Mercurial > repos > peterjc > tmhmm_and_signalp
view tools/protein_analysis/tmhmm2.py @ 2:6901298ac16c
Migrated tool version 0.0.5 from old tool shed archive to new tool shed repository
author | peterjc |
---|---|
date | Tue, 07 Jun 2011 18:04:39 -0400 |
parents | 3ff1dcbb9440 |
children | 9b45a8743100 |
line wrap: on
line source
#!/usr/bin/env python """Wrapper for TMHMM v2.0 for use in Galaxy. This script takes exactly two command line arguments - an input protein FASTA filename and an output tabular filename. It then calls the standalone TMHMM v2.0 program (not the webservice) requesting the short output (one line per protein). The first major feature is cleaning up the tabular output. The short form raw output from TMHMM v2.0 looks like this (six columns tab separated): gi|2781234|pdb|1JLY|B len=304 ExpAA=0.01 First60=0.00 PredHel=0 Topology=o gi|4959044|gb|AAD34209.1|AF069992_1 len=600 ExpAA=0.00 First60=0.00 PredHel=0 Topology=o gi|671626|emb|CAA85685.1| len=473 ExpAA=0.19 First60=0.00 PredHel=0 Topology=o gi|3298468|dbj|BAA31520.1| len=107 ExpAA=59.37 First60=31.17 PredHel=3 Topology=o23-45i52-74o89-106i If there are any additional 'comment' lines starting with the hash (#) character these are ignored by this script. In order to make it easier to use in Galaxy, this wrapper script simplifies this to remove the redundant tags, and instead adds a comment line at the top with the column names: #ID len ExpAA First60 PredHel Topology gi|2781234|pdb|1JLY|B 304 0.01 60 0.00 0 o gi|4959044|gb|AAD34209.1|AF069992_1 600 0.00 0 0.00 0 o gi|671626|emb|CAA85685.1| 473 0.19 0.00 0 o gi|3298468|dbj|BAA31520.1| 107 59.37 31.17 3 o23-45i52-74o89-106i The second major potential feature is taking advantage of multiple cores (since TMHMM v2.0 itself is single threaded) by dividing the input FASTA file into chunks and running multiple copies of TMHMM in parallel. I would normally use Python's multiprocessing library in this situation but it requires at least Python 2.6 and at the time of writing Galaxy still supports Python 2.4. Also tmhmm2 can fail without returning an error code, for example if run on a 64 bit machine with only the 32 bit binaries installed. This script will spot when there is no output from tmhmm2, and raise an error. """ import sys import os from seq_analysis_utils import stop_err, split_fasta, run_jobs FASTA_CHUNK = 500 if len(sys.argv) != 4: stop_err("Require three arguments, number of threads (int), input protein FASTA file & output tabular file") try: num_threads = int(sys.argv[1]) except: num_threads = 0 if num_threads < 1: stop_err("Threads argument %s is not a positive integer" % sys.argv[1]) fasta_file = sys.argv[2] tabular_file = sys.argv[3] def clean_tabular(raw_handle, out_handle): """Clean up tabular TMHMM output, returns output line count.""" count = 0 for line in raw_handle: if not line.strip() or line.startswith("#"): #Ignore any blank lines or comment lines continue parts = line.rstrip("\r\n").split("\t") try: identifier, length, expAA, first60, predhel, topology = parts except: assert len(parts)!=6 stop_err("Bad line: %r" % line) assert length.startswith("len="), line length = length[4:] assert expAA.startswith("ExpAA="), line expAA = expAA[6:] assert first60.startswith("First60="), line first60 = first60[8:] assert predhel.startswith("PredHel="), line predhel = predhel[8:] assert topology.startswith("Topology="), line topology = topology[9:] out_handle.write("%s\t%s\t%s\t%s\t%s\t%s\n" \ % (identifier, length, expAA, first60, predhel, topology)) count += 1 return count #Note that if the input FASTA file contains no sequences, #split_fasta returns an empty list (i.e. zero temp files). fasta_files = split_fasta(fasta_file, tabular_file, FASTA_CHUNK) temp_files = [f+".out" for f in fasta_files] jobs = ["tmhmm -short %s > %s" % (fasta, temp) for fasta, temp in zip(fasta_files, temp_files)] def clean_up(file_list): for f in file_list: if os.path.isfile(f): os.remove(f) if len(jobs) > 1 and num_threads > 1: #A small "info" message for Galaxy to show the user. print "Using %i threads for %i tasks" % (min(num_threads, len(jobs)), len(jobs)) results = run_jobs(jobs, num_threads) for fasta, temp, cmd in zip(fasta_files, temp_files, jobs): error_level = results[cmd] if error_level: try: output = open(temp).readline() except IOError: output = "" clean_up(fasta_files) clean_up(temp_files) stop_err("One or more tasks failed, e.g. %i from %r gave:\n%s" % (error_level, cmd, output), error_level) del results del jobs out_handle = open(tabular_file, "w") out_handle.write("#ID\tlen\tExpAA\tFirst60\tPredHel\tTopology\n") for temp in temp_files: data_handle = open(temp) count = clean_tabular(data_handle, out_handle) data_handle.close() if not count: clean_up(fasta_files) clean_up(temp_files) stop_err("No output from tmhmm2") out_handle.close() clean_up(fasta_files) clean_up(temp_files)