Mercurial > repos > pedro_araujo > phage_host_prediction
view machine_learning.py @ 5:1dbf350629bf draft
Uploaded
author | pedro_araujo |
---|---|
date | Fri, 29 Jan 2021 16:07:29 +0000 |
parents | e4b3fc88efe0 |
children |
line wrap: on
line source
class PredictInteraction: def __init__(self, data = 'FeatureDataset'): import pickle from sklearn.preprocessing import LabelEncoder with open('files/' + data, 'rb') as f: self.dataset = pickle.load(f) self.dataset = self.dataset.dropna() le = LabelEncoder() le.fit(['Yes', 'No']) self.output = le.transform(self.dataset['Infects'].values) self.dataset = self.dataset.drop('Infects', 1) self.__standardize() self.__split_train_test() def __standardize(self): from sklearn.preprocessing import StandardScaler self.scaler = StandardScaler() self.scaler.fit(self.dataset) self.data_z = self.scaler.transform(self.dataset) def __cross_validation(self, method): from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold # from sklearn.model_selection import ShuffleSplit # cv = ShuffleSplit(n_splits=4, test_size=0.3) # cross validation normal skf = StratifiedKFold(5, shuffle=True) scores = cross_val_score(method, self.data_z, self.output, cv=skf, scoring='f1_weighted') print(scores) return skf def __split_train_test(self): from sklearn.model_selection import train_test_split self.data_z, self.X_val, self.output, self.y_val = train_test_split(self.data_z, self.output, test_size=0.2) self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.data_z, self.output, test_size=0.3) def run_knn(self, n=2): from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix neigh = KNeighborsClassifier(n_neighbors=n, weights='distance', p=1, algorithm='brute') neigh.fit(self.X_train, self.y_train) # print(neigh.score(self.X_test, self.y_test)) self.__score_metrics(neigh) # print(confusion_matrix(self.y_test, neigh.predict(self.X_test))) import time start_time = time.time() cv = self.__cross_validation(neigh) print("--- %s seconds ---" % (time.time() - start_time)) # self.__plot_roc_cv(neigh, cv) # self.__auc_curve(neigh) self.__permutation_importance(self._hyperparameters_knn(neigh)) def _hyperparameters_knn(self, method): from sklearn.model_selection import GridSearchCV parameters = {'leaf_size': [5, 15, 30, 50], 'n_neighbors': [2, 3, 5, 7], 'weights': ['uniform', 'distance'], 'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'p': [1, 2]} clf = GridSearchCV(method, parameters) clf.fit(self.X_val, self.y_val) self.__score_metrics(clf) print(clf.best_params_) return clf def run_random_forest(self): from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix clf = RandomForestClassifier(n_estimators=250, bootstrap=False, ccp_alpha=0.0, max_features='sqrt') clf = clf.fit(self.X_train, self.y_train) # print(clf.score(self.X_test, self.y_test)) self.__score_metrics(clf) # print(confusion_matrix(self.y_test, clf.predict(self.X_test))) # self.recursive_feature_elimination(clf) import time start_time = time.time() cv = self.__cross_validation(clf) print("--- %s seconds ---" % (time.time() - start_time)) # self.__plot_roc_cv(clf, cv) # self.__auc_curve(clf) # self.__permutation_importance(clf) def _hyperparameters_rf(self, method): from sklearn.model_selection import GridSearchCV parameters = {'n_estimators': [50, 100, 150, 200, 250], 'criterion': ['gini', 'entropy'], 'min_samples_split': [2, 4, 6], 'min_samples_leaf': [2, 4, 6], 'bootstrap': [True, False], 'oob_score': [True, False]} clf = GridSearchCV(method, parameters) clf.fit(self.X_val, self.y_val) self.__score_metrics(clf) print(clf.best_params_) return clf def run_svm(self, c=0.1): from sklearn.svm import SVC from sklearn.metrics import confusion_matrix svm = SVC(C=c) svm = svm.fit(self.X_train, self.y_train) # print(svm.score(self.X_test, self.y_test)) self.__score_metrics(svm) # print(confusion_matrix(self.y_test, svm.predict(self.X_test))) import time start_time = time.time() cv = self.__cross_validation(svm) print("--- %s seconds ---" % (time.time() - start_time)) # self.recursive_feature_elimination(svm) # self.__plot_roc_cv(svm, cv) # self.__auc_curve(svm) # self.__permutation_importance(svm) def _hyperparameters_svm(self, method): from sklearn.model_selection import GridSearchCV parameters = {'C': [0.01, 0.1, 1, 10], 'kernel': ['linear','rbf','poly','sigmoid', 'precomputed'], 'degree': [2, 3, 4], 'gamma': ['scale', 'auto']} clf = GridSearchCV(method, parameters) clf.fit(self.X_val, self.y_val) self.__score_metrics(clf) print(clf.best_params_) return clf def run_neural_networks(self, alpha=1): from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix clf = MLPClassifier(alpha=alpha) clf.fit(self.X_train, self.y_train) self.__score_metrics(clf) # print(confusion_matrix(self.y_test, clf.predict(self.X_test))) import time start_time = time.time() cv = self.__cross_validation(clf) print("--- %s seconds ---" % (time.time() - start_time)) # self.__plot_roc_cv(clf, cv) # self.__auc_curve(clf) # self.__permutation_importance(clf) def _hyperparameters_ann(self, method): from sklearn.model_selection import GridSearchCV parameters = {'hidden_layer_sizes': [50, 100, 200], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'solver': ['lbfgs', 'sgd', 'adam'], 'alpha': [0.0001, 0.05], 'learning_rate': ['constant', 'invscaling', 'adaptive']} clf = GridSearchCV(method, parameters) clf.fit(self.X_val, self.y_val) self.__score_metrics(clf) print(clf.best_params_) return clf def run_logistic_reg(self, c=1): from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix clf = LogisticRegression(C=c) clf.fit(self.X_train, self.y_train) self.__score_metrics(clf) # print(confusion_matrix(self.y_test, clf.predict(self.X_test))) import time start_time = time.time() cv = self.__cross_validation(clf) print("--- %s seconds ---" % (time.time() - start_time)) # self.__plot_roc_cv(clf, cv) # self.__auc_curve(clf) # self.__permutation_importance(clf) def _hyperparameters_lr(self, method): from sklearn.model_selection import GridSearchCV parameters = {'penalty': ['l1', 'l2', 'elasticnet', 'none'], 'C': [0.01, 0.1, 1, 10], 'solver': ['lbfgs', 'liblinear', 'newton-cg', 'sag', 'saga']} clf = GridSearchCV(method, parameters) clf.fit(self.X_val, self.y_val) self.__score_metrics(clf) print(clf.best_params_) return clf def hyperparameter_tuning(self): # Best Params: {'bootstrap': False, 'ccp_alpha': 0.0, 'criterion': 'gini', 'max_features': 'sqrt', 'n_estimators': 250} from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() n_estimators = [50, 100, 150, 200, 250] criterion = ['gini', 'entropy'] max_features = ['auto', 'sqrt', 'log2'] bootstrap = [True, False] ccp_alpha = [0.0, 0.01, 0.02] param_grid = dict(n_estimators=n_estimators, criterion=criterion, max_features=max_features, bootstrap=bootstrap, ccp_alpha=ccp_alpha) grid = GridSearchCV(clf, param_grid, n_jobs=-1) grid_result = grid.fit(self.X_val, self.y_val) print('Best Score: ', grid_result.best_score_) print('Best Params: ', grid_result.best_params_) def __score_metrics(self, method): from sklearn.metrics import matthews_corrcoef, f1_score, precision_score, recall_score print(matthews_corrcoef(self.y_test, method.predict(self.X_test))) print(f1_score(self.y_test, method.predict(self.X_test), average=None)) def __auc_curve(self, method): import matplotlib.pyplot as plt from sklearn import metrics metrics.plot_roc_curve(method, self.X_test, self.y_test) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim(0, 0.2) plt.show() def __plot_roc_cv(self, method, cv): import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.metrics import auc from sklearn.metrics import plot_roc_curve tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots() for i, (train, test) in enumerate(cv.split(self.data_z, self.output)): method.fit(self.data_z[train], self.output[train]) viz = plot_roc_curve(method, self.data_z[test], self.output[test], name='ROC fold {}'.format(i), alpha=0.3, lw=1, ax=ax) interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], title="Receiver operating characteristic example") ax.legend(loc="lower right") plt.show() def __permutation_importance(self, method): from sklearn.inspection import permutation_importance r = permutation_importance(method, self.X_test, self.y_test, n_repeats=5) for i in r.importances_mean.argsort()[::-1]: if r.importances_mean[i] - 2 * r.importances_std[i] > 0.001: print(f"{self.dataset.columns[i]:<8}" f" {r.importances_mean[i]:.3f}" f" +/- {r.importances_std[i]:.3f}") def recursive_feature_elimination(self, method): from sklearn.feature_selection import RFECV selector = RFECV(method, cv=5)#, min_features_to_select=200) selector.fit(self.data_z, self.output) print(selector.ranking_) self.data_reduced = selector.transform(self.data_z) def predict_interaction(self, phage, bacteria): from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier import numpy as np from feature_construction import FeatureConstruction phageProts = self.__find_phage_proteins(phage) # dictionary bactProts = self.__find_bact_proteins(bacteria) if not phageProts or not bactProts: print('oops') return None list_carb = {} list_prot = {} for prot in phageProts.keys(): if any(z in phageProts[prot][0].lower() for z in ['lysin', 'collagen', 'glyco', 'galac', 'chitin', 'wall', 'pectin', 'glycan', 'sialidase', 'neuramin', 'amid', 'lysozyme', 'murami', 'pectate', 'sgnh']): list_carb[prot] = phageProts[prot] else: list_prot[prot] = phageProts[prot] inter = np.array([]) fc = FeatureConstruction() grouping = fc.get_grouping(phage=list_prot, phage_carb=list_carb, bacteria=bactProts) # takes a list of protein sequences inter = np.append(inter, grouping) composition = fc.get_composition(phage=list_prot, phage_carb=list_carb, bacteria=bactProts) inter = np.append(inter, composition) kmers = fc.get_kmers(phage=list_prot, phage_carb=list_carb, bacteria=bactProts) inter = np.append(inter, kmers) inter = inter.reshape(1, -1) inter = self.scaler.transform(inter) # svm = LinearSVC(C=0.01, tol=0.010, dual=False) clf = RandomForestClassifier(n_estimators=250, bootstrap=False, ccp_alpha=0.0, max_features='sqrt') clf = clf.fit(self.data_z, self.output) pred = clf.predict(inter)[0] print(pred) return pred def __find_phage_proteins(self, phage): import json with open('files/phageTails.json', encoding='utf-8') as F: phageTails = json.loads(F.read()) phageProts = {} if phage in phageTails.keys(): for prot in phageTails[phage]: phageProts[prot] = [phageTails[phage][prot][0], phageTails[phage][prot][1]] else: from domain_search import DomainSearch phageProts = self.__find_proteins(phage) ds = DomainSearch() phageProts = ds.find_domains_interpro(phageProts) phageProts = ds.find_domains_blast(phageProts) phageProts = ds.find_domains_uniprot(phageProts) return phageProts def __find_bact_proteins(self, bacteria): import os import json if bacteria + '.json' in os.listdir('files/bacteria'): with open('files/bacteria/' + bacteria + '.json', encoding='utf-8') as F: bactProts = json.loads(F.read()) else: pass # bactProts = self.__find_proteins(bacteria) # Implementar previsão de localização celular return bactProts def __find_proteins(self, id): from Bio import Entrez from Bio import SeqIO Entrez.email = 'pedro_araujo97@hotmail.com' prots = {} with Entrez.efetch(db="nucleotide", rettype="gb", retmode="text", id=id) as handle: genomeBac = SeqIO.read(handle, "gb") for feat in genomeBac.features: if feat.type == 'CDS': try: prots[feat.qualifiers['protein_id'][0]] = [feat.qualifiers['product'][0], feat.qualifiers['translation'][0]] except: pass if len(genomeBac.features) <= 5: with Entrez.efetch(db="nucleotide", rettype="gbwithparts", retmode="text", id=id) as handle: genomeBac = handle.readlines() for i in range(len(genomeBac)): if ' CDS ' in genomeBac[i]: j = i protDone = False while j < len(genomeBac): if protDone: break if '/product=' in genomeBac[j]: product = genomeBac[j].strip()[10:] j += 1 elif '_id=' in genomeBac[j]: protKey = genomeBac[j].strip()[13:-1] j += 1 elif '/translation=' in genomeBac[j]: protSeq = genomeBac[j].strip()[14:] j += 1 for k in range(j, len(genomeBac)): if genomeBac[k].islower(): j = k protDone = True break else: protSeq += genomeBac[k].strip() else: j += 1 prots[protKey] = [product, protSeq[:protSeq.find('"')]] return prots if __name__ == '__main__': ml = PredictInteraction('dataset_reduced') # FeatureDataset # ml.predict_interaction('NC_050143', 'NC_020524.1') # NC_010468.1 NC_013941.1 NZ_CP029060.1 NZ_CP027394.1 NZ_CP025089.1 ml.predict_interaction('KM607000', 'NC_020524') # NC_010468.1 NC_013941.1 NZ_CP029060.1 NZ_CP027394.1 NZ_CP025089.1 ml.run_knn(2) ml.run_random_forest() ml.run_svm(0.001) ml.run_neural_networks(0.0001) ml.run_logistic_reg(0.01) import pandas as pd import ast data = pd.read_csv('files/NCBI_Phage_Bacteria_Data.csv', header=0, index_col=0) abaumannii = {} for phage in data.index: name = data.loc[phage, 'Host'] if 'acinetobacter' in name.lower(): for bact in ast.literal_eval(data.loc[phage, 'Host_ID']): abaumannii[bact] = 0 list_yes = {} list_yes['KT588074'] = [] for bact in abaumannii.keys(): predict = ml.predict_interaction('KT588074', bact) if predict == 'Yes': list_yes['KT588074'].append(bact)