# HG changeset patch
# User perssond
# Date 1615508026 0
# Node ID fd8dfd64f25e50566c10b07255323199af8a5aa5
"planemo upload for repository https://github.com/ohsu-comp-bio/basic-illumination commit a8d2367c8c66eecfc2586a593acc8547a7f8611c-dirty"
diff -r 000000000000 -r fd8dfd64f25e basic_illumination.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/basic_illumination.xml Fri Mar 12 00:13:46 2021 +0000
@@ -0,0 +1,50 @@
+
+ ImageJ BaSiC shading correction for use with Ashlar
+
+ macros.xml
+
+
+
+ @VERSION_CMD@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r 000000000000 -r fd8dfd64f25e imagej_basic_ashlar.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/imagej_basic_ashlar.py Fri Mar 12 00:13:46 2021 +0000
@@ -0,0 +1,135 @@
+# @File(label="Select a slide to process") filename
+# @File(label="Select the output location", style="directory") output_dir
+# @String(label="Experiment name (base name for output files)") experiment_name
+# @Float(label="Flat field smoothing parameter (0 for automatic)", value=0.1) lambda_flat
+# @Float(label="Dark field smoothing parameter (0 for automatic)", value=0.01) lambda_dark
+
+# Takes a slide (or other multi-series BioFormats-compatible file set) and
+# generates flat- and dark-field correction profile images with BaSiC. The
+# output format is two multi-series TIFF files (one for flat and one for dark)
+# which is the input format used by Ashlar.
+
+# Invocation for running from the commandline:
+#
+# ImageJ --ij2 --headless --run imagej_basic_ashlar.py "filename='input.ext',output_dir='output',experiment_name='my_experiment'"
+
+import sys
+from ij import IJ, WindowManager, Prefs
+from ij.macro import Interpreter
+from loci.plugins import BF
+from loci.plugins.in import ImporterOptions
+from loci.formats import ImageReader
+from loci.formats.in import DynamicMetadataOptions
+import BaSiC_ as Basic
+
+import pdb
+
+
+def main():
+
+ Interpreter.batchMode = True
+
+ if (lambda_flat == 0) ^ (lambda_dark == 0):
+ print ("ERROR: Both of lambda_flat and lambda_dark must be zero,"
+ " or both non-zero.")
+ return
+ lambda_estimate = "Automatic" if lambda_flat == 0 else "Manual"
+
+ print "Loading images..."
+
+ # For multi-scene .CZI files, we need raw tiles instead of the
+ # auto-stitched mosaic and we don't want labels or overview images. This
+ # only affects BF.openImagePlus, not direct use of the BioFormats reader
+ # classes which we also do (see below)
+ Prefs.set("bioformats.zeissczi.allow.autostitch", "false")
+ Prefs.set("bioformats.zeissczi.include.attachments", "false")
+
+ # Use BioFormats reader directly to determine dataset dimensions without
+ # reading every single image. The series count (num_images) is the one value
+ # we can't easily get any other way, but we might as well grab the others
+ # while we have the reader available.
+ dyn_options = DynamicMetadataOptions()
+ # Directly calling a BioFormats reader will not use the IJ Prefs settings
+ # so we need to pass these options explicitly.
+ dyn_options.setBoolean("zeissczi.autostitch", False)
+ dyn_options.setBoolean("zeissczi.attachments", False)
+ bfreader = ImageReader()
+ bfreader.setMetadataOptions(dyn_options)
+ bfreader.id = str(filename)
+ num_images = bfreader.seriesCount
+ num_channels = bfreader.sizeC
+ width = bfreader.sizeX
+ height = bfreader.sizeY
+ bfreader.close()
+
+ # The internal initialization of the BaSiC code fails when we invoke it via
+ # scripting, unless we explicitly set a the private 'noOfSlices' field.
+ # Since it's private, we need to use Java reflection to access it.
+ Basic_noOfSlices = Basic.getDeclaredField('noOfSlices')
+ Basic_noOfSlices.setAccessible(True)
+ basic = Basic()
+ Basic_noOfSlices.setInt(basic, num_images)
+
+ # Pre-allocate the output profile images, since we have all the dimensions.
+ ff_image = IJ.createImage("Flat-field", width, height, num_channels, 32);
+ df_image = IJ.createImage("Dark-field", width, height, num_channels, 32);
+
+ print("\n\n")
+
+ # BaSiC works on one channel at a time, so we only read the images from one
+ # channel at a time to limit memory usage.
+ for channel in range(num_channels):
+ print "Processing channel %d/%d..." % (channel + 1, num_channels)
+ print "==========================="
+
+ options = ImporterOptions()
+ options.id = str(filename)
+ options.setOpenAllSeries(True)
+ # concatenate=True gives us a single stack rather than a list of
+ # separate images.
+ options.setConcatenate(True)
+ # Limit the reader to the channel we're currently working on. This loop
+ # is mainly why we need to know num_images before opening anything.
+ for i in range(num_images):
+ options.setCBegin(i, channel)
+ options.setCEnd(i, channel)
+ # openImagePlus returns a list of images, but we expect just one (a
+ # stack).
+ input_image = BF.openImagePlus(options)[0]
+
+ # BaSiC seems to require the input image is actually the ImageJ
+ # "current" image, otherwise it prints an error and aborts.
+ WindowManager.setTempCurrentImage(input_image)
+ basic.exec(
+ input_image, None, None,
+ "Estimate shading profiles", "Estimate both flat-field and dark-field",
+ lambda_estimate, lambda_flat, lambda_dark,
+ "Ignore", "Compute shading only"
+ )
+ input_image.close()
+
+ # Copy the pixels from the BaSiC-generated profile images to the
+ # corresponding channel of our output images.
+ ff_channel = WindowManager.getImage("Flat-field:%s" % input_image.title)
+ ff_image.slice = channel + 1
+ ff_image.getProcessor().insert(ff_channel.getProcessor(), 0, 0)
+ ff_channel.close()
+ df_channel = WindowManager.getImage("Dark-field:%s" % input_image.title)
+ df_image.slice = channel + 1
+ df_image.getProcessor().insert(df_channel.getProcessor(), 0, 0)
+ df_channel.close()
+
+ print("\n\n")
+
+ template = '%s/%s-%%s.tif' % (output_dir, experiment_name)
+ ff_filename = template % 'ffp'
+ IJ.saveAsTiff(ff_image, ff_filename)
+ ff_image.close()
+ df_filename = template % 'dfp'
+ IJ.saveAsTiff(df_image, df_filename)
+ df_image.close()
+
+ print "Done!"
+
+
+main()
diff -r 000000000000 -r fd8dfd64f25e imagej_basic_ashlar_filepattern.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/imagej_basic_ashlar_filepattern.py Fri Mar 12 00:13:46 2021 +0000
@@ -0,0 +1,186 @@
+# @String(label="Enter a filename pattern describing the TIFFs to process") pattern
+# @File(label="Select the output location", style="directory") output_dir
+# @String(label="Experiment name (base name for output files)") experiment_name
+# @Float(label="Flat field smoothing parameter (0 for automatic)", value=0.1) lambda_flat
+# @Float(label="Dark field smoothing parameter (0 for automatic)", value=0.01) lambda_dark
+
+# Takes a filename pattern describing a list of image files and generates flat-
+# and dark-field correction profile images with BaSiC. The pattern must contain
+# a "*" wildcard to indicate the part of the filename that varies with the image
+# series number. If the images are stored with one channel per file then the
+# pattern must also contain the placeholder {channel} in place of the channel
+# name or number. If the image files are multi-channel then the {channel}
+# placeholder must be omitted. The output format is two multi-channel TIFF files
+# (one for flat and one for dark) which is the input format used by Ashlar.
+
+# Invocation for running from the commandline:
+# (to match files like "s001_c1.tif", "s001_c2.tif", "s002_c1.tif", etc.)
+#
+# ImageJ --ij2 --headless --run imagej_basic_ashlar_filepattern.py "pattern='input/s*_c{channel}.tif',output_dir='output',experiment_name='my_experiment'"
+
+import sys
+import os
+import re
+import collections
+from ij import IJ, WindowManager, ImagePlus, ImageStack
+from ij.io import Opener
+from ij.macro import Interpreter
+import BaSiC_ as Basic
+
+
+def enumerate_filenames(pattern):
+ """Return filenames matching pattern (a glob pattern containing an optional
+ {channel} placeholder).
+
+ Returns a list of lists, where the top level is indexed by sorted channel
+ name/number and the bottom level is filenames for that channel.
+
+ """
+ (base, pattern) = os.path.split(pattern)
+ regex = re.sub(r'{([^:}]+)(?:[^}]*)}', r'(?P<\1>.*?)',
+ pattern.replace('.', '\.').replace('*', '.*?'))
+ channels = set()
+ num_images = 0
+ # Dict[Union[int, str, None], List[str]]
+ filenames = collections.defaultdict(list)
+ for f in os.listdir(base):
+ match = re.match(regex, f)
+ if match:
+ gd = match.groupdict()
+ channel = gd.get('channel', None)
+ try:
+ channel = int(channel)
+ except (ValueError, TypeError):
+ pass
+ channels.add(channel)
+ filenames[channel].append(os.path.join(base, f))
+ num_images += 1
+ if num_images % len(channels) != 0:
+ print (
+ "ERROR: Some image files seem to be missing --"
+ " image count (%d) is not a multiple of channel count (%d)"
+ % (num_images, len(channels))
+ )
+ return []
+ channels = sorted(channels)
+ if len(channels) > 1:
+ print("Detected the following channel names/numbers from filenames:")
+ for channel in channels:
+ print(" %s" % channel)
+ filenames = [filenames[channel] for channel in channels]
+ return filenames
+
+
+def main():
+
+ Interpreter.batchMode = True
+
+ if (lambda_flat == 0) ^ (lambda_dark == 0):
+ print ("ERROR: Both of lambda_flat and lambda_dark must be zero,"
+ " or both non-zero.")
+ return
+ lambda_estimate = "Automatic" if lambda_flat == 0 else "Manual"
+
+ print "Loading images..."
+ filenames = enumerate_filenames(pattern)
+ if len(filenames) == 0:
+ return
+ # This is the number of channels inferred from the filenames. The number
+ # of channels in an individual image file will be determined below.
+ num_channels = len(filenames)
+ num_images = len(filenames[0])
+ image = Opener().openImage(filenames[0][0])
+ if image.getNDimensions() > 3:
+ print "ERROR: Can't handle images with more than 3 dimensions."
+ (width, height, channels, slices, frames) = image.getDimensions()
+ # The third dimension could be any of these three, but the other two are
+ # guaranteed to be equal to 1 since we know NDimensions is <= 3.
+ image_channels = max((channels, slices, frames))
+ image.close()
+ if num_channels > 1 and image_channels > 1:
+ print (
+ "ERROR: Can only handle single-channel images with {channel} in"
+ " the pattern, or multi-channel images without {channel}. The"
+ " filename patterns imply %d channels and the images themselves"
+ " have %d channels." % (num_channels, image_channels)
+ )
+ return
+ if image_channels == 1:
+ multi_channel = False
+ else:
+ print (
+ "Detected multi-channel image files with %d channels"
+ % image_channels
+ )
+ multi_channel = True
+ num_channels = image_channels
+ # Clone the filename list across all channels. We will handle reading
+ # the individual image planes for each channel below.
+ filenames = filenames * num_channels
+
+ # The internal initialization of the BaSiC code fails when we invoke it via
+ # scripting, unless we explicitly set a the private 'noOfSlices' field.
+ # Since it's private, we need to use Java reflection to access it.
+ Basic_noOfSlices = Basic.getDeclaredField('noOfSlices')
+ Basic_noOfSlices.setAccessible(True)
+ basic = Basic()
+ Basic_noOfSlices.setInt(basic, num_images)
+
+ # Pre-allocate the output profile images, since we have all the dimensions.
+ ff_image = IJ.createImage("Flat-field", width, height, num_channels, 32);
+ df_image = IJ.createImage("Dark-field", width, height, num_channels, 32);
+
+ print("\n\n")
+
+ # BaSiC works on one channel at a time, so we only read the images from one
+ # channel at a time to limit memory usage.
+ for channel in range(num_channels):
+ print "Processing channel %d/%d..." % (channel + 1, num_channels)
+ print "==========================="
+
+ stack = ImageStack(width, height, num_images)
+ opener = Opener()
+ for i, filename in enumerate(filenames[channel]):
+ print "Loading image %d/%d" % (i + 1, num_images)
+ # For multi-channel images the channel determines the plane to read.
+ args = [channel + 1] if multi_channel else []
+ image = opener.openImage(filename, *args)
+ stack.setProcessor(image.getProcessor(), i + 1)
+ input_image = ImagePlus("input", stack)
+
+ # BaSiC seems to require the input image is actually the ImageJ
+ # "current" image, otherwise it prints an error and aborts.
+ WindowManager.setTempCurrentImage(input_image)
+ basic.exec(
+ input_image, None, None,
+ "Estimate shading profiles", "Estimate both flat-field and dark-field",
+ lambda_estimate, lambda_flat, lambda_dark,
+ "Ignore", "Compute shading only"
+ )
+ input_image.close()
+
+ # Copy the pixels from the BaSiC-generated profile images to the
+ # corresponding channel of our output images.
+ ff_channel = WindowManager.getImage("Flat-field:%s" % input_image.title)
+ ff_image.slice = channel + 1
+ ff_image.getProcessor().insert(ff_channel.getProcessor(), 0, 0)
+ ff_channel.close()
+ df_channel = WindowManager.getImage("Dark-field:%s" % input_image.title)
+ df_image.slice = channel + 1
+ df_image.getProcessor().insert(df_channel.getProcessor(), 0, 0)
+ df_channel.close()
+
+ print("\n\n")
+
+ template = '%s/%s-%%s.tif' % (output_dir, experiment_name)
+ ff_filename = template % 'ffp'
+ IJ.saveAsTiff(ff_image, ff_filename)
+ ff_image.close()
+ df_filename = template % 'dfp'
+ IJ.saveAsTiff(df_image, df_filename)
+ df_image.close()
+
+ print "Done!"
+
+
+main()
diff -r 000000000000 -r fd8dfd64f25e macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Fri Mar 12 00:13:46 2021 +0000
@@ -0,0 +1,20 @@
+
+
+
+
+ python
+ basic-illumination
+
+
+
+
+ echo @VERSION@
+
+
+
+
+
+
+ 1.0.2
+ ImageJ --ij2 --headless --run ${__tool_directory__}/imagej_basic_ashlar.py
+