Mercurial > repos > peterjc > tmhmm_and_signalp
view tools/protein_analysis/promoter2.py @ 10:09ff180d1615 draft
Uploaded v0.1.3 with missing HMM file for RXLR tool included.
author | peterjc |
---|---|
date | Wed, 27 Mar 2013 11:21:05 -0400 |
parents | e52220a9ddad |
children | eb6ac44d4b8e |
line wrap: on
line source
#!/usr/bin/env python """Wrapper for Promoter 2.0 for use in Galaxy. This script takes exactly three command line arguments: * number of threads * an input DNA FASTA filename * output tabular filename. It calls the Promoter 2.0 binary (e.g. .../promoter-2.0/bin/promoter_Linux, bypassing the Perl wrapper script 'promoter' which imposes a significant performace overhead for no benefit here (we don't need HTML output for example). The main feature is this Python wrapper script parsers the bespoke tabular output from Promoter 2.0 and reformats it into a Galaxy friendly tab separated table. Additionally, in order to take advantage of multiple cores the input FASTA file is broken into chunks and multiple copies of promoter run at once. This can be used in combination with the job-splitting available in Galaxy. Note that rewriting the FASTA input file allows us to avoid a bug in promoter 2 with long descriptions in the FASTA header line (over 200 characters) which produces stray fragements of the description in the output file, making parsing non-trivial. TODO - Automatically extract the sequence containing a promoter prediction? """ import sys import os import commands import tempfile from seq_analysis_utils import stop_err, split_fasta, run_jobs, thread_count FASTA_CHUNK = 500 if len(sys.argv) != 4: stop_err("Require three arguments, number of threads (int), input DNA FASTA file & output tabular file. " "Got %i arguments." % (len(sys.argv)-1)) num_threads = thread_count(sys.argv[3],default=4) fasta_file = os.path.abspath(sys.argv[2]) tabular_file = os.path.abspath(sys.argv[3]) tmp_dir = tempfile.mkdtemp() def get_path_and_binary(): platform = commands.getoutput("uname") #e.g. Linux shell_script = commands.getoutput("which promoter") if not os.path.isfile(shell_script): stop_err("ERROR: Missing promoter executable shell script") path = None for line in open(shell_script): if line.startswith("setenv"): #could then be tab or space! parts = line.rstrip().split(None, 2) if parts[0] == "setenv" and parts[1] == "PROM": path = parts[2] if not path: stop_err("ERROR: Could not find promoter path (PROM) in %r" % shell_script) if not os.path.isdir(path): stop_error("ERROR: %r is not a directory" % path) bin = "%s/bin/promoter_%s" % (path, platform) if not os.path.isfile(bin): stop_err("ERROR: Missing promoter binary %r" % bin) return path, bin def make_tabular(raw_handle, out_handle): """Parse text output into tabular, return query count.""" identifier = None queries = 0 for line in raw_handle: #print repr(line) if not line.strip() or line == "Promoter prediction:\n": pass elif line[0] != " ": identifier = line.strip().replace("\t", " ").split(None,1)[0] queries += 1 elif line == " No promoter predicted\n": #End of a record identifier = None elif line == " Position Score Likelihood\n": assert identifier else: try: position, score, likelihood = line.strip().split(None,2) except ValueError: print "WARNING: Problem with line: %r" % line continue #stop_err("ERROR: Problem with line: %r" % line) if likelihood not in ["ignored", "Marginal prediction", "Medium likely prediction", "Highly likely prediction"]: stop_err("ERROR: Problem with line: %r" % line) out_handle.write("%s\t%s\t%s\t%s\n" % (identifier, position, score, likelihood)) return queries working_dir, bin = get_path_and_binary() if not os.path.isfile(fasta_file): stop_err("ERROR: Missing input FASTA file %r" % fasta_file) #Note that if the input FASTA file contains no sequences, #split_fasta returns an empty list (i.e. zero temp files). #We deliberately omit the FASTA descriptions to avoid a #bug in promoter2 with descriptions over 200 characters. fasta_files = split_fasta(fasta_file, os.path.join(tmp_dir, "promoter"), FASTA_CHUNK, keep_descr=False) temp_files = [f+".out" for f in fasta_files] jobs = ["%s %s > %s" % (bin, fasta, temp) for fasta, temp in zip(fasta_files, temp_files)] def clean_up(file_list): for f in file_list: if os.path.isfile(f): os.remove(f) try: os.rmdir(tmp_dir) except: pass if len(jobs) > 1 and num_threads > 1: #A small "info" message for Galaxy to show the user. print "Using %i threads for %i tasks" % (min(num_threads, len(jobs)), len(jobs)) cur_dir = os.path.abspath(os.curdir) os.chdir(working_dir) results = run_jobs(jobs, num_threads) os.chdir(cur_dir) for fasta, temp, cmd in zip(fasta_files, temp_files, jobs): error_level = results[cmd] if error_level: try: output = open(temp).readline() except IOError: output = "" clean_up(fasta_files + temp_files) stop_err("One or more tasks failed, e.g. %i from %r gave:\n%s" % (error_level, cmd, output), error_level) del results del jobs out_handle = open(tabular_file, "w") out_handle.write("#Identifier\tPosition\tScore\tLikelihood\n") queries = 0 for temp in temp_files: data_handle = open(temp) count = make_tabular(data_handle, out_handle) data_handle.close() if not count: clean_up(fasta_files + temp_files) stop_err("No output from promoter2") queries += count out_handle.close() clean_up(fasta_files + temp_files) print "Results for %i queries" % queries