Mercurial > repos > peterjc > tmhmm_and_signalp
comparison tools/protein_analysis/promoter2.py @ 7:9b45a8743100 draft
Uploaded v0.1.0, which adds a wrapper for Promoter 2.0 (DNA tool) and enables use of Galaxy's <parallelism> tag for SignalP, TMHMM X Promoter wrappers.
author | peterjc |
---|---|
date | Mon, 30 Jul 2012 10:25:07 -0400 |
parents | |
children | 976a5f2833cd |
comparison
equal
deleted
inserted
replaced
6:a290c6d4e658 | 7:9b45a8743100 |
---|---|
1 #!/usr/bin/env python | |
2 """Wrapper for Promoter 2.0 for use in Galaxy. | |
3 | |
4 This script takes exactly three command line arguments: | |
5 * number of threads | |
6 * an input DNA FASTA filename | |
7 * output tabular filename. | |
8 | |
9 It calls the Promoter 2.0 binary (e.g. .../promoter-2.0/bin/promoter_Linux, | |
10 bypassing the Perl wrapper script 'promoter' which imposes a significant | |
11 performace overhead for no benefit here (we don't need HTML output for | |
12 example). | |
13 | |
14 The main feature is this Python wrapper script parsers the bespoke | |
15 tabular output from Promoter 2.0 and reformats it into a Galaxy friendly | |
16 tab separated table. | |
17 | |
18 Additionally, in order to take advantage of multiple cores the input FASTA | |
19 file is broken into chunks and multiple copies of promoter run at once. | |
20 This can be used in combination with the job-splitting available in Galaxy. | |
21 | |
22 Note that rewriting the FASTA input file allows us to avoid a bug in | |
23 promoter 2 with long descriptions in the FASTA header line (over 200 | |
24 characters) which produces stray fragements of the description in the | |
25 output file, making parsing non-trivial. | |
26 | |
27 TODO - Automatically extract the sequence containing a promoter prediction? | |
28 """ | |
29 import sys | |
30 import os | |
31 import commands | |
32 import tempfile | |
33 from seq_analysis_utils import stop_err, split_fasta, run_jobs | |
34 | |
35 FASTA_CHUNK = 500 | |
36 | |
37 if len(sys.argv) != 4: | |
38 stop_err("Require three arguments, number of threads (int), input DNA FASTA file & output tabular file. " | |
39 "Got %i arguments." % (len(sys.argv)-1)) | |
40 try: | |
41 num_threads = int(sys.argv[1]) | |
42 except: | |
43 num_threads = 1 #Default, e.g. used "$NSLOTS" and environment variable not defined | |
44 if num_threads < 1: | |
45 stop_err("Threads argument %s is not a positive integer" % sys.argv[1]) | |
46 | |
47 fasta_file = os.path.abspath(sys.argv[2]) | |
48 tabular_file = os.path.abspath(sys.argv[3]) | |
49 | |
50 tmp_dir = tempfile.mkdtemp() | |
51 | |
52 def get_path_and_binary(): | |
53 platform = commands.getoutput("uname") #e.g. Linux | |
54 shell_script = commands.getoutput("which promoter") | |
55 if not os.path.isfile(shell_script): | |
56 stop_err("ERROR: Missing promoter executable shell script") | |
57 path = None | |
58 for line in open(shell_script): | |
59 if line.startswith("setenv"): #could then be tab or space! | |
60 parts = line.rstrip().split(None, 2) | |
61 if parts[0] == "setenv" and parts[1] == "PROM": | |
62 path = parts[2] | |
63 if not path: | |
64 stop_err("ERROR: Could not find promoter path (PROM) in %r" % shell_script) | |
65 if not os.path.isdir(path): | |
66 stop_error("ERROR: %r is not a directory" % path) | |
67 bin = "%s/bin/promoter_%s" % (path, platform) | |
68 if not os.path.isfile(bin): | |
69 stop_err("ERROR: Missing promoter binary %r" % bin) | |
70 return path, bin | |
71 | |
72 def make_tabular(raw_handle, out_handle): | |
73 """Parse text output into tabular, return query count.""" | |
74 identifier = None | |
75 queries = 0 | |
76 #out.write("#Identifier\tDescription\tPosition\tScore\tLikelihood\n") | |
77 for line in raw_handle: | |
78 #print repr(line) | |
79 if not line.strip() or line == "Promoter prediction:\n": | |
80 pass | |
81 elif line[0] != " ": | |
82 identifier = line.strip().replace("\t", " ").split(None,1)[0] | |
83 queries += 1 | |
84 elif line == " No promoter predicted\n": | |
85 #End of a record | |
86 identifier = None | |
87 elif line == " Position Score Likelihood\n": | |
88 assert identifier | |
89 else: | |
90 try: | |
91 position, score, likelihood = line.strip().split(None,2) | |
92 except ValueError: | |
93 print "WARNING: Problem with line: %r" % line | |
94 continue | |
95 #stop_err("ERROR: Problem with line: %r" % line) | |
96 if likelihood not in ["ignored", | |
97 "Marginal prediction", | |
98 "Medium likely prediction", | |
99 "Highly likely prediction"]: | |
100 stop_err("ERROR: Problem with line: %r" % line) | |
101 out_handle.write("%s\t%s\t%s\t%s\n" % (identifier, position, score, likelihood)) | |
102 #out.close() | |
103 return queries | |
104 | |
105 working_dir, bin = get_path_and_binary() | |
106 | |
107 if not os.path.isfile(fasta_file): | |
108 stop_err("ERROR: Missing input FASTA file %r" % fasta_file) | |
109 | |
110 #Note that if the input FASTA file contains no sequences, | |
111 #split_fasta returns an empty list (i.e. zero temp files). | |
112 #We deliberately omit the FASTA descriptions to avoid a | |
113 #bug in promoter2 with descriptions over 200 characters. | |
114 fasta_files = split_fasta(fasta_file, os.path.join(tmp_dir, "promoter"), FASTA_CHUNK, keep_descr=False) | |
115 temp_files = [f+".out" for f in fasta_files] | |
116 jobs = ["%s %s > %s" % (bin, fasta, temp) | |
117 for fasta, temp in zip(fasta_files, temp_files)] | |
118 | |
119 def clean_up(file_list): | |
120 for f in file_list: | |
121 if os.path.isfile(f): | |
122 os.remove(f) | |
123 try: | |
124 os.rmdir(tmp_dir) | |
125 except: | |
126 pass | |
127 | |
128 if len(jobs) > 1 and num_threads > 1: | |
129 #A small "info" message for Galaxy to show the user. | |
130 print "Using %i threads for %i tasks" % (min(num_threads, len(jobs)), len(jobs)) | |
131 cur_dir = os.path.abspath(os.curdir) | |
132 os.chdir(working_dir) | |
133 results = run_jobs(jobs, num_threads) | |
134 os.chdir(cur_dir) | |
135 for fasta, temp, cmd in zip(fasta_files, temp_files, jobs): | |
136 error_level = results[cmd] | |
137 if error_level: | |
138 try: | |
139 output = open(temp).readline() | |
140 except IOError: | |
141 output = "" | |
142 clean_up(fasta_files + temp_files) | |
143 stop_err("One or more tasks failed, e.g. %i from %r gave:\n%s" % (error_level, cmd, output), | |
144 error_level) | |
145 | |
146 del results | |
147 del jobs | |
148 | |
149 out_handle = open(tabular_file, "w") | |
150 out_handle.write("#Identifier\tDescription\tPosition\tScore\tLikelihood\n") | |
151 queries = 0 | |
152 for temp in temp_files: | |
153 data_handle = open(temp) | |
154 count = make_tabular(data_handle, out_handle) | |
155 data_handle.close() | |
156 if not count: | |
157 clean_up(fasta_files + temp_files) | |
158 stop_err("No output from promoter2") | |
159 queries += count | |
160 out_handle.close() | |
161 | |
162 clean_up(fasta_files + temp_files) | |
163 print "Results for %i queries" % queries |