Mercurial > repos > petr-novak > dante_ltr
comparison detect_putative_ltr.R @ 12:ff01d4263391 draft
"planemo upload commit 414119ad7c44562d2e956b765e97ca113bc35b2b-dirty"
author | petr-novak |
---|---|
date | Thu, 21 Jul 2022 08:23:15 +0000 |
parents | |
children | 559940c04c44 |
comparison
equal
deleted
inserted
replaced
11:54bd36973253 | 12:ff01d4263391 |
---|---|
1 #!/usr/bin/env Rscript | |
2 initial_options <- commandArgs(trailingOnly = FALSE) | |
3 file_arg_name <- "--file=" | |
4 script_name <- normalizePath(sub(file_arg_name, "", initial_options[grep(file_arg_name, initial_options)])) | |
5 script_dir <- dirname(script_name) | |
6 library(optparse) | |
7 | |
8 parser <- OptionParser() | |
9 option_list <- list( | |
10 make_option(c("-g", "--gff3"), action = "store", type = "character", | |
11 help = "gff3 with dante results", default = NULL), | |
12 make_option(c("-s", "--reference_sequence"), action = "store", type = "character", | |
13 help = "reference sequence as fasta", default = NULL), | |
14 make_option(c("-o", "--output"), action = "store", type = "character", | |
15 help = "output file path and prefix", default = NULL), | |
16 make_option(c("-c", "--cpu"), type = "integer", default = 5, | |
17 help = "Number of cpu to use [default %default]", metavar = "number"), | |
18 make_option(c("-M", "--max_missing_domains"), type = "integer", default = 0, | |
19 help = "Maximum number of missing domains is retrotransposon [default %default]", | |
20 metavar = "number"), | |
21 make_option(c("-L", "--min_relative_length"), type = "numeric", default = 0.6, | |
22 help = "Minimum relative length of protein domain to be considered for retrostransposon detection [default %default]", | |
23 metavar = "number") | |
24 | |
25 ) | |
26 description <- paste(strwrap("")) | |
27 | |
28 epilogue <- "" | |
29 parser <- OptionParser(option_list = option_list, epilogue = epilogue, description = description, | |
30 usage = "usage: %prog COMMAND [OPTIONS]") | |
31 opt <- parse_args(parser, args = commandArgs(TRUE)) | |
32 | |
33 | |
34 # load packages | |
35 suppressPackageStartupMessages({ | |
36 library(rtracklayer) | |
37 library(Biostrings) | |
38 library(BSgenome) | |
39 library(parallel) | |
40 }) | |
41 | |
42 | |
43 # CONFIGURATION | |
44 OFFSET <- 15000 | |
45 # load configuration files and functions: | |
46 lineage_file <- paste0(script_dir, "/databases/lineage_domain_order.csv") | |
47 FDM_file <- paste0(script_dir, "/databases/feature_distances_model.RDS") | |
48 trna_db <- paste0(script_dir, "/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") | |
49 ltr_utils_r <- paste0(script_dir, "/R/ltr_utils.R") | |
50 if (file.exists(lineage_file) & file.exists(trna_db)) { | |
51 lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) | |
52 FDM <- readRDS(FDM_file) | |
53 source(ltr_utils_r) | |
54 }else { | |
55 # this destination work is installed using conda | |
56 lineage_file <- paste0(script_dir, "/../share/dante_ltr/databases/lineage_domain_order.csv") | |
57 FDM_file <- paste0(script_dir, "/../share/dante_ltr/databases/feature_distances_model.RDS") | |
58 trna_db <- paste0(script_dir, "/../share/dante_ltr/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") | |
59 ltr_utils_r <- paste0(script_dir, "/../share/dante_ltr/R/ltr_utils.R") | |
60 if (file.exists(lineage_file) & file.exists((trna_db))) { | |
61 lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) | |
62 source(ltr_utils_r) | |
63 FDM <- readRDS(FDM_file) | |
64 }else( | |
65 stop("configuration files not found") | |
66 ) | |
67 } | |
68 | |
69 | |
70 # for testing | |
71 if (FALSE) { | |
72 g <- rtracklayer::import("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/repeat_annotation/DANTE_on_CEUR_filtered_short_names.gff3") | |
73 s <- readDNAStringSet("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/asm.bp.p.ctg_scaffolds.short_names.fa") | |
74 lineage_info <- read.table("/mnt/raid/users/petr/workspace/ltr_finder_test/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) | |
75 | |
76 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/sample_DANTE_unfiltered.gff3") | |
77 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/DANTE_filtered_part.gff3") | |
78 s <- readDNAStringSet("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/Rbp_part.fa") | |
79 | |
80 # oriza | |
81 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/DANTE_full_oryza.gff3") | |
82 s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/o_sativa_msu7.0.fasta") | |
83 | |
84 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data | |
85 /DANTE_Vfaba_chr5.gff3") | |
86 s <- readDNAStringSet("/mnt/ceph/454_data/Vicia_faba_assembly/assembly/ver_210910 | |
87 /fasta_parts/211010_Vfaba_chr5.fasta") | |
88 | |
89 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data//Cocoa_theobroma_DANTE_filtered.gff3") | |
90 s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/Cocoa_theobroma_chr1.fasta.gz") | |
91 # test on bigger data: | |
92 | |
93 g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/DANTE_unfiltered/1.gff3") | |
94 s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/fasta_parts/1.fasta") | |
95 | |
96 source("R/ltr_utils.R") | |
97 ## feature distance model | |
98 FDM <- readRDS("./databases/feature_distances_model.RDS") | |
99 g <- rtracklayer::import("./test_data/sample_DANTE.gff3") | |
100 s <- readDNAStringSet("./test_data/sample_genome.fasta") | |
101 outfile <- "/mnt/raid/users/petr/workspace/ltr_finder_test/te_with_domains_2.gff3" | |
102 lineage_info <- read.table("databases/lineage_domain_order.csv", sep = "\t", header = | |
103 TRUE, as.is = TRUE) | |
104 trna_db <- "./databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta" | |
105 opt <- list(min_relative_length=0.6, cpu = 8) | |
106 | |
107 } | |
108 | |
109 # MAIN ############################################################# | |
110 | |
111 # load data: | |
112 | |
113 cat("reading gff...") | |
114 g <- rtracklayer::import(opt$gff3, format = 'gff3') # DANTE gff3 | |
115 cat("done\n") | |
116 cat("reading fasta...") | |
117 s <- readDNAStringSet(opt$reference_sequence) # genome assembly | |
118 cat("done\n") | |
119 outfile <- opt$output | |
120 # clean sequence names: | |
121 names(s) <- gsub(" .+", "", names(s)) | |
122 lineage_domain <- lineage_info$Domains.order | |
123 lineage_domain_span <- lineage_info$domain_span | |
124 lineage_ltr_mean_length <- lineage_info$ltr_length | |
125 lineage_offset5prime <- lineage_info$offset5prime | |
126 lineage_offset3prime <- lineage_info$offset3prime | |
127 ln <- gsub("ss/I", "ss_I", gsub("_", "/", gsub("/", "|", lineage_info$Lineage))) | |
128 names(lineage_offset3prime) <- ln | |
129 names(lineage_offset5prime) <- ln | |
130 names(lineage_domain) <- ln | |
131 names(lineage_domain_span) <- ln | |
132 names(lineage_ltr_mean_length) <- ln | |
133 lineage_domains_sequence <- unlist(mapply(function(d,l) { | |
134 paste(strsplit(d, " ")[[1]], ":", l, sep = "") | |
135 }, d = lineage_domain, l = names(lineage_domain))) | |
136 | |
137 # filter g gff3 | |
138 g <- dante_filtering(g, Relative_Length = opt$min_relative_length) # default | |
139 | |
140 seqlengths(g) <- seqlengths(s)[names(seqlengths(g))] | |
141 g <- add_coordinates_of_closest_neighbor(g) | |
142 | |
143 # add info about domain order: | |
144 g$domain_order <- as.numeric(factor(paste(g$Name, g$Final_Classification, sep = ":"), levels = lineage_domains_sequence)) | |
145 # set NA to 0 in g$domain_order ( some domains are not fromm ClassI elements | |
146 g$domain_order[is.na(g$domain_order)] <- 0 | |
147 | |
148 # NOTE - some operation is faster of GrangesList but some on list of data.frames | |
149 # this is primary clusteing | |
150 cls <- get_domain_clusters(g) | |
151 gcl <- split(as.data.frame(g), cls) | |
152 # gcl_as_GRL <- split(g, cls) # delete? | |
153 | |
154 cls_alt <- get_domain_clusters_alt(g, FDM) | |
155 g$Cluster <- as.numeric(factor(cls_alt)) | |
156 | |
157 gcl_alt <- split(as.data.frame(g), cls_alt) | |
158 | |
159 TE_partial <- GRanges(seqnames = sapply(gcl_alt, function(x) x$seqnames[1]), | |
160 Name = sapply(gcl_alt, function(x) x$Final_Classification[1]), | |
161 Final_Classification = sapply(gcl_alt, function(x) x$Final_Classification[1]), | |
162 ID = sapply(gcl_alt, function(x) paste0("TE_partial_", sprintf("%08d", x$Cluster[1]))), | |
163 strand = sapply(gcl_alt, function(x) x$strand[1]), | |
164 Ndomains = sapply(gcl_alt, function(x) nrow(x)), | |
165 type = "transposable_element", | |
166 source = "dante_ltr", | |
167 Rank="D", | |
168 IRanges(start = sapply(gcl_alt, function(x) min(x$start)), | |
169 end = sapply(gcl_alt, function(x) max(x$end))) | |
170 ) | |
171 g$Ndomains_in_cluster <- count_occurences_for_each_element(g$Cluster) | |
172 g$Parent <- paste0("TE_partial_", sprintf("%08d", g$Cluster)) | |
173 g$Rank <- "D" | |
174 | |
175 # keep only partial TE with more than one domain | |
176 TE_partial_with_more_than_one_domain <- TE_partial[TE_partial$Ndomains > 1] | |
177 g_with_more_than_one_domain <- g[as.vector(g$Ndomains_in_cluster > 1)] | |
178 | |
179 # first filtering - remove TEs with low number of domains | |
180 gcl_clean <- clean_domain_clusters(gcl, lineage_domain_span, min_domains = 5 - opt$max_missing_domains) | |
181 | |
182 # glc annotation | |
183 gcl_clean_lineage <- sapply(gcl_clean, function(x) x$Final_Classification[1]) | |
184 gcl_clean_domains <- sapply(gcl_clean, function(x) ifelse(x$strand[1] == "-", | |
185 paste(rev(x$Name), collapse = " "), | |
186 paste(x$Name, collapse = " ")) | |
187 ) | |
188 | |
189 # compare detected domains with domains in lineages from REXdb database | |
190 dd <- mapply(domain_distance, | |
191 d_query = gcl_clean_domains, | |
192 d_reference = lineage_domain[gcl_clean_lineage]) | |
193 | |
194 # get lineages which has correct number and order of domains | |
195 # gcl_clean2 <- gcl_clean[gcl_clean_domains == lineage_domain[gcl_clean_lineage]] | |
196 gcl_clean2 <- gcl_clean[dd <= opt$max_missing_domains] | |
197 | |
198 gcl_clean_with_domains <- gcl_clean2[check_ranges(gcl_clean2, s)] | |
199 gr <- get_ranges(gcl_clean_with_domains) | |
200 | |
201 | |
202 cat('Number of analyzed regions:\n') | |
203 cat('Total number of domain clusters : ', length(gcl), '\n') | |
204 cat('Number of clean clusters : ', length(gcl_clean), '\n') | |
205 cat('Number of clusters with complete domain set : ', length(gcl_clean_with_domains), '\n') | |
206 | |
207 | |
208 te_strand <- sapply(gcl_clean_with_domains, function(x)x$strand[1]) | |
209 te_lineage <- sapply(gcl_clean_with_domains, function(x)x$Final_Classification[1]) | |
210 | |
211 max_left_offset <- ifelse(te_strand == "+", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) | |
212 max_right_offset <- ifelse(te_strand == "-", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) | |
213 | |
214 grL <- get_ranges_left(gcl_clean_with_domains, max_left_offset) | |
215 grR <- get_ranges_right(gcl_clean_with_domains, max_right_offset) | |
216 | |
217 s_left <- getSeq(s, grL) | |
218 s_right <- getSeq(s, grR) | |
219 | |
220 expected_ltr_length <- lineage_ltr_mean_length[sapply(gcl_clean_with_domains, function (x)x$Final_Classification[1])] | |
221 # for statistics | |
222 RT <- g[g$Name == "RT" & substring(g$Final_Classification, 1, 11) == "Class_I|LTR"] | |
223 # cleanup | |
224 #rm(g) | |
225 rm(gcl) | |
226 rm(gcl_clean) | |
227 rm(gcl_clean2) | |
228 | |
229 names(te_strand) <- paste(seqnames(gr), start(gr), end(gr), sep = "_") | |
230 names(s_left) <- paste(seqnames(grL), start(grL), end(grL), sep = "_") | |
231 names(s_right) <- paste(seqnames(grR), start(grR), end(grR), sep = "_") | |
232 cat('Identification of LTRs...') | |
233 TE <- mclapply(seq_along(gr), function(x)get_TE(s_left[x], | |
234 s_right[x], | |
235 gcl_clean_with_domains[[x]], | |
236 gr[x], | |
237 grL[x], | |
238 grR[x], | |
239 expected_ltr_length[x]), | |
240 mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE | |
241 ) | |
242 | |
243 cat('done.\n') | |
244 | |
245 good_TE <- TE[!sapply(TE, is.null)] | |
246 cat('Number of putative TE with identified LTR :', length(good_TE), '\n') | |
247 | |
248 # TODO - extent TE region to cover also TSD | |
249 ID <- paste0('TE_', sprintf("%08d", seq(good_TE))) | |
250 gff3_list <- mcmapply(get_te_gff3, g = good_TE, ID = ID, mc.cores = opt$cpu) | |
251 | |
252 cat('Identification of PBS ...') | |
253 gff3_list2 <- mclapply(gff3_list, FUN = add_pbs, s = s, trna_db = trna_db, mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE) | |
254 cat('done\n') | |
255 gff3_out <- do.call(c, gff3_list2) | |
256 | |
257 # define new source | |
258 src <- as.character(gff3_out$source) | |
259 src[is.na(src)] <- "dante_ltr" | |
260 gff3_out$source <- src | |
261 gff3_out$Rank <- get_te_rank(gff3_out) | |
262 | |
263 # add partial TEs but first remove all ovelaping | |
264 TE_partial_parent_part <- TE_partial_with_more_than_one_domain[TE_partial_with_more_than_one_domain %outside% gff3_out] | |
265 TE_partial_domain_part <- g[g$Parent %in% TE_partial_parent_part$ID] | |
266 | |
267 gff3_out <- sort(c(gff3_out, TE_partial_domain_part, TE_partial_parent_part), by = ~ seqnames * start) | |
268 # modify ID and Parent - add seqname - this will ensure it is unique is done on chunk level | |
269 gff3_out$ID[!is.na(gff3_out$ID)] <- paste0(gff3_out$ID[!is.na(gff3_out$ID)], "_", seqnames(gff3_out)[!is.na(gff3_out$ID)]) | |
270 gff3_out$Parent[!is.na(gff3_out$Parent)] <- paste0(gff3_out$Parent[!is.na(gff3_out$Parent)], "_", seqnames(gff3_out)[!is.na(gff3_out$Parent)]) | |
271 | |
272 export(gff3_out, con = paste0(outfile, ".gff3"), format = 'gff3') | |
273 | |
274 all_tbl <- get_te_statistics(gff3_out, RT) | |
275 all_tbl <- cbind(Classification = rownames(all_tbl), all_tbl) | |
276 write.table(all_tbl, file = paste0(outfile, "_statistics.csv"), sep = "\t", quote = FALSE, row.names = FALSE) | |
277 # export fasta files: | |
278 s_te <- get_te_sequences(gff3_out, s) | |
279 for (i in seq_along(s_te)) { | |
280 outname <- paste0(outfile, "_", names(s_te)[i], ".fasta") | |
281 writeXStringSet(s_te[[i]], filepath = outname) | |
282 } | |
283 |