Mercurial > repos > petr-novak > dante_ltr
view extract_putative_ltr.R @ 0:7b0bbe7477c4 draft
"planemo upload commit 92c684dff3b377c8c08654c7f3d46a133385e3e0-dirty"
author | petr-novak |
---|---|
date | Tue, 08 Mar 2022 13:24:33 +0000 |
parents | |
children | f131886ea194 |
line wrap: on
line source
#!/usr/bin/env Rscript initial_options <- commandArgs(trailingOnly = FALSE) file_arg_name <- "--file=" script_name <- normalizePath(sub(file_arg_name, "", initial_options[grep(file_arg_name, initial_options)])) script_dir <- dirname(script_name) library(optparse) parser <- OptionParser() option_list <- list( make_option(c("-g", "--gff3"), action = "store", type = "character", help = "gff3 with dante results", default = NULL), make_option(c("-s", "--reference_sequence"), action = "store", type = "character", help = "reference sequence as fasta", default = NULL), make_option(c("-o", "--output"), action = "store", type = "character", help = "output file path and prefix", default = NULL), make_option(c("-c", "--cpu"), type = "integer", default = 5, help = "Number of cpu to use [default %default]", metavar = "number") ) description <- paste(strwrap("")) epilogue <- "" parser <- OptionParser(option_list = option_list, epilogue = epilogue, description = description, usage = "usage: %prog COMMAND [OPTIONS]") opt <- parse_args(parser, args = commandArgs(TRUE)) # load packages suppressPackageStartupMessages({ library(rtracklayer) library(Biostrings) library(BSgenome) library(parallel) }) # CONFIGURATION OFFSET <- 15000 # load configuration files and functions: lineage_file <- paste0(script_dir, "/databases/lineage_domain_order.csv") trna_db <- paste0(script_dir, "/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") ltr_utils_r <- paste0(script_dir, "/R/ltr_utils.R") if (file.exists(lineage_file) & file.exists(trna_db)) { lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) source(ltr_utils_r) }else { lineage_file <- paste0(script_dir, "/../share/dante_ltr/databases/lineage_domain_order.csv") trna_db <- paste0(script_dir, "/../share/dante_ltr/databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta") ltr_utils_r <- paste0(script_dir, "/../share/dante_ltr/R/ltr_utils.R") if (file.exists(lineage_file) & file.exists((trna_db))) { lineage_info <- read.table(lineage_file, sep = "\t", header = TRUE, as.is = TRUE) source(ltr_utils_r) }else( stop("configuration files not found") ) } # for testing if (FALSE) { g <- rtracklayer::import("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/repeat_annotation/DANTE_on_CEUR_filtered_short_names.gff3") s <- readDNAStringSet("/mnt/raid/454_data/cuscuta/Ceuropea_assembly_v4/0_final_asm_hifiasm+longstitch/asm.bp.p.ctg_scaffolds.short_names.fa") lineage_info <- read.table("/mnt/raid/users/petr/workspace/ltr_finder_test/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) g <- rtracklayer::import("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data /DANTE_filtered_part.gff3") s <- readDNAStringSet("/mnt/raid/users/petr/workspace/ltr_finder_test/test_data /Rbp_part.fa") g <- rtracklayer::import("/mnt/raid/users/petr/workspace/dante_ltr/test_data /DANTE_Vfaba_chr5.gff3") s <- readDNAStringSet("/mnt/ceph/454_data/Vicia_faba_assembly/assembly/ver_210910 /fasta_parts/211010_Vfaba_chr5.fasta") g <- rtracklayer::import("./test_data/sample_DANTE.gff3") s <- readDNAStringSet("./test_data/sample_genome.fasta") outfile <- "/mnt/raid/users/petr/workspace/ltr_finder_test/te_with_domains_2.gff3" lineage_info <- read.table("databases/lineage_domain_order.csv", sep = "\t", header = TRUE, as.is = TRUE) trna_db <- "./databases/tRNAscan-SE_ALL_spliced-no_plus-old-tRNAs_UC_unique-3ends.fasta" } # MAIN ############################################################# # load data: cat("reading gff...") g <- rtracklayer::import(opt$gff3, format = 'gff3') # DANTE gff3 cat("done\n") cat("reading fasta...") s <- readDNAStringSet(opt$reference_sequence) # genome assembly cat("done\n") outfile <- opt$output # clean sequence names: names(s) <- gsub(" .+", "", names(s)) lineage_domain <- lineage_info$Domains.order lineage_offset5prime <- lineage_info$offset5prime lineage_offset3prime <- lineage_info$offset3prime ln <- gsub("ss/I", "ss_I", gsub("_", "/", gsub("/", "|", lineage_info$Lineage))) names(lineage_offset3prime) <- ln names(lineage_offset5prime) <- ln names(lineage_domain) <- ln seqlengths(g) <- seqlengths(s)[names(seqlengths(g))] g <- add_coordinates_of_closest_neighbor(g) gcl <- get_domain_clusters(g) gcl_clean <- clean_domain_clusters(gcl) # glc annotation gcl_clean_lineage <- sapply(gcl_clean, function(x) x$Final_Classification[1]) gcl_clean_domains <- sapply(gcl_clean, function(x) ifelse(x$strand[1] == "-", paste(rev(x$Name), collapse = " "), paste(x$Name, collapse = " ")) ) # get lineages which has correct number and order of domains gcl_clean2 <- gcl_clean[gcl_clean_domains == lineage_domain[gcl_clean_lineage]] gcl_clean_with_domains <- gcl_clean2[check_ranges(gcl_clean2, s)] gr <- get_ranges(gcl_clean_with_domains) cat('Number of analyzed regions:\n') cat('Total number of domain clusters : ', length(gcl), '\n') cat('Number of clean clusters : ', length(gcl_clean), '\n') cat('Number of clusters with complete domain set : ', length(gcl_clean_with_domains), '\n') te_strand <- sapply(gcl_clean_with_domains, function(x)x$strand[1]) te_lineage <- sapply(gcl_clean_with_domains, function(x)x$Final_Classification[1]) max_left_offset <- ifelse(te_strand == "+", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) max_right_offset <- ifelse(te_strand == "-", lineage_offset5prime[te_lineage], lineage_offset3prime[te_lineage]) grL <- get_ranges_left(gcl_clean_with_domains, max_left_offset) grR <- get_ranges_right(gcl_clean_with_domains, max_right_offset) s_left <- getSeq(s, grL) s_right <- getSeq(s, grR) # for statistics RT <- g[g$Name == "RT" & substring(g$Final_Classification, 1, 11) == "Class_I|LTR"] # cleanup rm(g) rm(gcl) rm(gcl_clean) rm(gcl_clean2) names(te_strand) <- paste(seqnames(gr), start(gr), end(gr), sep = "_") names(s_left) <- paste(seqnames(grL), start(grL), end(grL), sep = "_") names(s_right) <- paste(seqnames(grR), start(grR), end(grR), sep = "_") cat('Identification of LTRs...') TE <- mclapply(seq_along(gr), function(x)get_TE(s_left[x], s_right[x], gcl_clean_with_domains[[x]], gr[x], grL[x], grR[x]), mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE ) cat('done.\n') good_TE <- TE[!sapply(TE, is.null)] cat('Number of putative TE with identified LTR :', length(good_TE), '\n') ID <- paste0('TE_', sprintf("%08d", seq(good_TE))) gff3_list <- mcmapply(get_te_gff3, g = good_TE, ID = ID, mc.cores = opt$cpu) cat('Identification of PBS ...') gff3_list2 <- mclapply(gff3_list, FUN = add_pbs, s = s, trna_db = trna_db, mc.set.seed = TRUE, mc.cores = opt$cpu, mc.preschedule = FALSE) cat('done\n') gff3_out <- do.call(c, gff3_list2) # define new source src <- as.character(gff3_out$source) src[is.na(src)] <- "dante_ltr" gff3_out$source <- src # TODO export all files to single directory # TODO export individual groups DL, DLT, DLP DLPT gff3 export(gff3_out, con = paste0(outfile, ".gff3"), format = 'gff3') # summary statistics all_tbl <- get_te_statistics(gff3_out, RT) write.table(all_tbl, file = paste0(outfile, "_statistics.csv"), sep = "\t", quote = FALSE, row.names = FALSE) # export fasta files: s_te <- get_te_sequences(gff3_out, s) for (i in seq_along(s_te)) { outname <- paste0(outfile, "_", names(s_te)[i], ".fasta") writeXStringSet(s_te[[i]], filepath = outname) }