Mercurial > repos > petr-novak > profrep
view dante.py @ 3:e11d411b9662 draft
Deleted selected files
author | petr-novak |
---|---|
date | Wed, 26 Jun 2019 09:07:16 -0400 |
parents | a5f1638b73be |
children |
line wrap: on
line source
#!/usr/bin/env python3 import numpy as np import subprocess import math import time from operator import itemgetter from collections import Counter from itertools import groupby import os import configuration from tempfile import NamedTemporaryFile import sys import warnings import shutil from collections import defaultdict np.set_printoptions(threshold=sys.maxsize) def alignment_scoring(): ''' Create hash table for alignment similarity counting: for every combination of aminoacids in alignment assign score from protein scoring matrix defined in configuration file ''' score_dict = {} with open(configuration.SC_MATRIX) as smatrix: count = 1 for line in smatrix: if not line.startswith("#"): if count == 1: aa_all = line.rstrip().replace(" ", "") else: count_aa = 1 line = list(filter(None, line.rstrip().split(" "))) for aa in aa_all: score_dict["{}{}".format(line[0], aa)] = line[count_aa] count_aa += 1 count += 1 return score_dict def characterize_fasta(QUERY, WIN_DOM): ''' Find the sequences, their lengths, starts, ends and if they exceed the window ''' with open(QUERY) as query: headers = [] fasta_lengths = [] seq_starts = [] seq_ends = [] fasta_chunk_len = 0 count_line = 1 for line in query: line = line.rstrip() if line.startswith(">"): headers.append(line.rstrip()) fasta_lengths.append(fasta_chunk_len) fasta_chunk_len = 0 seq_starts.append(count_line + 1) seq_ends.append(count_line - 1) else: fasta_chunk_len += len(line) count_line += 1 seq_ends.append(count_line) seq_ends = seq_ends[1:] fasta_lengths.append(fasta_chunk_len) fasta_lengths = fasta_lengths[1:] # control if there are correct (unique) names for individual seqs: # LASTAL takes seqs IDs till the first space which can then create problems with ambiguous records if len(headers) > len(set([header.split(" ")[0] for header in headers ])): raise NameError( '''Sequences in multifasta format are not named correctly: seq IDs (before the first space) are the same''') above_win = [idx for idx, value in enumerate(fasta_lengths) if value > WIN_DOM] below_win = [idx for idx, value in enumerate(fasta_lengths) if value <= WIN_DOM] lens_above_win = np.array(fasta_lengths)[above_win] return headers, above_win, below_win, lens_above_win, seq_starts, seq_ends def split_fasta(QUERY, WIN_DOM, step, headers, above_win, below_win, lens_above_win, seq_starts, seq_ends): ''' Create temporary file containing all sequences - the ones that exceed the window are cut with a set overlap (greater than domain size with a reserve) ''' with open(QUERY, "r") as query: count_fasta_divided = 0 count_fasta_not_divided = 0 ntf = NamedTemporaryFile(delete=False) divided = np.array(headers)[above_win] row_length = configuration.FASTA_LINE for line in query: line = line.rstrip() if line.startswith(">") and line in divided: stop_line = seq_ends[above_win[ count_fasta_divided]] - seq_starts[above_win[ count_fasta_divided]] + 1 count_line = 0 whole_seq = [] for line2 in query: whole_seq.append(line2.rstrip()) count_line += 1 if count_line == stop_line: break whole_seq = "".join(whole_seq) ## create list of starting positions for individual parts of a seq with a step given by a window and overlap windows_starts = list(range(0, lens_above_win[ count_fasta_divided], step)) ## create list of ending positions (starting pos + window), the last element is the whole seq length windows_ends = [ x + WIN_DOM if x + WIN_DOM < lens_above_win[count_fasta_divided] else lens_above_win[count_fasta_divided] for x in windows_starts ] count_part = 1 for start_part, end_part in zip(windows_starts, windows_ends): seq_part = whole_seq[start_part:end_part] if count_part == len(windows_starts): ntf.write("{}_DANTE_PART{}_LAST:{}-{}\n{}\n".format( line.split(" ")[0], count_part, start_part + 1, end_part, "\n".join([seq_part[i:i + row_length] for i in range(0, len( seq_part), row_length) ])).encode("utf-8")) else: ntf.write("{}_DANTE_PART{}:{}-{}\n{}\n".format( line.split(" ")[0], count_part, start_part + 1, end_part, "\n".join([seq_part[i:i + row_length] for i in range(0, len( seq_part), row_length) ])).encode("utf-8")) count_part += 1 count_fasta_divided += 1 elif line.startswith(">") and line not in divided: length_seq = seq_ends[below_win[ count_fasta_not_divided]] - seq_starts[below_win[ count_fasta_not_divided]] + 1 ntf.write("{}\n{}".format(line, "".join([query.readline( ) for x in range(length_seq)])).encode("utf-8")) count_fasta_not_divided += 1 query_temp = ntf.name ntf.close() return query_temp def domain_annotation(elements, CLASSIFICATION): ''' Assign protein domain to each hit from protein database ''' domains = [] annotations = [] with open(CLASSIFICATION, "r") as cl_tbl: annotation = {} for line in cl_tbl: record = line.rstrip().split("\t") annotation[record[0]] = record[1:] for i in range(len(elements)): domains.append(elements[i].split("__")[0].split("-")[1]) element_name = "__".join(elements[i].split("__")[1:]) if element_name in annotation.keys(): annotations.append("|".join([elements[i].split("__")[0].split("-")[ 1], ("|".join(annotation[element_name]))])) else: annotations.append("unknown|unknown") return annotations def hits_processing(seq_len, start, end, strand): ''' Gain hits intervals separately for forward and reverse strand ''' reverse_strand_idx = np.where(strand == "-")[0] if not reverse_strand_idx.any(): start_pos_plus = start + 1 end_pos_plus = end regions_plus = list(zip(start_pos_plus, end_pos_plus)) regions_minus = [] else: reverse_strand_idx = reverse_strand_idx[0] start_pos_plus = start[0:reverse_strand_idx] + 1 end_pos_plus = end[0:reverse_strand_idx] start_pos_minus = seq_len[0] - end[reverse_strand_idx:] + 1 end_pos_minus = seq_len[0] - start[reverse_strand_idx:] regions_plus = list(zip(start_pos_plus, end_pos_plus)) regions_minus = list(zip(start_pos_minus, end_pos_minus)) return reverse_strand_idx, regions_plus, regions_minus def overlapping_regions(input_data): ''' Join all overlapping intervals(hits) to clusters (potential domains), get list of start-end positions of individual hits within the interval, list of minimus and maximums as well as the indices in the original sequence_hits structure for the hits belonging to the same clusters ''' if input_data: sorted_idx, sorted_data = zip(*sorted( [(index, data) for index, data in enumerate(input_data)], key=itemgetter(1))) merged_ends = input_data[sorted_idx[0]][1] intervals = [] data = [] output_intervals = [] output_data = [] for i, j in zip(sorted_idx, sorted_data): if input_data[i][0] < merged_ends: merged_ends = max(input_data[i][1], merged_ends) intervals.append(i) data.append(j) else: output_intervals.append(intervals) output_data.append(data) intervals = [] data = [] intervals.append(i) data.append(j) merged_ends = input_data[i][1] output_intervals.append(intervals) output_data.append(data) mins = [x[0][0] for x in output_data] maxs = [max(x, key=itemgetter(1))[1] for x in output_data] else: mins = [] maxs = [] output_intervals = [] output_data = [] return mins, maxs, output_data, output_intervals def annotations_dict(annotations): ''' Hash table where annotations of the hits within a clusters are the keys. Each annotation has serial number assigned which indexes the row in the score_table ''' classes_dict = {classes: idx for idx, classes in enumerate(set(annotations))} return classes_dict def score_table(mins, maxs, data, annotations, scores, CLASSIFICATION): ''' Score table is created based on the annotations occurance in the cluster. Matrix axis y corresponds to individual annotations (indexed according to classes_dict), axis x represents positions of analyzed seq in a given cluster. For every hit within cluster, array of scores on the corresponding position is recorded to the table in case if the score on certain position is so far the highest for the certain position and certain annotation ''' classes_dict = annotations_dict(annotations) score_matrix = np.zeros((len(classes_dict), maxs - mins + 1), dtype=int) count = 0 for item in annotations: saved_scores = score_matrix[classes_dict[item], data[count][0] - mins: data[count][1] - mins + 1] new_scores = [scores[count]] * len(saved_scores) score_matrix[classes_dict[item], data[count][0] - mins:data[count][ 1] - mins + 1] = [max(*pos_score) for pos_score in zip(saved_scores, new_scores)] count += 1 return score_matrix, classes_dict def score_matrix_evaluation(score_matrix, classes_dict, THRESHOLD_SCORE): ''' Score matrix is evaluated based on each position. For every position the list of annotations with a score which reaches certain percentage of the overal best score of the cluster are stored ''' ann_per_reg = [] overal_best_score_reg = max((score_matrix.max(axis=1))) for position in score_matrix.T: ## score threshold calculated as a percentage of the OVERALL best score in the cluster threshold = overal_best_score_reg * THRESHOLD_SCORE / 100 above_th = [idx for idx, score in enumerate(position) if position[idx] >= threshold] ## select unique annotations in one position that are above threshold ann_per_pos = list(set( [key for key, value in classes_dict.items() if value in above_th])) ann_per_reg.append(ann_per_pos) return ann_per_reg def group_annot_regs(ann_per_reg): ''' Get list of domains, annotations, longest common annotations and counts of positions with certain annotation per regions ''' ## tranform list of lists (potential multiple annotations for every position ) to flat list of all annotations all_annotations = [item for sublist in ann_per_reg for item in sublist] unique_annotations = list(set(all_annotations)) ann_pos_counts = [all_annotations.count(x) for x in unique_annotations] unique_annotations = list(set( [item for sublist in ann_per_reg for item in sublist])) domain_type = list(set([annotation.split("|")[0] for annotation in unique_annotations])) classification_list = [annotation.split("|") for annotation in unique_annotations] ann_substring = "|".join(os.path.commonprefix(classification_list)) domain_type = "/".join(domain_type) return domain_type, ann_substring, unique_annotations, ann_pos_counts def best_score(scores, region): ''' From overlapping intervals take the one with the highest score ''' ## if more hits have the same best score take only the first one best_idx = region[np.where(scores == max(scores))[0][0]] best_idx_reg = np.where(scores == max(scores))[0][0] return best_idx, best_idx_reg def create_gff3(domain_type, ann_substring, unique_annotations, ann_pos_counts, dom_start, dom_end, step, best_idx, annotation_best, db_name_best, db_starts_best, db_ends_best, strand, score, seq_id, db_seq, query_seq, domain_size, positions, gff): ''' Record obtained information about domain corresponding to individual cluster to common gff file ''' best_start = positions[best_idx][0] best_end = positions[best_idx][1] best_score = score[best_idx] ## proportion of length of the best hit to the whole region length found by base length_proportion = int((best_end - best_start + 1) / (dom_end - dom_start + 1) * 100) db_seq_best = db_seq[best_idx] query_seq_best = query_seq[best_idx] domain_size_best = domain_size[best_idx] [percent_ident, align_similarity, relat_align_len, relat_interrupt, db_len_proportion ] = filter_params(db_seq_best, query_seq_best, domain_size_best) ann_substring = "|".join(ann_substring.split("|")[1:]) annotation_best = "|".join([db_name_best] + annotation_best.split("|")[1:]) if "DANTE_PART" in seq_id: part = int(seq_id.split("DANTE_PART")[1].split(":")[0].split("_")[0]) dom_start = dom_start + (part - 1) * step dom_end = dom_end + (part - 1) * step best_start = best_start + (part - 1) * step best_end = best_end + (part - 1) * step if ann_substring is '': ann_substring = "NONE(Annotations from different classes)" if len(unique_annotations) > 1: unique_annotations = ",".join(["{}[{}bp]".format( ann, pos) for ann, pos in zip(unique_annotations, ann_pos_counts)]) else: unique_annotations = unique_annotations[0] if __name__ == '__main__': SOURCE = configuration.SOURCE_DANTE else: SOURCE = configuration.SOURCE_PROFREP if "/" in domain_type: gff.write( "{}\t{}\t{}\t{}\t{}\t.\t{}\t{}\tName={};Final_Classification=Ambiguous_domain;Region_Hits_Classifications_={}\n".format( seq_id, SOURCE, configuration.DOMAINS_FEATURE, dom_start, dom_end, strand, configuration.PHASE, domain_type, unique_annotations)) else: gff.write( "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\tName={};Final_Classification={};Region_Hits_Classifications={};Best_Hit={}:{}-{}[{}percent];Best_Hit_DB_Pos={}:{}of{};DB_Seq={};Query_Seq={};Identity={};Similarity={};Relat_Length={};Relat_Interruptions={};Hit_to_DB_Length={}\n".format( seq_id, SOURCE, configuration.DOMAINS_FEATURE, dom_start, dom_end, best_score, strand, configuration.PHASE, domain_type, ann_substring, unique_annotations, annotation_best, best_start, best_end, length_proportion, db_starts_best, db_ends_best, domain_size_best, db_seq_best, query_seq_best, percent_ident, align_similarity, relat_align_len, relat_interrupt, db_len_proportion)) def filter_params(db, query, protein_len): ''' Calculate basic statistics of the quality of the alignment ''' score_dict = alignment_scoring() num_ident = 0 count_interrupt = 0 count_similarity = 0 alignment_len = 0 for i, j in zip(db.upper(), query.upper()): if i == j and i != "X": num_ident += 1 if j == "/" or j == "\\" or j == "*": count_interrupt += 1 if (i.isalpha() or i == "*") and (j.isalpha() or j == "*"): if int(score_dict["{}{}".format(i, j)]) > 0: count_similarity += 1 ## gapless alignment length proportional to the domain protein length relat_align_len = round((len(db) - db.count("-")) / protein_len, 3) ## proportional identical bases (except of X) to al.length align_identity = round(num_ident / len(db), 2) ## proportional count of positive scores from scoring matrix to al. length align_similarity = round(count_similarity / len(db), 2) ## number of interruptions per 100 bp relat_interrupt = round(count_interrupt / math.ceil((len(query) / 100)), 2) ## Proportion of alignment to the original length of protein domain from database (indels included) db_len_proportion = round(len(db) / protein_len, 2) return align_identity, align_similarity, relat_align_len, relat_interrupt, db_len_proportion def line_generator(tab_pipe, maf_pipe, start): ''' Yield individual lines of LASTAL stdout for single sequence ''' if hasattr(line_generator, "dom"): seq_id = line_generator.dom.split("\t")[6] yield line_generator.dom.encode("utf-8") del line_generator.dom line_tab = "" for line_tab in tab_pipe: line_tab = line_tab.decode("utf-8") if not line_tab.startswith('#'): if start: if not ('seq_id' in locals() and seq_id != line_tab.split("\t")[6]): seq_id = line_tab.split("\t")[6] start = False line_maf = [maf_pipe.readline() for line_count in range(4)] db_seq = line_maf[1].decode("utf-8").rstrip().split(" ")[-1] alignment_seq = line_maf[2].decode("utf-8").rstrip().split(" ")[-1] line = "{}\t{}\t{}".format(line_tab, db_seq, alignment_seq) line_id = line.split("\t")[6] if seq_id != line_id: line_generator.dom = line return else: yield line.encode("utf-8") else: maf_pipe.readline() if line_tab == "": raise RuntimeError else: return def get_version(path, LAST_DB): branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD", shell=True, cwd=path).decode('ascii').strip() shorthash = subprocess.check_output("git log --pretty=format:'%h' -n 1 ", shell=True, cwd=path).decode('ascii').strip() revcount = len(subprocess.check_output("git log --oneline", shell=True, cwd=path).decode('ascii').split()) version_string = ( "##-----------------------------------------------\n" "##PIPELINE VERSION : " "{branch}-rv-{revcount}({shorthash})\n" "##PROTEIN DATABASE VERSION : {PD}\n" "##-----------------------------------------------\n").format( branch=branch, shorthash=shorthash, revcount=revcount, PD=os.path.basename(LAST_DB)) return version_string def write_info(dom_gff_tmp, version_string): dom_gff_tmp.write("{}\n".format(configuration.HEADER_GFF)) dom_gff_tmp.write(version_string) def domain_search(QUERY, LAST_DB, CLASSIFICATION, OUTPUT_DOMAIN, THRESHOLD_SCORE, WIN_DOM, OVERLAP_DOM): ''' Search for protein domains using our protein database and external tool LAST, stdout is parsed in real time and hits for a single sequence undergo further processing - tabular format(TAB) to get info about position, score, orientation - MAF format to gain alignment and original sequence ''' step = WIN_DOM - OVERLAP_DOM [headers, above_win, below_win, lens_above_win, seq_starts, seq_ends ] = characterize_fasta(QUERY, WIN_DOM) query_temp = split_fasta(QUERY, WIN_DOM, step, headers, above_win, below_win, lens_above_win, seq_starts, seq_ends) ## TAB output contains all the alignment scores, positions, strands... tab = subprocess.Popen( "lastal -F15 {} {} -L 10 -m 70 -p BL80 -f TAB".format(LAST_DB, query_temp), stdout=subprocess.PIPE, shell=True) ## MAF output contains alignment sequences maf = subprocess.Popen( "lastal -F15 {} {} -L 10 -m 70 -p BL80 -f MAF".format(LAST_DB, query_temp), stdout=subprocess.PIPE, shell=True) tab_pipe = tab.stdout maf_pipe = maf.stdout maf_pipe.readline() seq_ids = [] dom_tmp = NamedTemporaryFile(delete=False) with open(dom_tmp.name, "w") as dom_gff_tmp: path = os.path.dirname(os.path.realpath(__file__)) version_string = get_version(path, LAST_DB) write_info(dom_gff_tmp, version_string) gff = open(dom_tmp.name, "a") start = True while True: try: with warnings.catch_warnings(): warnings.simplefilter("ignore") sequence_hits = np.genfromtxt( line_generator(tab_pipe, maf_pipe, start), names= "score, name_db, start_db, al_size_db, strand_db, seq_size_db, name_q, start_q, al_size_q, strand_q, seq_size_q, block1, block2, block3, db_seq, q_seq", usecols= "score, name_q, start_q, al_size_q, strand_q, seq_size_q, name_db, db_seq, q_seq, seq_size_db, start_db, al_size_db", dtype=None, comments=None) except RuntimeError: break ## if there are no domains found if sequence_hits.size is 0: gff.write("##NO DOMAINS") return [], [], [], [] ############# PARSING LASTAL OUTPUT ############################ sequence_hits = np.atleast_1d(sequence_hits) score = sequence_hits['score'].astype("int") seq_id = sequence_hits['name_q'][0].astype("str") start_hit = sequence_hits['start_q'].astype("int") end_hit = start_hit + sequence_hits['al_size_q'].astype("int") strand = sequence_hits['strand_q'].astype("str") seq_len = sequence_hits['seq_size_q'].astype("int") domain_db = sequence_hits['name_db'].astype("str") db_seq = sequence_hits['db_seq'].astype("str") query_seq = sequence_hits['q_seq'].astype("str") domain_size = sequence_hits['seq_size_db'].astype("int") db_start = sequence_hits['start_db'].astype("int") + 1 db_end = sequence_hits['start_db'].astype("int") + sequence_hits[ 'al_size_db'].astype("int") [reverse_strand_idx, positions_plus, positions_minus ] = hits_processing(seq_len, start_hit, end_hit, strand) strand_gff = "+" [mins_plus, maxs_plus, data_plus, indices_plus ] = overlapping_regions(positions_plus) [mins_minus, maxs_minus, data_minus, indices_minus ] = overlapping_regions(positions_minus) positions = positions_plus + positions_minus indices_overal = indices_plus + [x + reverse_strand_idx for x in indices_minus] mins = mins_plus + mins_minus maxs = maxs_plus + maxs_minus data = data_plus + data_minus ## process every region (cluster) of overlapping hits sequentially count_region = 0 for region in indices_overal: db_names = domain_db[np.array(region)] db_starts = db_start[np.array(region)] db_ends = db_end[np.array(region)] scores = score[np.array(region)] annotations = domain_annotation(db_names, CLASSIFICATION) [score_matrix, classes_dict] = score_table( mins[count_region], maxs[count_region], data[count_region], annotations, scores, CLASSIFICATION) ann_per_reg = score_matrix_evaluation(score_matrix, classes_dict, THRESHOLD_SCORE) [domain_type, ann_substring, unique_annotations, ann_pos_counts ] = group_annot_regs(ann_per_reg) [best_idx, best_idx_reg] = best_score(scores, region) annotation_best = annotations[best_idx_reg] db_name_best = db_names[best_idx_reg] db_starts_best = db_starts[best_idx_reg] db_ends_best = db_ends[best_idx_reg] if count_region == len(indices_plus): strand_gff = "-" create_gff3(domain_type, ann_substring, unique_annotations, ann_pos_counts, mins[count_region], maxs[count_region], step, best_idx, annotation_best, db_name_best, db_starts_best, db_ends_best, strand_gff, score, seq_id, db_seq, query_seq, domain_size, positions, gff) count_region += 1 seq_ids.append(seq_id) os.unlink(query_temp) gff.close() dom_tmp.close() ## if any sequence from input data was split into windows, merge and adjust the data from individual windows if any("DANTE_PART" in x for x in seq_ids): adjust_gff(OUTPUT_DOMAIN, dom_tmp.name, WIN_DOM, OVERLAP_DOM, step) ## otherwise use the temporary output as the final domains gff else: shutil.copy2(dom_tmp.name, OUTPUT_DOMAIN) os.unlink(dom_tmp.name) def adjust_gff(OUTPUT_DOMAIN, gff, WIN_DOM, OVERLAP_DOM, step): ''' Original gff file is adjusted in case of containing cut parts - for consecutive sequences overlap is divided to half with first half of records(domains) belonging to the first sequence and second to the following one. Duplicate domains going through the middle of the overlap are removed. First and the last part (marked as LAST) of a certain sequence are handled separately as the are overlapped from one side only ''' seq_id_all = [] class_dict = defaultdict(int) seen = set() with open(OUTPUT_DOMAIN, "w") as adjusted_gff: with open(gff, "r") as primary_gff: start = True for line in primary_gff: if line.startswith("#"): adjusted_gff.write(line) else: split_line = line.split("\t") classification = split_line[-1].split(";")[1].split("=")[1] if start: seq_id_all.append(split_line[0].split("_DANTE_PART")[ 0]) start = False seq_id = split_line[0].split("_DANTE_PART")[0] if "DANTE_PART" in line: line_without_id = "\t".join(split_line[1:]) part = int(split_line[0].split("_DANTE_PART")[1].split( ":")[0].split("_")[0]) if seq_id != seq_id_all[-1]: seq_id_all.append(seq_id) ## first part of the sequence if part == 1: cut_end = WIN_DOM - OVERLAP_DOM / 2 if int(split_line[3]) <= cut_end <= int(split_line[ 4]): if line_without_id not in seen: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 seen.add(line_without_id) elif int(split_line[4]) < cut_end: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 ## last part of the sequence elif "LAST" in split_line[0]: cut_start = OVERLAP_DOM / 2 + (part - 1) * step if int(split_line[3]) <= cut_start <= int( split_line[4]): if line_without_id not in seen: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 seen.add(line_without_id) elif int(split_line[3]) > cut_start: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 ## middle part of the sequence else: cut_start = OVERLAP_DOM / 2 + (part - 1) * step cut_end = WIN_DOM - OVERLAP_DOM / 2 + (part - 1) * step if int(split_line[3]) <= cut_start <= int( split_line[4]) or int(split_line[ 3]) <= cut_end <= int(split_line[4]): if line_without_id not in seen: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 seen.add(line_without_id) elif int(split_line[3]) > cut_start and int( split_line[4]) < cut_end: adjusted_gff.write("{}\t{}".format( seq_id, line_without_id)) class_dict[classification] += 1 ## not divived else: if seq_id != seq_id_all[-1]: seq_id_all.append(seq_id) adjusted_gff.write(line) class_dict[classification] += 1 def main(args): t = time.time() QUERY = args.query LAST_DB = args.protein_database CLASSIFICATION = args.classification OUTPUT_DOMAIN = args.domain_gff NEW_LDB = args.new_ldb OUTPUT_DIR = args.output_dir THRESHOLD_SCORE = args.threshold_score WIN_DOM = args.win_dom OVERLAP_DOM = args.overlap_dom if OUTPUT_DOMAIN is None: OUTPUT_DOMAIN = configuration.DOMAINS_GFF if os.path.isdir(LAST_DB): LAST_DB = os.path.join(LAST_DB, configuration.LAST_DB_FILE) if os.path.isdir(CLASSIFICATION): CLASSIFICATION = os.path.join(CLASSIFICATION, configuration.CLASS_FILE) if NEW_LDB: subprocess.call("lastdb -p -cR01 {} {}".format(LAST_DB, LAST_DB), shell=True) if OUTPUT_DIR and not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) if not os.path.isabs(OUTPUT_DOMAIN): if OUTPUT_DIR is None: OUTPUT_DIR = configuration.TMP if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) OUTPUT_DOMAIN = os.path.join(OUTPUT_DIR, os.path.basename(OUTPUT_DOMAIN)) domain_search(QUERY, LAST_DB, CLASSIFICATION, OUTPUT_DOMAIN, THRESHOLD_SCORE, WIN_DOM, OVERLAP_DOM) print("ELAPSED_TIME_DOMAINS = {} s".format(time.time() - t)) if __name__ == "__main__": import argparse from argparse import RawDescriptionHelpFormatter class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): pass parser = argparse.ArgumentParser( description= '''Script performs similarity search on given DNA sequence(s) in (multi)fasta against our protein domains database of all Transposable element for certain group of organisms (Viridiplantae or Metazoans). Domains are subsequently annotated and classified - in case certain domain has multiple annotations assigned, classifation is derived from the common classification level of all of them. Domains search is accomplished engaging LASTAL alignment tool. DEPENDENCIES: - python 3.4 or higher with packages: -numpy - lastal 744 or higher [http://last.cbrc.jp/] - configuration.py module EXAMPLE OF USAGE: ./protein_domains_pd.py -q PATH_TO_INPUT_SEQ -pdb PATH_TO_PROTEIN_DB -cs PATH_TO_CLASSIFICATION_FILE When running for the first time with a new database use -nld option allowing lastal to create indexed database files: -nld True ''', epilog="""""", formatter_class=CustomFormatter) requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument( "-q", "--query", type=str, required=True, help= 'input DNA sequence to search for protein domains in a fasta format. Multifasta format allowed.') requiredNamed.add_argument('-pdb', "--protein_database", type=str, required=True, help='protein domains database file') requiredNamed.add_argument('-cs', '--classification', type=str, required=True, help='protein domains classification file') parser.add_argument("-oug", "--domain_gff", type=str, help="output domains gff format") parser.add_argument( "-nld", "--new_ldb", type=str, default=False, help= "create indexed database files for lastal in case of working with new protein db") parser.add_argument( "-dir", "--output_dir", type=str, help="specify if you want to change the output directory") parser.add_argument( "-thsc", "--threshold_score", type=int, default=80, help= "percentage of the best score in the cluster to be tolerated when assigning annotations per base") parser.add_argument( "-wd", "--win_dom", type=int, default=10000000, help="window to process large input sequences sequentially") parser.add_argument("-od", "--overlap_dom", type=int, default=10000, help="overlap of sequences in two consecutive windows") args = parser.parse_args() main(args)