Mercurial > repos > petr-novak > dante_ltr
diff detect_putative_ltr.R @ 12:ff01d4263391 draft
"planemo upload commit 414119ad7c44562d2e956b765e97ca113bc35b2b-dirty"
author | petr-novak |
---|---|
date | Thu, 21 Jul 2022 08:23:15 +0000 |
parents | |
children | 559940c04c44 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/detect_putative_ltr.R Thu Jul 21 08:23:15 2022 +0000 @@ -0,0 +1,283 @@ +#!/usr/bin/env Rscript +initial_options <- commandArgs(trailingOnly = FALSE) +file_arg_name <- "--file=" +script_name <- normalizePath(sub(file_arg_name, "", initial_options[grep(file_arg_name, initial_options)])) +script_dir <- dirname(script_name) +library(optparse) + +parser <- OptionParser() +option_list <- list( + make_option(c("-g", "--gff3"), action = "store", type = "character", + help = "gff3 with dante results", default = NULL), + make_option(c("-s", "--reference_sequence"), action = "store", type = "character", + help = "reference sequence as fasta", default = NULL), + make_option(c("-o", "--output"), action = "store", type = "character", + help = "output file path and prefix", default = NULL), + make_option(c("-c", "--cpu"), type = "integer", default = 5, + help = "Number of cpu to use [default %default]", metavar = "number"), + make_option(c("-M", "--max_missing_domains"), type = "integer", default = 0, + help = "Maximum number of missing domains is retrotransposon [default %default]", + metavar = "number"), + make_option(c("-L", "--min_relative_length"), type = "numeric", default = 0.6, + help = "Minimum relative length of protein domain to be considered for retrostransposon detection [default %default]", + metavar = "number") + +) +description <- paste(strwrap("")) + +epilogue <- "" +parser <- OptionParser(option_list = option_list, epilogue = epilogue, description = description, + usage = "usage: %prog COMMAND [OPTIONS]") +opt <- parse_args(parser, args = commandArgs(TRUE)) + + +# load packages +suppressPackageStartupMessages({ + library(rtracklayer) + library(Biostrings) + library(BSgenome) + library(parallel) +}) + + +# CONFIGURATION +OFFSET <- 15000 +# load configuration files and functions: +lineage_file <- paste0(script_dir, "/databases/lineage_domain_order.csv") +FDM_file <- paste0(script_dir, "/databases/feature_distances_model.RDS") +trna_db <- paste0(script_dir, "/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") +ltr_utils_r <- paste0(script_dir, "/R/ltr_utils.R") +if (file.exists(lineage_file) & file.exists(trna_db)) { + lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) + FDM <- readRDS(FDM_file) + source(ltr_utils_r) +}else { + # this destination work is installed using conda + lineage_file <- paste0(script_dir, "/../share/dante_ltr/databases/lineage_domain_order.csv") + FDM_file <- paste0(script_dir, "/../share/dante_ltr/databases/feature_distances_model.RDS") + trna_db <- paste0(script_dir, "/../share/dante_ltr/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") + ltr_utils_r <- paste0(script_dir, "/../share/dante_ltr/R/ltr_utils.R") + if (file.exists(lineage_file) & file.exists((trna_db))) { + lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) + source(ltr_utils_r) + FDM <- readRDS(FDM_file) + }else( + stop("configuration files not found") + ) +} + + +# for testing +if (FALSE) { + g <- rtracklayer::import("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/repeat_annotation/DANTE_on_CEUR_filtered_short_names.gff3") + s <- readDNAStringSet("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/asm.bp.p.ctg_scaffolds.short_names.fa") + lineage_info <- read.table("/mnt/raid/users/petr/workspace/ltr_finder_test/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) + + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/sample_DANTE_unfiltered.gff3") + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/DANTE_filtered_part.gff3") + s <- readDNAStringSet("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/Rbp_part.fa") + + # oriza + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/DANTE_full_oryza.gff3") + s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/o_sativa_msu7.0.fasta") + + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data + /DANTE_Vfaba_chr5.gff3") + s <- readDNAStringSet("/mnt/ceph/454_data/Vicia_faba_assembly/assembly/ver_210910 + /fasta_parts/211010_Vfaba_chr5.fasta") + + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data//Cocoa_theobroma_DANTE_filtered.gff3") + s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/Cocoa_theobroma_chr1.fasta.gz") + # test on bigger data: + + g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/DANTE_unfiltered/1.gff3") + s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/fasta_parts/1.fasta") + + source("R/ltr_utils.R") + ## feature distance model + FDM <- readRDS("./databases/feature_distances_model.RDS") + g <- rtracklayer::import("./test_data/sample_DANTE.gff3") + s <- readDNAStringSet("./test_data/sample_genome.fasta") + outfile <- "/mnt/raid/users/petr/workspace/ltr_finder_test/te_with_domains_2.gff3" + lineage_info <- read.table("databases/lineage_domain_order.csv", sep = "\t", header = + TRUE, as.is = TRUE) + trna_db <- "./databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta" + opt <- list(min_relative_length=0.6, cpu = 8) + +} + +# MAIN ############################################################# + +# load data: + +cat("reading gff...") +g <- rtracklayer::import(opt$gff3, format = 'gff3') # DANTE gff3 +cat("done\n") +cat("reading fasta...") +s <- readDNAStringSet(opt$reference_sequence) # genome assembly +cat("done\n") +outfile <- opt$output +# clean sequence names: +names(s) <- gsub(" .+", "", names(s)) +lineage_domain <- lineage_info$Domains.order +lineage_domain_span <- lineage_info$domain_span +lineage_ltr_mean_length <- lineage_info$ltr_length +lineage_offset5prime <- lineage_info$offset5prime +lineage_offset3prime <- lineage_info$offset3prime +ln <- gsub("ss/I", "ss_I", gsub("_", "/", gsub("/", "|", lineage_info$Lineage))) +names(lineage_offset3prime) <- ln +names(lineage_offset5prime) <- ln +names(lineage_domain) <- ln +names(lineage_domain_span) <- ln +names(lineage_ltr_mean_length) <- ln +lineage_domains_sequence <- unlist(mapply(function(d,l) { + paste(strsplit(d, " ")[[1]], ":", l, sep = "") +}, d = lineage_domain, l = names(lineage_domain))) + +# filter g gff3 +g <- dante_filtering(g, Relative_Length = opt$min_relative_length) # default + +seqlengths(g) <- seqlengths(s)[names(seqlengths(g))] +g <- add_coordinates_of_closest_neighbor(g) + +# add info about domain order: +g$domain_order <- as.numeric(factor(paste(g$Name, g$Final_Classification, sep = ":"), levels = lineage_domains_sequence)) +# set NA to 0 in g$domain_order ( some domains are not fromm ClassI elements +g$domain_order[is.na(g$domain_order)] <- 0 + +# NOTE - some operation is faster of GrangesList but some on list of data.frames +# this is primary clusteing +cls <- get_domain_clusters(g) +gcl <- split(as.data.frame(g), cls) +# gcl_as_GRL <- split(g, cls) # delete? + +cls_alt <- get_domain_clusters_alt(g, FDM) +g$Cluster <- as.numeric(factor(cls_alt)) + +gcl_alt <- split(as.data.frame(g), cls_alt) + +TE_partial <- GRanges(seqnames = sapply(gcl_alt, function(x) x$seqnames[1]), + Name = sapply(gcl_alt, function(x) x$Final_Classification[1]), + Final_Classification = sapply(gcl_alt, function(x) x$Final_Classification[1]), + ID = sapply(gcl_alt, function(x) paste0("TE_partial_", sprintf("%08d", x$Cluster[1]))), + strand = sapply(gcl_alt, function(x) x$strand[1]), + Ndomains = sapply(gcl_alt, function(x) nrow(x)), + type = "transposable_element", + source = "dante_ltr", + Rank="D", + IRanges(start = sapply(gcl_alt, function(x) min(x$start)), + end = sapply(gcl_alt, function(x) max(x$end))) +) +g$Ndomains_in_cluster <- count_occurences_for_each_element(g$Cluster) +g$Parent <- paste0("TE_partial_", sprintf("%08d", g$Cluster)) +g$Rank <- "D" + +# keep only partial TE with more than one domain +TE_partial_with_more_than_one_domain <- TE_partial[TE_partial$Ndomains > 1] +g_with_more_than_one_domain <- g[as.vector(g$Ndomains_in_cluster > 1)] + +# first filtering - remove TEs with low number of domains +gcl_clean <- clean_domain_clusters(gcl, lineage_domain_span, min_domains = 5 - opt$max_missing_domains) + +# glc annotation +gcl_clean_lineage <- sapply(gcl_clean, function(x) x$Final_Classification[1]) +gcl_clean_domains <- sapply(gcl_clean, function(x) ifelse(x$strand[1] == "-", + paste(rev(x$Name), collapse = " "), + paste(x$Name, collapse = " ")) +) + +# compare detected domains with domains in lineages from REXdb database +dd <- mapply(domain_distance, + d_query = gcl_clean_domains, + d_reference = lineage_domain[gcl_clean_lineage]) + +# get lineages which has correct number and order of domains +# gcl_clean2 <- gcl_clean[gcl_clean_domains == lineage_domain[gcl_clean_lineage]] +gcl_clean2 <- gcl_clean[dd <= opt$max_missing_domains] + +gcl_clean_with_domains <- gcl_clean2[check_ranges(gcl_clean2, s)] +gr <- get_ranges(gcl_clean_with_domains) + + +cat('Number of analyzed regions:\n') +cat('Total number of domain clusters : ', length(gcl), '\n') +cat('Number of clean clusters : ', length(gcl_clean), '\n') +cat('Number of clusters with complete domain set : ', length(gcl_clean_with_domains), '\n') + + +te_strand <- sapply(gcl_clean_with_domains, function(x)x$strand[1]) +te_lineage <- sapply(gcl_clean_with_domains, function(x)x$Final_Classification[1]) + +max_left_offset <- ifelse(te_strand == "+", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) +max_right_offset <- ifelse(te_strand == "-", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) + +grL <- get_ranges_left(gcl_clean_with_domains, max_left_offset) +grR <- get_ranges_right(gcl_clean_with_domains, max_right_offset) + +s_left <- getSeq(s, grL) +s_right <- getSeq(s, grR) + +expected_ltr_length <- lineage_ltr_mean_length[sapply(gcl_clean_with_domains, function (x)x$Final_Classification[1])] +# for statistics +RT <- g[g$Name == "RT" & substring(g$Final_Classification, 1, 11) == "Class_I|LTR"] +# cleanup +#rm(g) +rm(gcl) +rm(gcl_clean) +rm(gcl_clean2) + +names(te_strand) <- paste(seqnames(gr), start(gr), end(gr), sep = "_") +names(s_left) <- paste(seqnames(grL), start(grL), end(grL), sep = "_") +names(s_right) <- paste(seqnames(grR), start(grR), end(grR), sep = "_") +cat('Identification of LTRs...') +TE <- mclapply(seq_along(gr), function(x)get_TE(s_left[x], + s_right[x], + gcl_clean_with_domains[[x]], + gr[x], + grL[x], + grR[x], + expected_ltr_length[x]), + mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE +) + +cat('done.\n') + +good_TE <- TE[!sapply(TE, is.null)] +cat('Number of putative TE with identified LTR :', length(good_TE), '\n') + +# TODO - extent TE region to cover also TSD +ID <- paste0('TE_', sprintf("%08d", seq(good_TE))) +gff3_list <- mcmapply(get_te_gff3, g = good_TE, ID = ID, mc.cores = opt$cpu) + +cat('Identification of PBS ...') +gff3_list2 <- mclapply(gff3_list, FUN = add_pbs, s = s, trna_db = trna_db, mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE) +cat('done\n') +gff3_out <- do.call(c, gff3_list2) + +# define new source +src <- as.character(gff3_out$source) +src[is.na(src)] <- "dante_ltr" +gff3_out$source <- src +gff3_out$Rank <- get_te_rank(gff3_out) + +# add partial TEs but first remove all ovelaping +TE_partial_parent_part <- TE_partial_with_more_than_one_domain[TE_partial_with_more_than_one_domain %outside% gff3_out] +TE_partial_domain_part <- g[g$Parent %in% TE_partial_parent_part$ID] + +gff3_out <- sort(c(gff3_out, TE_partial_domain_part, TE_partial_parent_part), by = ~ seqnames * start) +# modify ID and Parent - add seqname - this will ensure it is unique is done on chunk level +gff3_out$ID[!is.na(gff3_out$ID)] <- paste0(gff3_out$ID[!is.na(gff3_out$ID)], "_", seqnames(gff3_out)[!is.na(gff3_out$ID)]) +gff3_out$Parent[!is.na(gff3_out$Parent)] <- paste0(gff3_out$Parent[!is.na(gff3_out$Parent)], "_", seqnames(gff3_out)[!is.na(gff3_out$Parent)]) + +export(gff3_out, con = paste0(outfile, ".gff3"), format = 'gff3') + +all_tbl <- get_te_statistics(gff3_out, RT) +all_tbl <- cbind(Classification = rownames(all_tbl), all_tbl) +write.table(all_tbl, file = paste0(outfile, "_statistics.csv"), sep = "\t", quote = FALSE, row.names = FALSE) +# export fasta files: +s_te <- get_te_sequences(gff3_out, s) +for (i in seq_along(s_te)) { + outname <- paste0(outfile, "_", names(s_te)[i], ".fasta") + writeXStringSet(s_te[[i]], filepath = outname) +} +