Mercurial > repos > petr-novak > dante
view dante_gff_to_dna.py @ 21:65a6fb89495d draft
Uploaded
author | petr-novak |
---|---|
date | Tue, 24 Sep 2019 08:12:01 -0400 |
parents | 1a766f9f623d |
children |
line wrap: on
line source
#!/usr/bin/env python3 import argparse import time import os import textwrap from collections import defaultdict from Bio import SeqIO import configuration from dante_gff_output_filtering import parse_gff_line t_nt_seqs_extraction = time.time() def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected') def check_file_start(gff_file): count_comment = 0 with open(gff_file, "r") as gff_all: line = gff_all.readline() while line.startswith("#"): line = gff_all.readline() count_comment += 1 return count_comment, line def extract_nt_seqs(DNA_SEQ, DOM_GFF, OUT_DIR, CLASS_TBL, EXTENDED): ''' Extract nucleotide sequences of protein domains found by DANTE from input DNA seq. Sequences are saved in fasta files separately for each transposon lineage. Sequences extraction is based on position of Best_Hit alignment reported by LASTAL. The positions can be extended (optional) based on what part of database domain was aligned (Best_Hit_DB_Pos attribute). The strand orientation needs to be considered in extending and extracting the sequence itself ''' [count_comment, first_line] = check_file_start(DOM_GFF) unique_classes = get_unique_classes(CLASS_TBL) files_dict = defaultdict(str) domains_counts_dict = defaultdict(int) allSeqs = SeqIO.to_dict(SeqIO.parse(DNA_SEQ, 'fasta')) with open(DOM_GFF, "r") as domains: for comment_idx in range(count_comment): next(domains) seq_id_stored = first_line.split("\t")[0] allSeqs = SeqIO.to_dict(SeqIO.parse(DNA_SEQ, 'fasta')) seq_nt = allSeqs[seq_id_stored] for line in domains: gff_line = parse_gff_line(line) elem_type = gff_line['attributes']['Final_Classification'] if elem_type == configuration.AMBIGUOUS_TAG: continue # skip ambiguous classification seq_id = gff_line['seqid'] dom_type = gff_line['attributes']['Name'] strand = gff_line['strand'] align_nt_start = int(gff_line['attributes']['Best_Hit'].split(":")[ -1].split("-")[0]) align_nt_end = int(gff_line['attributes']['Best_Hit'].split(":")[ -1].split("-")[1].split("[")[0]) if seq_id != seq_id_stored: seq_id_stored = seq_id seq_nt = allSeqs[seq_id_stored] if EXTENDED: ## which part of database sequence was aligned db_part = gff_line['attributes']['Best_Hit_DB_Pos'] ## db_part = line.split("\t")[8].split(";")[4].split("=")[1] ## datatabse seq length dom_len = int(db_part.split("of")[1]) ## start of alignment on database seq db_start = int(db_part.split("of")[0].split(":")[0]) ## end of alignment on database seq db_end = int(db_part.split("of")[0].split(":")[1]) ## number of nucleotides missing in the beginning dom_nt_prefix = (db_start - 1) * 3 ## number of nucleotides missing in the end dom_nt_suffix = (dom_len - db_end) * 3 if strand == "+": dom_nt_start = align_nt_start - dom_nt_prefix dom_nt_end = align_nt_end + dom_nt_suffix ## reverse extending for - strand else: dom_nt_start = align_nt_start - dom_nt_suffix dom_nt_end = align_nt_end + dom_nt_prefix ## correction for domain after extending having negative starting positon dom_nt_start = max(1, dom_nt_start) else: dom_nt_start = align_nt_start dom_nt_end = align_nt_end full_dom_nt = seq_nt.seq[dom_nt_start - 1:dom_nt_end] ## for - strand take reverse complement of the extracted sequence if strand == "-": full_dom_nt = full_dom_nt.reverse_complement() full_dom_nt = str(full_dom_nt) ## report when domain classified to the last level and no Ns in extracted seq if elem_type in unique_classes and "N" not in full_dom_nt: # lineages reported in separate fasta files if not elem_type in files_dict: files_dict[elem_type] = os.path.join( OUT_DIR, "{}.fasta".format(elem_type.split("|")[ -1].replace("/", "_"))) with open(files_dict[elem_type], "a") as out_nt_seq: out_nt_seq.write(">{}:{}-{}|{}[{}]\n{}\n".format( seq_nt.id, dom_nt_start, dom_nt_end, dom_type, elem_type, textwrap.fill(full_dom_nt, configuration.FASTA_LINE))) domains_counts_dict[elem_type] += 1 return domains_counts_dict def get_unique_classes(CLASS_TBL): ''' Get all the lineages of current domains classification table to check if domains are classified to the last level. Only the sequences of unambiguous and completely classified domains will be extracted. ''' unique_classes = [] with open(CLASS_TBL, "r") as class_tbl: for line in class_tbl: line_class = "|".join(line.rstrip().split("\t")[1:]) if line_class not in unique_classes: unique_classes.append(line_class) return unique_classes def write_domains_stat(domains_counts_dict, OUT_DIR): ''' Report counts of domains for individual lineages ''' total = 0 with open( os.path.join(OUT_DIR, configuration.EXTRACT_DOM_STAT), "w") as dom_stat: for domain, count in domains_counts_dict.items(): dom_stat.write(";{}:{}\n".format(domain, count)) total += count dom_stat.write(";TOTAL:{}\n".format(total)) def main(args): DNA_SEQ = args.input_dna DOM_GFF = args.domains_gff OUT_DIR = args.out_dir CLASS_TBL = args.classification EXTENDED = args.extended if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) domains_counts_dict = extract_nt_seqs(DNA_SEQ, DOM_GFF, OUT_DIR, CLASS_TBL, EXTENDED) write_domains_stat(domains_counts_dict, OUT_DIR) print("ELAPSED_TIME_EXTRACTION = {} s\n".format(time.time() - t_nt_seqs_extraction)) if __name__ == "__main__": # Command line arguments parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_dna', type=str, required=True, help='path to input DNA sequence') parser.add_argument('-d', '--domains_gff', type=str, required=True, help='GFF file of protein domains') parser.add_argument('-cs', '--classification', type=str, required=True, help='protein domains classification file') parser.add_argument('-out', '--out_dir', type=str, default=configuration.EXTRACT_OUT_DIR, help='output directory') parser.add_argument( '-ex', '--extended', type=str2bool, default=True, help= 'extend the domains edges if not the whole datatabase sequence was aligned') args = parser.parse_args() main(args)