count(i) - (min_comp / max_comp) + total = 0 + if count_prots != 0: + for i in groups: + phage_comp['comp_' + i] = phage_comp['comp_' + i] / count_prots + total += phage_comp['comp_' + i] + for i in groups: + phage_comp['comp_' + i] = phage_comp['comp_' + i] / total + else: + for i in groups: + phage_comp['comp_' + i] = 0.0 + + count_prots = 0 + for prot in bacteria: + max_comp = 0.0 + min_comp = 1000000.0 + count_prots += 1 + seq = bacteria[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for i in groups: + if seq.count(i) < min_comp: + min_comp = seq.count(i) + if seq.count(i) > max_comp: + max_comp = seq.count(i) + for i in groups: + bact_comp['comp_' + i] += seq.count(i) - (min_comp / max_comp) + total = 0 + if count_prots != 0: + for i in groups: + bact_comp['comp_' + i] = bact_comp['comp_' + i] / count_prots + total += bact_comp['comp_' + i] + for i in groups: + bact_comp['comp_' + i] = bact_comp['comp_' + i] / total + else: + for i in groups: + bact_comp['comp_' + i] = 0.0 + + for i in groups: + solution.append(bact_comp['comp_' + i]) + solution.append(phage_comp['comp_' + i]) + return solution + + def add_grouping(self): + from skbio import Sequence + import json + bact_group = {} + phage_group = {} + groups = '0123456' + letters = 'ABCDEFGHIJ' + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i] = [] + phage_group['group' + j + '_' + i] = [] + phage = '' + bact = '' + count = -1 + for ID in self.features_data.index: + done_phage = False + done_bact = False + count += 1 + if ID[:ID.find('--')] == phage: + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i].append(phage_group['group' + j + '_' + i][-1]) + done_phage = True + if ID[ID.find('--') + 2:] == bact: + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i].append(bact_group['group' + j + '_' + i][-1]) + done_bact = True + bact = ID[ID.find('--') + 2:] + phage = ID[:ID.find('--')] + + if not done_phage: + count_prots = 0 + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i].append(0) + for prot in self.list_prot[phage]: + count_prots += 1 + seq = self.__get_conjoint_triad(self.list_prot[phage][prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for j in letters: + group = self.__get_grouping(seq, j) + for i in groups: + phage_group['group' + j + '_' + i][count] += group[i] + if count_prots != 0: + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i][count] = phage_group['group' + j + '_' + i][count] / count_prots + else: + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i][count] = 0.0 + + if not done_bact: + count_prots = 0 + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i].append(0) + with open('files/bacteria/' + bact + '.json', encoding='utf-8') as F: + bact_prots = json.loads(F.read()) + for prot in bact_prots: + count_prots += 1 + seq = bact_prots[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for j in letters: + group = self.__get_grouping(seq, j) + for i in groups: + bact_group['group' + j + '_' + i][count] += group[i] + if count_prots != 0: + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i][count] = bact_group['group' + j + '_' + i][count] / count_prots + else: + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i][count] = 0.0 + + for i in groups: + for j in letters: + self.features_data['bact_group' + j + '_' + i] = bact_group['group' + j + '_' + i] + self.features_data['phage_group' + j + '_' + i] = phage_group['group' + j + '_' + i] + + def get_grouping(self, phage, bacteria): + from skbio import Sequence + bact_group = {} + phage_group = {} + groups = '0123456' + letters = 'ABCDEFGHIJ' + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i] = 0 + phage_group['group' + j + '_' + i] = 0 + solution = [] + count_prots = 0 + for prot in phage: + count_prots += 1 + seq = self.__get_conjoint_triad(phage[prot][1].replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for j in letters: + group = self.__get_grouping(seq, j) + for i in groups: + phage_group['group' + j + '_' + i] += group[i] + if count_prots != 0: + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i] = phage_group['group' + j + '_' + i] / count_prots + else: + for i in groups: + for j in letters: + phage_group['group' + j + '_' + i] = 0.0 + + count_prots = 0 + for prot in bacteria: + count_prots += 1 + seq = bacteria[prot][1] + seq = seq[:seq.find('"')] + seq = self.__get_conjoint_triad(seq.replace('X', 'D').replace('B', 'N').replace('Z', 'E').replace('U', 'C')) + seq = Sequence(seq) + for j in letters: + group = self.__get_grouping(seq, j) + for i in groups: + bact_group['group' + j + '_' + i] += group[i] + if count_prots != 0: + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i] = bact_group['group' + j + '_' + i] / count_prots + else: + for i in groups: + for j in letters: + bact_group['group' + j + '_' + i] = 0.0 + + for i in groups: + for j in letters: + solution.append(bact_group['group' + j + '_' + i]) + solution.append(phage_group['group' + j + '_' + i]) + return solution + + def __get_conjoint_triad(self, prot): + ctm = {'A':'0', 'G':'0', 'V':'0','C':'1', 'F':'2', 'I':'2', 'L':'2', 'P':'2', 'M':'3', 'S':'3', 'T':'3', 'Y':'3', 'H':'4', 'N':'4', 'Q':'4', 'W':'4', 'K':'5', 'R':'5', 'D':'6', 'E':'6'} + for i, j in ctm.items(): + prot = prot.replace(i, j) + return prot + + def __get_grouping(self, prot, let='A'): + from skbio import Sequence + groups = '0123456' + group = {} + for i in groups: + group[i] = 0.0 + if let == 'A': + seq = Sequence(prot[:int(len(prot) * 0.25)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'B': + seq = Sequence(prot[int(len(prot) * 0.25):int(len(prot) * 0.5)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'C': + seq = Sequence(prot[int(len(prot) * 0.5):int(len(prot) * 0.75)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'D': + seq = Sequence(prot[int(len(prot) * 0.75):]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'E': + seq = Sequence(prot[:int(len(prot) * 0.5)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'F': + seq = Sequence(prot[int(len(prot) * 0.5):]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'G': + seq = Sequence(prot[int(len(prot) * 0.25):int(len(prot) * 0.75)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'H': + seq = Sequence(prot[:int(len(prot) * 0.75)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'I': + seq = Sequence(prot[int(len(prot) * 0.25):]) + for i in groups: + group[i] += seq.count(i) / len(seq) + elif let == 'J': + seq = Sequence(prot[int(len(prot) * 0.125):int(len(prot) * 0.875)]) + for i in groups: + group[i] += seq.count(i) / len(seq) + return group + + def set_output(self): + import pandas as pd + output = [] + data = pd.read_csv('files/NCBI_Phage_Bacteria_Data.csv', header=0, index_col=0, names=['Phage Name', 'Bacteria Name', 'Bacteria ID']) + for phage in self.features_data['ID']: + phage = phage[:phage.find('--')] + bact = data.loc[phage, 'Bacteria Name'] + if 'escherichia' in bact.lower(): + output.append('Escherichia coli') + elif 'klebsiella' in bact.lower(): + output.append('Klebsiella pneumoniae') + elif 'acinetobacter' in bact.lower(): + output.append('Acinetobacter baumannii') + self.features_data = self.features_data.set_index('ID') + self.features_data['Bacteria'] = output + + def save_feat_data(self): + import pickle + with open('files/FeatureDataset', 'wb') as f: + pickle.dump(self.features_data, f) + return self.features_data + + def import_feat_data(self): + import pickle + with open('files/FeatureDataset', 'rb') as f: + self.features_data = pickle.load(f) + return self.features_data + + +if __name__ == '__main__': + test = FeatureConstruction() + # test.process_net_surf() + test.add_grouping() + test.add_composition() + test.add_kmers() + # test.set_output() + test.save_feat_data() + ''' + test.process_net_surf() + test.add_aa_freq() + test.add_aromaticity() + test.add_flexibility() + test.add_molecular_weight()''' + # test.import_feat_data() + # test.netSurf()