comparison UnMicst.py @ 0:6bec4fef6b2e draft

"planemo upload for repository https://github.com/ohsu-comp-bio/unmicst commit 73e4cae15f2d7cdc86719e77470eb00af4b6ebb7-dirty"
author perssond
date Fri, 12 Mar 2021 00:17:29 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:6bec4fef6b2e
1 import numpy as np
2 from scipy import misc
3 import tensorflow.compat.v1 as tf
4 import shutil
5 import scipy.io as sio
6 import os, fnmatch, glob
7 import skimage.exposure as sk
8 import skimage.io
9 import argparse
10 import czifile
11 from nd2reader import ND2Reader
12 import tifffile
13 import sys
14 tf.disable_v2_behavior()
15 #sys.path.insert(0, 'C:\\Users\\Public\\Documents\\ImageScience')
16
17 from toolbox.imtools import *
18 from toolbox.ftools import *
19 from toolbox.PartitionOfImage import PI2D
20 from toolbox import GPUselect
21
22 def concat3(lst):
23 return tf.concat(lst, 3)
24
25
26 class UNet2D:
27 hp = None # hyper-parameters
28 nn = None # network
29 tfTraining = None # if training or not (to handle batch norm)
30 tfData = None # data placeholder
31 Session = None
32 DatasetMean = 0
33 DatasetStDev = 0
34
35 def setupWithHP(hp):
36 UNet2D.setup(hp['imSize'],
37 hp['nChannels'],
38 hp['nClasses'],
39 hp['nOut0'],
40 hp['featMapsFact'],
41 hp['downSampFact'],
42 hp['ks'],
43 hp['nExtraConvs'],
44 hp['stdDev0'],
45 hp['nLayers'],
46 hp['batchSize'])
47
48 def setup(imSize, nChannels, nClasses, nOut0, featMapsFact, downSampFact, kernelSize, nExtraConvs, stdDev0,
49 nDownSampLayers, batchSize):
50 UNet2D.hp = {'imSize': imSize,
51 'nClasses': nClasses,
52 'nChannels': nChannels,
53 'nExtraConvs': nExtraConvs,
54 'nLayers': nDownSampLayers,
55 'featMapsFact': featMapsFact,
56 'downSampFact': downSampFact,
57 'ks': kernelSize,
58 'nOut0': nOut0,
59 'stdDev0': stdDev0,
60 'batchSize': batchSize}
61
62 nOutX = [UNet2D.hp['nChannels'], UNet2D.hp['nOut0']]
63 dsfX = []
64 for i in range(UNet2D.hp['nLayers']):
65 nOutX.append(nOutX[-1] * UNet2D.hp['featMapsFact'])
66 dsfX.append(UNet2D.hp['downSampFact'])
67
68 # --------------------------------------------------
69 # downsampling layer
70 # --------------------------------------------------
71
72 with tf.name_scope('placeholders'):
73 UNet2D.tfTraining = tf.placeholder(tf.bool, name='training')
74 UNet2D.tfData = tf.placeholder("float", shape=[None, UNet2D.hp['imSize'], UNet2D.hp['imSize'],
75 UNet2D.hp['nChannels']], name='data')
76
77 def down_samp_layer(data, index):
78 with tf.name_scope('ld%d' % index):
79 ldXWeights1 = tf.Variable(
80 tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index], nOutX[index + 1]],
81 stddev=stdDev0), name='kernel1')
82 ldXWeightsExtra = []
83 for i in range(nExtraConvs):
84 ldXWeightsExtra.append(tf.Variable(
85 tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index + 1], nOutX[index + 1]],
86 stddev=stdDev0), name='kernelExtra%d' % i))
87
88 c00 = tf.nn.conv2d(data, ldXWeights1, strides=[1, 1, 1, 1], padding='SAME')
89 for i in range(nExtraConvs):
90 c00 = tf.nn.conv2d(tf.nn.relu(c00), ldXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME')
91
92 ldXWeightsShortcut = tf.Variable(
93 tf.truncated_normal([1, 1, nOutX[index], nOutX[index + 1]], stddev=stdDev0), name='shortcutWeights')
94 shortcut = tf.nn.conv2d(data, ldXWeightsShortcut, strides=[1, 1, 1, 1], padding='SAME')
95
96 bn = tf.layers.batch_normalization(tf.nn.relu(c00 + shortcut), training=UNet2D.tfTraining)
97
98 return tf.nn.max_pool(bn, ksize=[1, dsfX[index], dsfX[index], 1],
99 strides=[1, dsfX[index], dsfX[index], 1], padding='SAME', name='maxpool')
100
101 # --------------------------------------------------
102 # bottom layer
103 # --------------------------------------------------
104
105 with tf.name_scope('lb'):
106 lbWeights1 = tf.Variable(tf.truncated_normal(
107 [UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[UNet2D.hp['nLayers']], nOutX[UNet2D.hp['nLayers'] + 1]],
108 stddev=stdDev0), name='kernel1')
109
110 def lb(hidden):
111 return tf.nn.relu(tf.nn.conv2d(hidden, lbWeights1, strides=[1, 1, 1, 1], padding='SAME'), name='conv')
112
113 # --------------------------------------------------
114 # downsampling
115 # --------------------------------------------------
116
117 with tf.name_scope('downsampling'):
118 dsX = []
119 dsX.append(UNet2D.tfData)
120
121 for i in range(UNet2D.hp['nLayers']):
122 dsX.append(down_samp_layer(dsX[i], i))
123
124 b = lb(dsX[UNet2D.hp['nLayers']])
125
126 # --------------------------------------------------
127 # upsampling layer
128 # --------------------------------------------------
129
130 def up_samp_layer(data, index):
131 with tf.name_scope('lu%d' % index):
132 luXWeights1 = tf.Variable(
133 tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index + 1], nOutX[index + 2]],
134 stddev=stdDev0), name='kernel1')
135 luXWeights2 = tf.Variable(tf.truncated_normal(
136 [UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index] + nOutX[index + 1], nOutX[index + 1]],
137 stddev=stdDev0), name='kernel2')
138 luXWeightsExtra = []
139 for i in range(nExtraConvs):
140 luXWeightsExtra.append(tf.Variable(
141 tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index + 1], nOutX[index + 1]],
142 stddev=stdDev0), name='kernel2Extra%d' % i))
143
144 outSize = UNet2D.hp['imSize']
145 for i in range(index):
146 outSize /= dsfX[i]
147 outSize = int(outSize)
148
149 outputShape = [UNet2D.hp['batchSize'], outSize, outSize, nOutX[index + 1]]
150 us = tf.nn.relu(
151 tf.nn.conv2d_transpose(data, luXWeights1, outputShape, strides=[1, dsfX[index], dsfX[index], 1],
152 padding='SAME'), name='conv1')
153 cc = concat3([dsX[index], us])
154 cv = tf.nn.relu(tf.nn.conv2d(cc, luXWeights2, strides=[1, 1, 1, 1], padding='SAME'), name='conv2')
155 for i in range(nExtraConvs):
156 cv = tf.nn.relu(tf.nn.conv2d(cv, luXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME'),
157 name='conv2Extra%d' % i)
158 return cv
159
160 # --------------------------------------------------
161 # final (top) layer
162 # --------------------------------------------------
163
164 with tf.name_scope('lt'):
165 ltWeights1 = tf.Variable(tf.truncated_normal([1, 1, nOutX[1], nClasses], stddev=stdDev0), name='kernel')
166
167 def lt(hidden):
168 return tf.nn.conv2d(hidden, ltWeights1, strides=[1, 1, 1, 1], padding='SAME', name='conv')
169
170 # --------------------------------------------------
171 # upsampling
172 # --------------------------------------------------
173
174 with tf.name_scope('upsampling'):
175 usX = []
176 usX.append(b)
177
178 for i in range(UNet2D.hp['nLayers']):
179 usX.append(up_samp_layer(usX[i], UNet2D.hp['nLayers'] - 1 - i))
180
181 t = lt(usX[UNet2D.hp['nLayers']])
182
183 sm = tf.nn.softmax(t, -1)
184 UNet2D.nn = sm
185
186 def train(imPath, logPath, modelPath, pmPath, nTrain, nValid, nTest, restoreVariables, nSteps, gpuIndex,
187 testPMIndex):
188 os.environ['CUDA_VISIBLE_DEVICES'] = '%d' % gpuIndex
189
190 outLogPath = logPath
191 trainWriterPath = pathjoin(logPath, 'Train')
192 validWriterPath = pathjoin(logPath, 'Valid')
193 outModelPath = pathjoin(modelPath, 'model.ckpt')
194 outPMPath = pmPath
195
196 batchSize = UNet2D.hp['batchSize']
197 imSize = UNet2D.hp['imSize']
198 nChannels = UNet2D.hp['nChannels']
199 nClasses = UNet2D.hp['nClasses']
200
201 # --------------------------------------------------
202 # data
203 # --------------------------------------------------
204
205 Train = np.zeros((nTrain, imSize, imSize, nChannels))
206 Valid = np.zeros((nValid, imSize, imSize, nChannels))
207 Test = np.zeros((nTest, imSize, imSize, nChannels))
208 LTrain = np.zeros((nTrain, imSize, imSize, nClasses))
209 LValid = np.zeros((nValid, imSize, imSize, nClasses))
210 LTest = np.zeros((nTest, imSize, imSize, nClasses))
211
212 print('loading data, computing mean / st dev')
213 if not os.path.exists(modelPath):
214 os.makedirs(modelPath)
215 if restoreVariables:
216 datasetMean = loadData(pathjoin(modelPath, 'datasetMean.data'))
217 datasetStDev = loadData(pathjoin(modelPath, 'datasetStDev.data'))
218 else:
219 datasetMean = 0
220 datasetStDev = 0
221 for iSample in range(nTrain + nValid + nTest):
222 I = im2double(tifread('%s/I%05d_Img.tif' % (imPath, iSample)))
223 datasetMean += np.mean(I)
224 datasetStDev += np.std(I)
225 datasetMean /= (nTrain + nValid + nTest)
226 datasetStDev /= (nTrain + nValid + nTest)
227 saveData(datasetMean, pathjoin(modelPath, 'datasetMean.data'))
228 saveData(datasetStDev, pathjoin(modelPath, 'datasetStDev.data'))
229
230 perm = np.arange(nTrain + nValid + nTest)
231 np.random.shuffle(perm)
232
233 for iSample in range(0, nTrain):
234 path = '%s/I%05d_Img.tif' % (imPath, perm[iSample])
235 im = im2double(tifread(path))
236 Train[iSample, :, :, 0] = (im - datasetMean) / datasetStDev
237 path = '%s/I%05d_Ant.tif' % (imPath, perm[iSample])
238 im = tifread(path)
239 for i in range(nClasses):
240 LTrain[iSample, :, :, i] = (im == i + 1)
241
242 for iSample in range(0, nValid):
243 path = '%s/I%05d_Img.tif' % (imPath, perm[nTrain + iSample])
244 im = im2double(tifread(path))
245 Valid[iSample, :, :, 0] = (im - datasetMean) / datasetStDev
246 path = '%s/I%05d_Ant.tif' % (imPath, perm[nTrain + iSample])
247 im = tifread(path)
248 for i in range(nClasses):
249 LValid[iSample, :, :, i] = (im == i + 1)
250
251 for iSample in range(0, nTest):
252 path = '%s/I%05d_Img.tif' % (imPath, perm[nTrain + nValid + iSample])
253 im = im2double(tifread(path))
254 Test[iSample, :, :, 0] = (im - datasetMean) / datasetStDev
255 path = '%s/I%05d_Ant.tif' % (imPath, perm[nTrain + nValid + iSample])
256 im = tifread(path)
257 for i in range(nClasses):
258 LTest[iSample, :, :, i] = (im == i + 1)
259
260 # --------------------------------------------------
261 # optimization
262 # --------------------------------------------------
263
264 tfLabels = tf.placeholder("float", shape=[None, imSize, imSize, nClasses], name='labels')
265
266 globalStep = tf.Variable(0, trainable=False)
267 learningRate0 = 0.01
268 decaySteps = 1000
269 decayRate = 0.95
270 learningRate = tf.train.exponential_decay(learningRate0, globalStep, decaySteps, decayRate, staircase=True)
271
272 with tf.name_scope('optim'):
273 loss = tf.reduce_mean(-tf.reduce_sum(tf.multiply(tfLabels, tf.log(UNet2D.nn)), 3))
274 updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
275 # optimizer = tf.train.MomentumOptimizer(1e-3,0.9)
276 optimizer = tf.train.MomentumOptimizer(learningRate, 0.9)
277 # optimizer = tf.train.GradientDescentOptimizer(learningRate)
278 with tf.control_dependencies(updateOps):
279 optOp = optimizer.minimize(loss, global_step=globalStep)
280
281 with tf.name_scope('eval'):
282 error = []
283 for iClass in range(nClasses):
284 labels0 = tf.reshape(tf.to_int32(tf.slice(tfLabels, [0, 0, 0, iClass], [-1, -1, -1, 1])),
285 [batchSize, imSize, imSize])
286 predict0 = tf.reshape(tf.to_int32(tf.equal(tf.argmax(UNet2D.nn, 3), iClass)),
287 [batchSize, imSize, imSize])
288 correct = tf.multiply(labels0, predict0)
289 nCorrect0 = tf.reduce_sum(correct)
290 nLabels0 = tf.reduce_sum(labels0)
291 error.append(1 - tf.to_float(nCorrect0) / tf.to_float(nLabels0))
292 errors = tf.tuple(error)
293
294 # --------------------------------------------------
295 # inspection
296 # --------------------------------------------------
297
298 with tf.name_scope('scalars'):
299 tf.summary.scalar('avg_cross_entropy', loss)
300 for iClass in range(nClasses):
301 tf.summary.scalar('avg_pixel_error_%d' % iClass, error[iClass])
302 tf.summary.scalar('learning_rate', learningRate)
303 with tf.name_scope('images'):
304 split0 = tf.slice(UNet2D.nn, [0, 0, 0, 0], [-1, -1, -1, 1])
305 split1 = tf.slice(UNet2D.nn, [0, 0, 0, 1], [-1, -1, -1, 1])
306 if nClasses > 2:
307 split2 = tf.slice(UNet2D.nn, [0, 0, 0, 2], [-1, -1, -1, 1])
308 tf.summary.image('pm0', split0)
309 tf.summary.image('pm1', split1)
310 if nClasses > 2:
311 tf.summary.image('pm2', split2)
312 merged = tf.summary.merge_all()
313
314 # --------------------------------------------------
315 # session
316 # --------------------------------------------------
317
318 saver = tf.train.Saver()
319 sess = tf.Session(config=tf.ConfigProto(
320 allow_soft_placement=True)) # config parameter needed to save variables when using GPU
321
322 if os.path.exists(outLogPath):
323 shutil.rmtree(outLogPath)
324 trainWriter = tf.summary.FileWriter(trainWriterPath, sess.graph)
325 validWriter = tf.summary.FileWriter(validWriterPath, sess.graph)
326
327 if restoreVariables:
328 saver.restore(sess, outModelPath)
329 print("Model restored.")
330 else:
331 sess.run(tf.global_variables_initializer())
332
333 # --------------------------------------------------
334 # train
335 # --------------------------------------------------
336
337 batchData = np.zeros((batchSize, imSize, imSize, nChannels))
338 batchLabels = np.zeros((batchSize, imSize, imSize, nClasses))
339 for i in range(nSteps):
340 # train
341
342 perm = np.arange(nTrain)
343 np.random.shuffle(perm)
344
345 for j in range(batchSize):
346 batchData[j, :, :, :] = Train[perm[j], :, :, :]
347 batchLabels[j, :, :, :] = LTrain[perm[j], :, :, :]
348
349 summary, _ = sess.run([merged, optOp],
350 feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 1})
351 trainWriter.add_summary(summary, i)
352
353 # validation
354
355 perm = np.arange(nValid)
356 np.random.shuffle(perm)
357
358 for j in range(batchSize):
359 batchData[j, :, :, :] = Valid[perm[j], :, :, :]
360 batchLabels[j, :, :, :] = LValid[perm[j], :, :, :]
361
362 summary, es = sess.run([merged, errors],
363 feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
364 validWriter.add_summary(summary, i)
365
366 e = np.mean(es)
367 print('step %05d, e: %f' % (i, e))
368
369 if i == 0:
370 if restoreVariables:
371 lowestError = e
372 else:
373 lowestError = np.inf
374
375 if np.mod(i, 100) == 0 and e < lowestError:
376 lowestError = e
377 print("Model saved in file: %s" % saver.save(sess, outModelPath))
378
379 # --------------------------------------------------
380 # test
381 # --------------------------------------------------
382
383 if not os.path.exists(outPMPath):
384 os.makedirs(outPMPath)
385
386 for i in range(nTest):
387 j = np.mod(i, batchSize)
388
389 batchData[j, :, :, :] = Test[i, :, :, :]
390 batchLabels[j, :, :, :] = LTest[i, :, :, :]
391
392 if j == batchSize - 1 or i == nTest - 1:
393
394 output = sess.run(UNet2D.nn,
395 feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
396
397 for k in range(j + 1):
398 pm = output[k, :, :, testPMIndex]
399 gt = batchLabels[k, :, :, testPMIndex]
400 im = np.sqrt(normalize(batchData[k, :, :, 0]))
401 imwrite(np.uint8(255 * np.concatenate((im, np.concatenate((pm, gt), axis=1)), axis=1)),
402 '%s/I%05d.png' % (outPMPath, i - j + k + 1))
403
404 # --------------------------------------------------
405 # save hyper-parameters, clean-up
406 # --------------------------------------------------
407
408 saveData(UNet2D.hp, pathjoin(modelPath, 'hp.data'))
409
410 trainWriter.close()
411 validWriter.close()
412 sess.close()
413
414 def deploy(imPath, nImages, modelPath, pmPath, gpuIndex, pmIndex):
415 os.environ['CUDA_VISIBLE_DEVICES'] = '%d' % gpuIndex
416
417 variablesPath = pathjoin(modelPath, 'model.ckpt')
418 outPMPath = pmPath
419
420 hp = loadData(pathjoin(modelPath, 'hp.data'))
421 UNet2D.setupWithHP(hp)
422
423 batchSize = UNet2D.hp['batchSize']
424 imSize = UNet2D.hp['imSize']
425 nChannels = UNet2D.hp['nChannels']
426 nClasses = UNet2D.hp['nClasses']
427
428 # --------------------------------------------------
429 # data
430 # --------------------------------------------------
431
432 Data = np.zeros((nImages, imSize, imSize, nChannels))
433
434 datasetMean = loadData(pathjoin(modelPath, 'datasetMean.data'))
435 datasetStDev = loadData(pathjoin(modelPath, 'datasetStDev.data'))
436
437 for iSample in range(0, nImages):
438 path = '%s/I%05d_Img.tif' % (imPath, iSample)
439 im = im2double(tifread(path))
440 Data[iSample, :, :, 0] = (im - datasetMean) / datasetStDev
441
442 # --------------------------------------------------
443 # session
444 # --------------------------------------------------
445
446 saver = tf.train.Saver()
447 sess = tf.Session(config=tf.ConfigProto(
448 allow_soft_placement=True)) # config parameter needed to save variables when using GPU
449
450 saver.restore(sess, variablesPath)
451 print("Model restored.")
452
453 # --------------------------------------------------
454 # deploy
455 # --------------------------------------------------
456
457 batchData = np.zeros((batchSize, imSize, imSize, nChannels))
458
459 if not os.path.exists(outPMPath):
460 os.makedirs(outPMPath)
461
462 for i in range(nImages):
463 print(i, nImages)
464
465 j = np.mod(i, batchSize)
466
467 batchData[j, :, :, :] = Data[i, :, :, :]
468
469 if j == batchSize - 1 or i == nImages - 1:
470
471 output = sess.run(UNet2D.nn, feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
472
473 for k in range(j + 1):
474 pm = output[k, :, :, pmIndex]
475 im = np.sqrt(normalize(batchData[k, :, :, 0]))
476 # imwrite(np.uint8(255*np.concatenate((im,pm),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
477 imwrite(np.uint8(255 * im), '%s/I%05d_Im.png' % (outPMPath, i - j + k + 1))
478 imwrite(np.uint8(255 * pm), '%s/I%05d_PM.png' % (outPMPath, i - j + k + 1))
479
480 # --------------------------------------------------
481 # clean-up
482 # --------------------------------------------------
483
484 sess.close()
485
486 def singleImageInferenceSetup(modelPath, gpuIndex,mean,std):
487 variablesPath = pathjoin(modelPath, 'model.ckpt')
488
489 hp = loadData(pathjoin(modelPath, 'hp.data'))
490 UNet2D.setupWithHP(hp)
491 if mean ==-1:
492 UNet2D.DatasetMean = loadData(pathjoin(modelPath, 'datasetMean.data'))
493 else:
494 UNet2D.DatasetMean = mean
495
496 if std == -1:
497 UNet2D.DatasetStDev = loadData(pathjoin(modelPath, 'datasetStDev.data'))
498 else:
499 UNet2D.DatasetStDev = std
500 print(UNet2D.DatasetMean)
501 print(UNet2D.DatasetStDev)
502
503 # --------------------------------------------------
504 # session
505 # --------------------------------------------------
506
507 saver = tf.train.Saver()
508 UNet2D.Session = tf.Session(config=tf.ConfigProto())
509 # allow_soft_placement=True)) # config parameter needed to save variables when using GPU
510
511 saver.restore(UNet2D.Session, variablesPath)
512 print("Model restored.")
513
514 def singleImageInferenceCleanup():
515 UNet2D.Session.close()
516
517 def singleImageInference(image, mode, pmIndex):
518 print('Inference...')
519
520 batchSize = UNet2D.hp['batchSize']
521 imSize = UNet2D.hp['imSize']
522 nChannels = UNet2D.hp['nChannels']
523
524 PI2D.setup(image, imSize, int(imSize / 8), mode)
525 PI2D.createOutput(nChannels)
526
527 batchData = np.zeros((batchSize, imSize, imSize, nChannels))
528 for i in range(PI2D.NumPatches):
529 j = np.mod(i, batchSize)
530 batchData[j, :, :, 0] = (PI2D.getPatch(i) - UNet2D.DatasetMean) / UNet2D.DatasetStDev
531 if j == batchSize - 1 or i == PI2D.NumPatches - 1:
532 output = UNet2D.Session.run(UNet2D.nn, feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
533 for k in range(j + 1):
534 pm = output[k, :, :, pmIndex]
535 PI2D.patchOutput(i - j + k, pm)
536 # PI2D.patchOutput(i-j+k,normalize(imgradmag(PI2D.getPatch(i-j+k),1)))
537
538 return PI2D.getValidOutput()
539
540
541 if __name__ == '__main__':
542 parser = argparse.ArgumentParser()
543 parser.add_argument("imagePath", help="path to the .tif file")
544 parser.add_argument("--model", help="type of model. For example, nuclei vs cytoplasm",default = 'nucleiDAPI')
545 parser.add_argument("--outputPath", help="output path of probability map")
546 parser.add_argument("--channel", help="channel to perform inference on", type=int, default=0)
547 parser.add_argument("--classOrder", help="background, contours, foreground", type = int, nargs = '+', default=-1)
548 parser.add_argument("--mean", help="mean intensity of input image. Use -1 to use model", type=float, default=-1)
549 parser.add_argument("--std", help="mean standard deviation of input image. Use -1 to use model", type=float, default=-1)
550 parser.add_argument("--scalingFactor", help="factor by which to increase/decrease image size by", type=float,
551 default=1)
552 parser.add_argument("--stackOutput", help="save probability maps as separate files", action='store_true')
553 parser.add_argument("--GPU", help="explicitly select GPU", type=int, default = -1)
554 parser.add_argument("--outlier",
555 help="map percentile intensity to max when rescaling intensity values. Max intensity as default",
556 type=float, default=-1)
557 args = parser.parse_args()
558
559 logPath = ''
560 scriptPath = os.path.dirname(os.path.realpath(__file__))
561 modelPath = os.path.join(scriptPath, 'models', args.model)
562 # modelPath = os.path.join(scriptPath, 'models/cytoplasmINcell')
563 # modelPath = os.path.join(scriptPath, 'cytoplasmZeissNikon')
564 pmPath = ''
565
566 if os.system('nvidia-smi') == 0:
567 if args.GPU == -1:
568 print("automatically choosing GPU")
569 GPU = GPUselect.pick_gpu_lowest_memory()
570 else:
571 GPU = args.GPU
572 print('Using GPU ' + str(GPU))
573
574 else:
575 if sys.platform == 'win32': # only 1 gpu on windows
576 if args.GPU==-1:
577 GPU = 0
578 else:
579 GPU = args.GPU
580 print('Using GPU ' + str(GPU))
581 else:
582 GPU=0
583 print('Using CPU')
584 os.environ['CUDA_VISIBLE_DEVICES'] = '%d' % GPU
585 UNet2D.singleImageInferenceSetup(modelPath, GPU,args.mean,args.std)
586 nClass = UNet2D.hp['nClasses']
587 imagePath = args.imagePath
588 dapiChannel = args.channel
589 dsFactor = args.scalingFactor
590 parentFolder = os.path.dirname(os.path.dirname(imagePath))
591 fileName = os.path.basename(imagePath)
592 fileNamePrefix = fileName.split(os.extsep, 1)
593 print(fileName)
594 fileType = fileNamePrefix[1]
595
596 if fileType=='ome.tif' or fileType == 'btf' :
597 I = skio.imread(imagePath, img_num=dapiChannel,plugin='tifffile')
598 elif fileType == 'tif' :
599 I = tifffile.imread(imagePath, key=dapiChannel)
600 elif fileType == 'czi':
601 with czifile.CziFile(imagePath) as czi:
602 image = czi.asarray()
603 I = image[0, 0, dapiChannel, 0, 0, :, :, 0]
604 elif fileType == 'nd2':
605 with ND2Reader(imagePath) as fullStack:
606 I = fullStack[dapiChannel]
607
608 if args.classOrder == -1:
609 args.classOrder = range(nClass)
610
611 rawI = I
612 print(type(I))
613 hsize = int((float(I.shape[0]) * float(dsFactor)))
614 vsize = int((float(I.shape[1]) * float(dsFactor)))
615 I = resize(I, (hsize, vsize))
616 if args.outlier == -1:
617 maxLimit = np.max(I)
618 else:
619 maxLimit = np.percentile(I, args.outlier)
620 I = im2double(sk.rescale_intensity(I, in_range=(np.min(I), maxLimit), out_range=(0, 0.983)))
621 rawI = im2double(rawI) / np.max(im2double(rawI))
622 if not args.outputPath:
623 args.outputPath = parentFolder + '//probability_maps'
624
625 if not os.path.exists(args.outputPath):
626 os.makedirs(args.outputPath)
627
628 append_kwargs = {
629 'bigtiff': True,
630 'metadata': None,
631 'append': True,
632 }
633 save_kwargs = {
634 'bigtiff': True,
635 'metadata': None,
636 'append': False,
637 }
638 if args.stackOutput:
639 slice=0
640 for iClass in args.classOrder[::-1]:
641 PM = np.uint8(255*UNet2D.singleImageInference(I, 'accumulate', iClass)) # backwards in order to align with ilastik...
642 PM = resize(PM, (rawI.shape[0], rawI.shape[1]))
643 if slice==0:
644 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_Probabilities_' + str(dapiChannel) + '.tif', np.uint8(255 * PM),**save_kwargs)
645 else:
646 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_Probabilities_' + str(dapiChannel) + '.tif',np.uint8(255 * PM),**append_kwargs)
647 if slice==1:
648 save_kwargs['append'] = False
649 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_Preview_' + str(dapiChannel) + '.tif', np.uint8(255 * PM), **save_kwargs)
650 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_Preview_' + str(dapiChannel) + '.tif', np.uint8(255 * rawI), **append_kwargs)
651 slice = slice + 1
652
653 else:
654 contours = np.uint8(255*UNet2D.singleImageInference(I, 'accumulate', args.classOrder[1]))
655 hsize = int((float(I.shape[0]) * float(1 / dsFactor)))
656 vsize = int((float(I.shape[1]) * float(1 / dsFactor)))
657 contours = resize(contours, (rawI.shape[0], rawI.shape[1]))
658 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_ContoursPM_' + str(dapiChannel) + '.tif',np.uint8(255 * contours),**save_kwargs)
659 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_ContoursPM_' + str(dapiChannel) + '.tif',np.uint8(255 * rawI), **append_kwargs)
660 del contours
661 nuclei = np.uint8(255*UNet2D.singleImageInference(I, 'accumulate', args.classOrder[2]))
662 nuclei = resize(nuclei, (rawI.shape[0], rawI.shape[1]))
663 skimage.io.imsave(args.outputPath + '//' + fileNamePrefix[0] + '_NucleiPM_' + str(dapiChannel) + '.tif',np.uint8(255 * nuclei), **save_kwargs)
664 del nuclei
665 UNet2D.singleImageInferenceCleanup()
666
667 #aligned output files to reflect ilastik
668 #outputting all classes as single file
669 #handles multiple formats including tif, ome.tif, nd2, czi
670 #selectable models (human nuclei, mouse nuclei, cytoplasm)
671
672 #added legacy function to save output files
673 #append save function to reduce memory footprint
674 #added --classOrder parameter to specify which class is background, contours, and nuclei respectively