Mercurial > repos > peterjc > tmhmm_and_signalp
comparison tools/protein_analysis/rxlr_motifs.py @ 6:a290c6d4e658
Migrated tool version 0.0.9 from old tool shed archive to new tool shed repository
author | peterjc |
---|---|
date | Tue, 07 Jun 2011 18:07:09 -0400 |
parents | |
children | 7de64c8b258d |
comparison
equal
deleted
inserted
replaced
5:0f1c61998b22 | 6:a290c6d4e658 |
---|---|
1 #!/usr/bin/env python | |
2 """Implements assorted RXLR motif methods from the literature | |
3 | |
4 This script takes exactly four command line arguments: | |
5 * Protein FASTA filename | |
6 * Number of threads | |
7 * Model name (Bhattacharjee2006, Win2007, Whisson2007) | |
8 * Output tabular filename | |
9 | |
10 The model names are: | |
11 | |
12 Bhattacharjee2006: Simple regular expression search for RXLR | |
13 with additional requirements for positioning and signal peptide. | |
14 | |
15 Win2007: Simple regular expression search for RXLR, but with | |
16 different positional requirements. | |
17 | |
18 Whisson2007: As Bhattacharjee2006 but with a more complex regular | |
19 expression to look for RXLR-EER domain, and additionally calls HMMER. | |
20 | |
21 See the help text in the accompanying Galaxy tool XML file for more | |
22 details including the full references. | |
23 | |
24 Note: | |
25 | |
26 Bhattacharjee et al. (2006) and Win et al. (2007) used SignalP v2.0, | |
27 which is no longer available. The current release is SignalP v3.0 | |
28 (Mar 5, 2007). We have therefore opted to use the NN Ymax position for | |
29 the predicted cleavage site, as this is expected to be more accurate. | |
30 Also note that the HMM score values have changed from v2.0 to v3.0. | |
31 Whisson et al. (2007) used SignalP v3.0 anyway. | |
32 | |
33 Whisson et al. (2007) used HMMER 2.3.2, and althought their HMM model | |
34 can still be used with hmmsearch from HMMER 3 this this does give | |
35 slightly different results. We expect the hmmsearch from HMMER 2.3.2 | |
36 (the last stable release of HMMER 2) to be present on the path under | |
37 the name hmmsearch2 (allowing it to co-exist with HMMER 3). | |
38 """ | |
39 import os | |
40 import sys | |
41 import re | |
42 import subprocess | |
43 from seq_analysis_utils import stop_err, fasta_iterator | |
44 | |
45 if len(sys.argv) != 5: | |
46 stop_err("Requires four arguments: protein FASTA filename, threads, model, and output filename") | |
47 | |
48 fasta_file, threads, model, tabular_file = sys.argv[1:] | |
49 hmm_output_file = tabular_file + ".hmm.tmp" | |
50 signalp_input_file = tabular_file + ".fasta.tmp" | |
51 signalp_output_file = tabular_file + ".tabular.tmp" | |
52 min_signalp_hmm = 0.9 | |
53 hmmer_search = "hmmsearch2" | |
54 | |
55 if model == "Bhattacharjee2006": | |
56 signalp_trunc = 70 | |
57 re_rxlr = re.compile("R.LR") | |
58 min_sp = 10 | |
59 max_sp = 40 | |
60 max_sp_rxlr = 100 | |
61 min_rxlr_start = 1 | |
62 #Allow signal peptide to be at most 40aa, and want RXLR to be | |
63 #within 100aa, therefore for the prescreen the max start is 140: | |
64 max_rxlr_start = max_sp + max_sp_rxlr | |
65 elif model == "Win2007": | |
66 signalp_trunc = 70 | |
67 re_rxlr = re.compile("R.LR") | |
68 min_sp = 10 | |
69 max_sp = 40 | |
70 min_rxlr_start = 30 | |
71 max_rxlr_start = 60 | |
72 #No explicit limit on separation of signal peptide clevage | |
73 #and RXLR, but shortest signal peptide is 10, and furthest | |
74 #away RXLR is 60, so effectively limit is 50. | |
75 max_sp_rxlr = max_rxlr_start - min_sp + 1 | |
76 elif model == "Whisson2007": | |
77 signalp_trunc = 0 #zero for no truncation | |
78 re_rxlr = re.compile("R.LR.{,40}[ED][ED][KR]") | |
79 min_sp = 10 | |
80 max_sp = 40 | |
81 max_sp_rxlr = 100 | |
82 min_rxlr_start = 1 | |
83 max_rxlr_start = max_sp + max_sp_rxlr | |
84 else: | |
85 stop_err("Did not recognise the model name %r\n" | |
86 "Use Bhattacharjee2006, Win2007, or Whisson2007" % model) | |
87 | |
88 | |
89 def get_hmmer_version(exe, required=None): | |
90 cmd = "%s -h" % exe | |
91 try: | |
92 child = subprocess.Popen([exe, "-h"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
93 except OSError: | |
94 raise ValueError("Could not run %s" % exe) | |
95 stdout, stderr = child.communicate() | |
96 if required: | |
97 return required in stdout | |
98 elif "HMMER 2" in stdout: | |
99 return 2 | |
100 elif "HMMER 3" in stdout: | |
101 return 3 | |
102 else: | |
103 raise ValueError("Could not determine version of %s" % exe) | |
104 | |
105 | |
106 #Run hmmsearch for Whisson et al. (2007) | |
107 if model == "Whisson2007": | |
108 hmm_file = os.path.join(os.path.split(sys.argv[0])[0], | |
109 "whisson_et_al_rxlr_eer_cropped.hmm") | |
110 if not os.path.isfile(hmm_file): | |
111 stop_err("Missing HMM file for Whisson et al. (2007)") | |
112 if not get_hmmer_version(hmmer_search, "HMMER 2.3.2 (Oct 2003)"): | |
113 stop_err("Missing HMMER 2.3.2 (Oct 2003) binary, %s" % hmmer_searcher) | |
114 #I've left the code to handle HMMER 3 in situ, in case | |
115 #we revisit the choice to insist on HMMER 2. | |
116 hmmer3 = (3 == get_hmmer_version(hmmer_search)) | |
117 #Using zero (or 5.6?) for bitscore threshold | |
118 if hmmer3: | |
119 #The HMMER3 table output is easy to parse | |
120 #In HMMER3 can't use both -T and -E | |
121 cmd = "%s -T 0 --tblout %s --noali %s %s > /dev/null" \ | |
122 % (hmmer_search, hmm_output_file, hmm_file, fasta_file) | |
123 else: | |
124 #For HMMER2 we are stuck with parsing stdout | |
125 #Put 1e6 to effectively have no expectation threshold (otherwise | |
126 #HMMER defaults to 10 and the calculated e-value depends on the | |
127 #input FASTA file, and we can loose hits of interest). | |
128 cmd = "%s -T 0 -E 1e6 %s %s > %s" \ | |
129 % (hmmer_search, hmm_file, fasta_file, hmm_output_file) | |
130 return_code = os.system(cmd) | |
131 if return_code: | |
132 stop_err("Error %i from hmmsearch:\n%s" % (return_code, cmd)) | |
133 hmm_hits = set() | |
134 valid_ids = set() | |
135 for title, seq in fasta_iterator(fasta_file): | |
136 name = title.split(None,1)[0] | |
137 if name in valid_ids: | |
138 stop_err("Duplicated identifier %r" % name) | |
139 else: | |
140 valid_ids.add(name) | |
141 handle = open(hmm_output_file) | |
142 for line in handle: | |
143 if not line.strip(): | |
144 #We expect blank lines in the HMMER2 stdout | |
145 continue | |
146 elif line.startswith("#"): | |
147 #Header | |
148 continue | |
149 else: | |
150 name = line.split(None,1)[0] | |
151 #Should be a sequence name in the HMMER3 table output. | |
152 #Could be anything in the HMMER2 stdout. | |
153 if name in valid_ids: | |
154 hmm_hits.add(name) | |
155 elif hmmer3: | |
156 stop_err("Unexpected identifer %r in hmmsearch output" % name) | |
157 handle.close() | |
158 #if hmmer3: | |
159 # print "HMMER3 hits for %i/%i" % (len(hmm_hits), len(valid_ids)) | |
160 #else: | |
161 # print "HMMER2 hits for %i/%i" % (len(hmm_hits), len(valid_ids)) | |
162 #print "%i/%i matched HMM" % (len(hmm_hits), len(valid_ids)) | |
163 os.remove(hmm_output_file) | |
164 del valid_ids | |
165 | |
166 | |
167 #Prepare short list of candidates containing RXLR to pass to SignalP | |
168 assert min_rxlr_start > 0, "Min value one, since zero based counting" | |
169 count = 0 | |
170 total = 0 | |
171 handle = open(signalp_input_file, "w") | |
172 for title, seq in fasta_iterator(fasta_file): | |
173 total += 1 | |
174 name = title.split(None,1)[0] | |
175 match = re_rxlr.search(seq[min_rxlr_start-1:].upper()) | |
176 if match and min_rxlr_start - 1 + match.start() + 1 <= max_rxlr_start: | |
177 #This is a potential RXLR, depending on the SignalP results. | |
178 #Might as well truncate the sequence now, makes the temp file smaller | |
179 if signalp_trunc: | |
180 handle.write(">%s (truncated)\n%s\n" % (name, seq[:signalp_trunc])) | |
181 else: | |
182 #Does it matter we don't line wrap? | |
183 handle.write(">%s\n%s\n" % (name, seq)) | |
184 count += 1 | |
185 handle.close() | |
186 #print "Running SignalP on %i/%i potentials." % (count, total) | |
187 | |
188 | |
189 #Run SignalP (using our wrapper script to get multi-core support etc) | |
190 signalp_script = os.path.join(os.path.split(sys.argv[0])[0], "signalp3.py") | |
191 if not os.path.isfile(signalp_script): | |
192 stop_err("Error - missing signalp3.py script") | |
193 cmd = "python %s euk %i %s %s %s" % (signalp_script, signalp_trunc, threads, signalp_input_file, signalp_output_file) | |
194 return_code = os.system(cmd) | |
195 if return_code: | |
196 stop_err("Error %i from SignalP:\n%s" % (return_code, cmd)) | |
197 #print "SignalP done" | |
198 | |
199 def parse_signalp(filename): | |
200 """Parse SignalP output, yield tuples of ID, HMM_Sprob_score and NN predicted signal peptide length. | |
201 | |
202 For signal peptide length we use NN_Ymax_pos (minus one). | |
203 """ | |
204 handle = open(filename) | |
205 line = handle.readline() | |
206 assert line.startswith("#ID\t"), line | |
207 for line in handle: | |
208 parts = line.rstrip("\t").split("\t") | |
209 assert len(parts)==20, repr(line) | |
210 yield parts[0], float(parts[18]), int(parts[5])-1 | |
211 handle.close() | |
212 | |
213 | |
214 #Parse SignalP results and apply the strict RXLR criteria | |
215 total = 0 | |
216 tally = dict() | |
217 handle = open(tabular_file, "w") | |
218 handle.write("#ID\t%s\n" % model) | |
219 signalp_results = parse_signalp(signalp_output_file) | |
220 for title, seq in fasta_iterator(fasta_file): | |
221 total += 1 | |
222 rxlr = "N" | |
223 name = title.split(None,1)[0] | |
224 match = re_rxlr.search(seq[min_rxlr_start-1:].upper()) | |
225 if match and min_rxlr_start - 1 + match.start() + 1 <= max_rxlr_start: | |
226 del match | |
227 #This was the criteria for calling SignalP, | |
228 #so it will be in the SignalP results. | |
229 sp_id, sp_hmm_score, sp_nn_len = signalp_results.next() | |
230 assert name == sp_id, "%s vs %s" % (name, sp_id) | |
231 if sp_hmm_score >= min_signalp_hmm and min_sp <= sp_nn_len <= max_sp: | |
232 match = re_rxlr.search(seq[sp_nn_len:].upper()) | |
233 if match and match.start() + 1 <= max_sp_rxlr: #1-based counting | |
234 rxlr_start = sp_nn_len + match.start() + 1 | |
235 if min_rxlr_start <= rxlr_start <= max_rxlr_start: | |
236 rxlr = "Y" | |
237 if model == "Whisson2007": | |
238 #Combine the signalp with regular expression heuristic and the HMM | |
239 if name in hmm_hits and rxlr == "N": | |
240 rxlr = "hmm" #HMM only | |
241 elif rxlr == "N": | |
242 rxlr = "neither" #Don't use N (no) | |
243 elif name not in hmm_hits and rxlr == "Y": | |
244 rxlr = "re" #Heuristic only | |
245 #Now have a four way classifier: Y, hmm, re, neither | |
246 #and count is the number of Y results (both HMM and heuristic) | |
247 handle.write("%s\t%s\n" % (name, rxlr)) | |
248 try: | |
249 tally[rxlr] += 1 | |
250 except KeyError: | |
251 tally[rxlr] = 1 | |
252 handle.close() | |
253 assert sum(tally.values()) == total | |
254 | |
255 #Check the iterator is finished | |
256 try: | |
257 signalp_results.next() | |
258 assert False, "Unexpected data in SignalP output" | |
259 except StopIteration: | |
260 pass | |
261 | |
262 #Cleanup | |
263 os.remove(signalp_input_file) | |
264 os.remove(signalp_output_file) | |
265 | |
266 #Short summary to stdout for Galaxy's info display | |
267 print "%s for %i sequences:" % (model, total) | |
268 print ", ".join("%s = %i" % kv for kv in sorted(tally.iteritems())) |