Mercurial > repos > peterjc > tmhmm_and_signalp
view tools/protein_analysis/signalp3.py @ 4:81caef04ce8b
Migrated tool version 0.0.7 from old tool shed archive to new tool shed repository
author | peterjc |
---|---|
date | Tue, 07 Jun 2011 18:05:50 -0400 |
parents | bca9bc7fdaef |
children | 0f1c61998b22 |
line wrap: on
line source
#!/usr/bin/env python """Wrapper for SignalP v3.0 for use in Galaxy. This script takes exactly fives command line arguments: * the organism type (euk, gram+ or gram-) * length to truncate sequences to (integer) * number of threads to use (integer) * an input protein FASTA filename * output tabular filename. It then calls the standalone SignalP v3.0 program (not the webservice) requesting the short output (one line per protein) using both NN and HMM for predictions. First major feature is cleaning up the output. The raw output from SignalP v3.0 looks like this (21 columns space separated): # SignalP-NN euk predictions # SignalP-HMM euk predictions # name Cmax pos ? Ymax pos ? Smax pos ? Smean ? D ? # name ! Cmax pos ? Sprob ? gi|2781234|pdb|1JLY| 0.061 17 N 0.043 17 N 0.199 1 N 0.067 N 0.055 N gi|2781234|pdb|1JLY|B Q 0.000 17 N 0.000 N gi|4959044|gb|AAD342 0.099 191 N 0.012 38 N 0.023 12 N 0.014 N 0.013 N gi|4959044|gb|AAD34209.1|AF069992_1 Q 0.000 0 N 0.000 N gi|671626|emb|CAA856 0.139 381 N 0.020 8 N 0.121 4 N 0.067 N 0.044 N gi|671626|emb|CAA85685.1| Q 0.000 0 N 0.000 N gi|3298468|dbj|BAA31 0.208 24 N 0.184 38 N 0.980 32 Y 0.613 Y 0.398 N gi|3298468|dbj|BAA31520.1| Q 0.066 24 N 0.139 N In order to make it easier to use in Galaxy, this wrapper script reformats this to use tab separators. Also it removes the redundant truncated name column, and assigns unique column names in the header: #ID NN_Cmax_score NN_Cmax_pos NN_Cmax_pred NN_Ymax_score NN_Ymax_pos NN_Ymax_pred NN_Smax_score NN_Smax_pos NN_Smax_pred NN_Smean_score NN_Smean_pred NN_D_score NN_D_pred HMM_bang HMM_Cmax_score HMM_Cmax_pos HMM_Cmax_pred HMM_Sprob_score HMM_Sprob_pred gi|2781234|pdb|1JLY|B 0.061 17 N 0.043 17 N 0.199 1 N 0.067 N 0.055 N Q 0.000 17 N 0.000 N gi|4959044|gb|AAD34209.1|AF069992_1 0.099 191 N 0.012 38 N 0.023 12 N 0.014 N 0.013 N Q 0.000 0 N 0.000 N gi|671626|emb|CAA85685.1| 0.139 381 N 0.020 8 N 0.121 4 N 0.067 N 0.044 N Q 0.000 0 N 0.000 N gi|3298468|dbj|BAA31520.1| 0.208 24 N 0.184 38 N 0.980 32 Y 0.613 Y 0.398 N Q 0.066 24 N 0.139 N The second major feature is overcoming SignalP's built in limit of 4000 sequences by breaking up the input FASTA file into chunks. This also allows us to pre-trim the sequences since SignalP only needs their starts. The third major feature is taking advantage of multiple cores (since SignalP v3.0 itself is single threaded) by using the individual FASTA input files to run multiple copies of TMHMM in parallel. I would normally use Python's multiprocessing library in this situation but it requires at least Python 2.6 and at the time of writing Galaxy still supports Python 2.4. """ import sys import os from seq_analysis_utils import stop_err, split_fasta, run_jobs FASTA_CHUNK = 500 MAX_LEN = 6000 #Found by trial and error if len(sys.argv) != 6: stop_err("Require five arguments, organism, truncate, threads, input protein FASTA file & output tabular file") organism = sys.argv[1] if organism not in ["euk", "gram+", "gram-"]: stop_err("Organism argument %s is not one of euk, gram+ or gram-" % organism) try: truncate = int(sys.argv[2]) except: truncate = 0 if truncate < 0: stop_err("Truncate argument %s is not a positive integer (or zero)" % sys.argv[2]) try: num_threads = int(sys.argv[3]) except: num_threads = 0 if num_threads < 1: stop_err("Threads argument %s is not a positive integer" % sys.argv[3]) fasta_file = sys.argv[4] tabular_file = sys.argv[5] def clean_tabular(raw_handle, out_handle): """Clean up SignalP output to make it tabular.""" for line in raw_handle: if not line or line.startswith("#"): continue parts = line.rstrip("\r\n").split() assert len(parts)==21, repr(line) assert parts[14].startswith(parts[0]) #Remove redundant truncated name column (col 0) #and put full name at start (col 14) parts = parts[14:15] + parts[1:14] + parts[15:] out_handle.write("\t".join(parts) + "\n") fasta_files = split_fasta(fasta_file, tabular_file, n=FASTA_CHUNK, truncate=truncate, max_len=MAX_LEN) temp_files = [f+".out" for f in fasta_files] assert len(fasta_files) == len(temp_files) jobs = ["signalp -short -t %s %s > %s" % (organism, fasta, temp) for (fasta, temp) in zip(fasta_files, temp_files)] assert len(fasta_files) == len(temp_files) == len(jobs) def clean_up(file_list): for f in file_list: if os.path.isfile(f): os.remove(f) if len(jobs) > 1 and num_threads > 1: #A small "info" message for Galaxy to show the user. print "Using %i threads for %i tasks" % (min(num_threads, len(jobs)), len(jobs)) results = run_jobs(jobs, num_threads) assert len(fasta_files) == len(temp_files) == len(jobs) for fasta, temp, cmd in zip(fasta_files, temp_files, jobs): error_level = results[cmd] try: output = open(temp).readline() except IOError: output = "" if error_level or output.lower().startswith("error running"): clean_up(fasta_files) clean_up(temp_files) stop_err("One or more tasks failed, e.g. %i from %r gave:\n%s" % (error_level, cmd, output), error_level) del results out_handle = open(tabular_file, "w") fields = ["ID"] #NN results: for name in ["Cmax", "Ymax", "Smax"]: fields.extend(["NN_%s_score"%name, "NN_%s_pos"%name, "NN_%s_pred"%name]) fields.extend(["NN_Smean_score", "NN_Smean_pred", "NN_D_score", "NN_D_pred"]) #HMM results: fields.extend(["HMM_type", "HMM_Cmax_score", "HMM_Cmax_pos", "HMM_Cmax_pred", "HMM_Sprob_score", "HMM_Sprob_pred"]) out_handle.write("#" + "\t".join(fields) + "\n") for temp in temp_files: data_handle = open(temp) clean_tabular(data_handle, out_handle) data_handle.close() out_handle.close() clean_up(fasta_files) clean_up(temp_files)