Mercurial > repos > petr-novak > dante_ltr
view detect_putative_ltr.R @ 13:559940c04c44 draft
"planemo upload commit 139c041f671459192beb10ae45a8b371367c23b6"
author | petr-novak |
---|---|
date | Thu, 11 Aug 2022 07:29:06 +0000 |
parents | ff01d4263391 |
children |
line wrap: on
line source
#!/usr/bin/env Rscript initial_options <- commandArgs(trailingOnly = FALSE) file_arg_name <- "--file=" script_name <- normalizePath(sub(file_arg_name, "", initial_options[grep(file_arg_name, initial_options)])) script_dir <- dirname(script_name) library(optparse) parser <- OptionParser() option_list <- list( make_option(c("-g", "--gff3"), action = "store", type = "character", help = "gff3 with dante results", default = NULL), make_option(c("-s", "--reference_sequence"), action = "store", type = "character", help = "reference sequence as fasta", default = NULL), make_option(c("-o", "--output"), action = "store", type = "character", help = "output file path and prefix", default = NULL), make_option(c("-c", "--cpu"), type = "integer", default = 5, help = "Number of cpu to use [default %default]", metavar = "number"), make_option(c("-M", "--max_missing_domains"), type = "integer", default = 0, help = "Maximum number of missing domains is retrotransposon [default %default]", metavar = "number"), make_option(c("-L", "--min_relative_length"), type = "numeric", default = 0.6, help = "Minimum relative length of protein domain to be considered for retrostransposon detection [default %default]", metavar = "number") ) description <- paste(strwrap("")) epilogue <- "" parser <- OptionParser(option_list = option_list, epilogue = epilogue, description = description, usage = "usage: %prog COMMAND [OPTIONS]") opt <- parse_args(parser, args = commandArgs(TRUE)) # load packages suppressPackageStartupMessages({ library(rtracklayer) library(Biostrings) library(BSgenome) library(parallel) }) # CONFIGURATION OFFSET <- 15000 # load configuration files and functions: lineage_file <- paste0(script_dir, "/databases/lineage_domain_order.csv") FDM_file <- paste0(script_dir, "/databases/feature_distances_model.RDS") trna_db <- paste0(script_dir, "/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") ltr_utils_r <- paste0(script_dir, "/R/ltr_utils.R") if (file.exists(lineage_file) & file.exists(trna_db)) { lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) FDM <- readRDS(FDM_file) source(ltr_utils_r) }else { # this destination work is installed using conda lineage_file <- paste0(script_dir, "/../share/dante_ltr/databases/lineage_domain_order.csv") FDM_file <- paste0(script_dir, "/../share/dante_ltr/databases/feature_distances_model.RDS") trna_db <- paste0(script_dir, "/../share/dante_ltr/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") ltr_utils_r <- paste0(script_dir, "/../share/dante_ltr/R/ltr_utils.R") if (file.exists(lineage_file) & file.exists((trna_db))) { lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) source(ltr_utils_r) FDM <- readRDS(FDM_file) }else( stop("configuration files not found") ) } # for testing if (FALSE) { g <- rtracklayer::import("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/repeat_annotation/DANTE_on_CEUR_filtered_short_names.gff3") s <- readDNAStringSet("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/asm.bp.p.ctg_scaffolds.short_names.fa") lineage_info <- read.table("/mnt/raid/users/petr/workspace/ltr_finder_test/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/sample_DANTE_unfiltered.gff3") g <- rtracklayer::import("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/DANTE_filtered_part.gff3") s <- readDNAStringSet("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data/Rbp_part.fa") # oriza g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/DANTE_full_oryza.gff3") s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/o_sativa_msu7.0.fasta") g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data /DANTE_Vfaba_chr5.gff3") s <- readDNAStringSet("/mnt/ceph/454_data/Vicia_faba_assembly/assembly/ver_210910 /fasta_parts/211010_Vfaba_chr5.fasta") g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data//Cocoa_theobroma_DANTE_filtered.gff3") s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/big_test_data/Cocoa_theobroma_chr1.fasta.gz") # test on bigger data: g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/DANTE_unfiltered/1.gff3") s <- readDNAStringSet("/mnt/raid/users/petr/workspace/dante_ltr/test_data/tmp/fasta_parts/1.fasta") source("R/ltr_utils.R") ## feature distance model FDM <- readRDS("./databases/feature_distances_model.RDS") g <- rtracklayer::import("./test_data/sample_DANTE.gff3") s <- readDNAStringSet("./test_data/sample_genome.fasta") outfile <- "/mnt/raid/users/petr/workspace/ltr_finder_test/te_with_domains_2.gff3" lineage_info <- read.table("databases/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) trna_db <- "./databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta" opt <- list(min_relative_length=0.6, cpu = 8) } # MAIN ############################################################# # load data: cat("reading gff...") g <- rtracklayer::import(opt$gff3, format = 'gff3') # DANTE gff3 cat("done\n") cat("reading fasta...") s <- readDNAStringSet(opt$reference_sequence) # genome assembly cat("done\n") outfile <- opt$output # clean sequence names: names(s) <- gsub(" .+", "", names(s)) lineage_domain <- lineage_info$Domains.order lineage_domain_span <- lineage_info$domain_span lineage_ltr_mean_length <- lineage_info$ltr_length lineage_offset5prime <- lineage_info$offset5prime lineage_offset3prime <- lineage_info$offset3prime ln <- gsub("ss/I", "ss_I", gsub("_", "/", gsub("/", "|", lineage_info$Lineage))) names(lineage_offset3prime) <- ln names(lineage_offset5prime) <- ln names(lineage_domain) <- ln names(lineage_domain_span) <- ln names(lineage_ltr_mean_length) <- ln lineage_domains_sequence <- unlist(mapply(function(d,l) { paste(strsplit(d, " ")[[1]], ":", l, sep = "") }, d = lineage_domain, l = names(lineage_domain))) # this repeat block is run just once # it can breaks in eny point if zero TE is found repeat{ # filter g gff3 g <- dante_filtering(g, Relative_Length = opt$min_relative_length) # default seqlengths(g) <- seqlengths(s)[names(seqlengths(g))] g <- add_coordinates_of_closest_neighbor(g) # add info about domain order: g$domain_order <- as.numeric(factor(paste(g$Name, g$Final_Classification, sep = ":"), levels = lineage_domains_sequence)) # set NA to 0 in g$domain_order ( some domains are not fromm ClassI elements g$domain_order[is.na(g$domain_order)] <- 0 # NOTE - some operation is faster of GrangesList but some on list of data.frames # this is primary clusteing cls <- get_domain_clusters(g) gcl <- split(as.data.frame(g), cls) # gcl_as_GRL <- split(g, cls) # delete? cls_alt <- get_domain_clusters_alt(g, FDM) g$Cluster <- as.numeric(factor(cls_alt)) gcl_alt <- split(as.data.frame(g), cls_alt) TE_partial <- GRanges(seqnames = sapply(gcl_alt, function(x) x$seqnames[1]), Name = sapply(gcl_alt, function(x) x$Final_Classification[1]), Final_Classification = sapply(gcl_alt, function(x) x$Final_Classification[1]), ID = sapply(gcl_alt, function(x) paste0("TE_partial_", sprintf("%08d", x$Cluster[1]))), strand = sapply(gcl_alt, function(x) x$strand[1]), Ndomains = sapply(gcl_alt, function(x) nrow(x)), type = "transposable_element", source = "dante_ltr", Rank="D", IRanges(start = sapply(gcl_alt, function(x) min(x$start)), end = sapply(gcl_alt, function(x) max(x$end))) ) g$Ndomains_in_cluster <- count_occurences_for_each_element(g$Cluster) g$Parent <- paste0("TE_partial_", sprintf("%08d", g$Cluster)) g$Rank <- "D" # for statistics RT <- g[g$Name == "RT" & substring(g$Final_Classification, 1, 11) == "Class_I|LTR"] # keep only partial TE with more than one domain TE_partial_with_more_than_one_domain <- TE_partial[TE_partial$Ndomains > 1] g_with_more_than_one_domain <- g[as.vector(g$Ndomains_in_cluster > 1)] # first filtering - remove TEs with low number of domains gcl_clean <- clean_domain_clusters(gcl, lineage_domain_span, min_domains = 5 - opt$max_missing_domains) # glc annotation gcl_clean_lineage <- sapply(gcl_clean, function(x) x$Final_Classification[1]) gcl_clean_domains <- sapply(gcl_clean, function(x) ifelse(x$strand[1] == "-", paste(rev(x$Name), collapse = " "), paste(x$Name, collapse = " ")) ) # compare detected domains with domains in lineages from REXdb database dd <- mapply(domain_distance, d_query = gcl_clean_domains, d_reference = lineage_domain[gcl_clean_lineage]) # get lineages which has correct number and order of domains # gcl_clean2 <- gcl_clean[gcl_clean_domains == lineage_domain[gcl_clean_lineage]] gcl_clean2 <- gcl_clean[dd <= opt$max_missing_domains] if(length(gcl_clean2) == 0) { cat("No complete TE found\n") good_TE <- list() break } gcl_clean_with_domains <- gcl_clean2[check_ranges(gcl_clean2, s)] gr <- get_ranges(gcl_clean_with_domains) cat('Number of analyzed regions:\n') cat('Total number of domain clusters : ', length(gcl), '\n') cat('Number of clean clusters : ', length(gcl_clean), '\n') cat('Number of clusters with complete domain set : ', length(gcl_clean_with_domains), '\n') te_strand <- sapply(gcl_clean_with_domains, function(x)x$strand[1]) te_lineage <- sapply(gcl_clean_with_domains, function(x)x$Final_Classification[1]) max_left_offset <- ifelse(te_strand == "+", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) max_right_offset <- ifelse(te_strand == "-", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) grL <- get_ranges_left(gcl_clean_with_domains, max_left_offset) grR <- get_ranges_right(gcl_clean_with_domains, max_right_offset) s_left <- getSeq(s, grL) s_right <- getSeq(s, grR) expected_ltr_length <- lineage_ltr_mean_length[sapply(gcl_clean_with_domains, function (x)x$Final_Classification[1])] # cleanup #rm(g) rm(gcl) rm(gcl_clean) rm(gcl_clean2) names(te_strand) <- paste(seqnames(gr), start(gr), end(gr), sep = "_") names(s_left) <- paste(seqnames(grL), start(grL), end(grL), sep = "_") names(s_right) <- paste(seqnames(grR), start(grR), end(grR), sep = "_") cat('Identification of LTRs...') TE <- mclapply(seq_along(gr), function(x)get_TE(s_left[x], s_right[x], gcl_clean_with_domains[[x]], gr[x], grL[x], grR[x], expected_ltr_length[x]), mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE ) cat('done.\n') good_TE <- TE[!sapply(TE, is.null)] cat('Number of putative TE with identified LTR :', length(good_TE), '\n') break } if (length(good_TE)>0){ # handle empty list ID <- paste0('TE_', sprintf("%08d", seq(good_TE))) gff3_list <- mcmapply(get_te_gff3, g = good_TE, ID = ID, mc.cores = opt$cpu) cat('Identification of PBS ...') gff3_list2 <- mclapply(gff3_list, FUN = add_pbs, s = s, trna_db = trna_db, mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE) cat('done\n') gff3_out <- do.call(c, gff3_list2) # define new source src <- as.character(gff3_out$source) src[is.na(src)] <- "dante_ltr" gff3_out$source <- src gff3_out$Rank <- get_te_rank(gff3_out) # add partial TEs but first remove all ovelaping TE_partial_parent_part <- TE_partial_with_more_than_one_domain[TE_partial_with_more_than_one_domain %outside% gff3_out] TE_partial_domain_part <- g[g$Parent %in% TE_partial_parent_part$ID] gff3_out <- sort(c(gff3_out, TE_partial_domain_part, TE_partial_parent_part), by = ~ seqnames * start) }else{ # but this could be a problem if there are no TEs in the sequence if (length(TE_partial_with_more_than_one_domain)>0){ TE_partial_parent_part <- TE_partial_with_more_than_one_domain TE_partial_domain_part <- g[g$Parent %in% TE_partial_parent_part$ID] gff3_out <- sort(c(TE_partial_domain_part, TE_partial_parent_part), by = ~ seqnames * start) }else{ gff3_out <- NULL } } if (is.null(gff3_out)){ cat('No TEs found.\n') }else{ # modify ID and Parent - add seqname - this will ensure it is unique is done on chunk level gff3_out$ID[!is.na(gff3_out$ID)] <- paste0(gff3_out$ID[!is.na(gff3_out$ID)], "_", seqnames(gff3_out)[!is.na(gff3_out$ID)]) gff3_out$Parent[!is.na(gff3_out$Parent)] <- paste0(gff3_out$Parent[!is.na(gff3_out$Parent)], "_", seqnames(gff3_out)[!is.na(gff3_out$Parent)]) export(gff3_out, con = paste0(outfile, ".gff3"), format = 'gff3') all_tbl <- get_te_statistics(gff3_out, RT) all_tbl <- cbind(Classification = rownames(all_tbl), all_tbl) write.table(all_tbl, file = paste0(outfile, "_statistics.csv"), sep = "\t", quote = FALSE, row.names = FALSE) # export fasta files: s_te <- get_te_sequences(gff3_out, s) for (i in seq_along(s_te)) { outname <- paste0(outfile, "_", names(s_te)[i], ".fasta") writeXStringSet(s_te[[i]], filepath = outname) } }