Mercurial > repos > perssond > quantification
view ParseInput.py @ 2:46b897eb2c8e draft
"planemo upload for repository https://github.com/ohsu-comp-bio/quantification commit 150f21e52974f99ec39bf92d9e7e611861860d0f"
author | watsocam |
---|---|
date | Wed, 30 Mar 2022 16:56:29 +0000 |
parents | aba3655fdef0 |
children |
line wrap: on
line source
#Functions for parsing command line arguments for ome ilastik prep import argparse def ParseInputDataExtract(): """Function for parsing command line arguments for input to single-cell data extraction""" #if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--masks',nargs='+', required=True) parser.add_argument('--image', required=True) parser.add_argument('--channel_names', required=True) parser.add_argument('--output', required=True) parser.add_argument( '--mask_props', nargs = "+", help=""" Space separated list of additional metrics to be calculated for every mask. This is for metrics that depend only on the cell mask. If the metric depends on signal intensity, use --intensity-props instead. See list at https://scikit-image.org/docs/dev/api/skimage.measure.html#regionprops """ ) parser.add_argument( '--intensity_props', nargs = "+", help=""" Space separated list of additional metrics to be calculated for every marker separately. By default only mean intensity is calculated. If the metric doesn't depend on signal intensity, use --mask-props instead. See list at https://scikit-image.org/docs/dev/api/skimage.measure.html#regionprops Additionally available is gini_index, which calculates a single number between 0 and 1, representing how unequal the signal is distributed in each region. See https://en.wikipedia.org/wiki/Gini_coefficient """ ) #parser.add_argument('--suffix') args = parser.parse_args() #Create a dictionary object to pass to the next function dict = {'masks': args.masks, 'image': args.image,\ 'channel_names': args.channel_names,'output':args.output, 'intensity_props': set(args.intensity_props if args.intensity_props is not None else []).union(["intensity_mean"]), 'mask_props': args.mask_props, } #Print the dictionary object print(dict) #Return the dictionary return dict