Mercurial > repos > pieterlukasse > prims_metabolomics
comparison Rscripts/ridb-regression.R @ 0:9d5f4f5f764b
Initial commit to toolshed
author | pieter.lukasse@wur.nl |
---|---|
date | Thu, 16 Jan 2014 13:10:00 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9d5f4f5f764b |
---|---|
1 ## | |
2 # | |
3 # Performs regression analysis using either 3rd degree polynomial- or linear-method | |
4 # | |
5 ## | |
6 | |
7 # Commandline arguments | |
8 args <- commandArgs(TRUE) | |
9 if (length(args) < 7) | |
10 stop(cat("Missing arguments, usage:\n\tRscript ridb-regression.R RI-database ", | |
11 "ouput_file logfile min_residuals range_mod pvalue rsquared method ", | |
12 "plot(yes/no) plot_archive")) | |
13 | |
14 ridb <- args[1] | |
15 out_file <- args[2] | |
16 logfile <- args[3] | |
17 min_residuals <- as.integer(args[4]) | |
18 range_mod <- as.integer(args[5]) | |
19 pvalue <- as.double(args[6]) | |
20 rsquared <- as.double(args[7]) | |
21 method <- args[8] | |
22 plot <- tolower(args[9]) | |
23 if (plot == 'true') | |
24 plot_archive = args[10] | |
25 | |
26 # Do not show warnings etc. | |
27 sink(file='/dev/null') | |
28 | |
29 progress <- c() | |
30 logger <- function(logdata) { | |
31 ## Logs progress, adds a timestamp for each event | |
32 #cat(paste(Sys.time(), "\t", logdata, "\n", sep="")) ## DEBUG | |
33 progress <<- c(progress, paste(Sys.time(), "\t", logdata, sep="")) | |
34 } | |
35 | |
36 logger("Reading Retention Index Database..") | |
37 | |
38 # Read Retention Index Database | |
39 ridb <- read.csv(ridb, header=TRUE, sep="\t") | |
40 logger(paste("\t", nrow(ridb), "records read..")) | |
41 # Get a unique list | |
42 gc_columns <- unique(as.vector(as.matrix(ridb['Column.name'])[,1])) | |
43 cas_numbers <- unique(as.vector(as.matrix(ridb['CAS'])[,1])) | |
44 | |
45 add_poly_fit <- function(fit, gc1_index, gc2_index, range) { | |
46 pval = anova.lm(fit)$Pr | |
47 r.squared = summary(fit)$r.squared | |
48 | |
49 data = rep(NA, 11) | |
50 # Append results to matrix | |
51 data[1] = gc_columns[gc1_index] # Column 1 | |
52 data[2] = gc_columns[gc2_index] # Column 2 | |
53 data[3] = coefficients(fit)[1] # The 4 coefficients | |
54 data[4] = coefficients(fit)[2] | |
55 data[5] = coefficients(fit)[3] | |
56 data[6] = coefficients(fit)[4] | |
57 data[7] = range[1] # Left limit | |
58 data[8] = range[2] # Right limit | |
59 data[9] = length(fit$residuals) # Number of datapoints analysed | |
60 data[10] = pval[1] # p-value for resulting fitting | |
61 data[11] = r.squared # R-squared | |
62 return(data) | |
63 } | |
64 | |
65 | |
66 add_linear_fit <- function(fit, gc1_index, gc2_index, range) { | |
67 pval = anova.lm(fit)$Pr | |
68 r.squared = summary(fit)$r.squared | |
69 | |
70 data = rep(NA, 7) | |
71 # Append results to matrix | |
72 data[1] = gc_columns[gc1_index] # Column 1 | |
73 data[2] = gc_columns[gc2_index] # Column 2 | |
74 data[3] = coefficients(fit)[1] # The 4 coefficients | |
75 data[4] = coefficients(fit)[2] | |
76 data[7] = length(fit$residuals) # Number of datapoints analysed | |
77 data[8] = pval[1] # p-value for resulting fitting | |
78 data[9] = r.squared # R-squared | |
79 return(data) | |
80 } | |
81 | |
82 | |
83 add_fit <- function(fit, gc1_index, gc2_index, range, method) { | |
84 if (method == 'poly') | |
85 return(add_poly_fit(fit, gc1_index, gc2_index, range)) | |
86 else | |
87 return(add_linear_fit(fit, gc1_index, gc2_index, range)) | |
88 } | |
89 | |
90 | |
91 plot_fit <- function(ri1, ri2, gc1_index, gc2_index, coeff, range, method) { | |
92 if (method == 'poly') | |
93 pol <- function(x) coeff[4]*x^3 + coeff[3]*x^2 + coeff[2]*x + coeff[1] | |
94 else | |
95 pol <- function(x) coeff[2]*x + coeff[1] | |
96 pdf(paste('regression_model_', | |
97 make.names(gc_columns[gc1_index]), '_vs_', | |
98 make.names(gc_columns[gc2_index]), '.pdf', sep='')) | |
99 curve(pol, 250:3750, col="red", lwd=2.5, main='Regression Model', xlab=gc_columns[gc1_index], | |
100 ylab=gc_columns[gc2_index], xlim=c(250, 3750), ylim=c(250, 3750)) | |
101 points(ri1, ri2, lwd=0.4) | |
102 # Add vertical lines showing left- and right limits when using poly method | |
103 if (method == 'poly') | |
104 abline(v=range, col="grey", lwd=1.5) | |
105 dev.off() | |
106 } | |
107 | |
108 # Initialize output dataframe | |
109 if (method == 'poly') { | |
110 m <- data.frame(matrix(ncol = 11, nrow = 10)) | |
111 } else { | |
112 m <- data.frame(matrix(ncol = 9, nrow = 10)) | |
113 } | |
114 | |
115 | |
116 get_fit <- function(gc1, gc2, method) { | |
117 if (method == 'poly') | |
118 return(lm(gc1 ~ poly(gc2, 3, raw=TRUE))) | |
119 else | |
120 return(lm(gc1 ~ gc2)) | |
121 } | |
122 | |
123 # Permutate | |
124 k <- 1 | |
125 logger(paste("Permutating (with ", length(gc_columns), " GC-columns)..", sep="")) | |
126 | |
127 for (i in 1:(length(gc_columns)-1)) { | |
128 logger(paste("\tCalculating model for ", gc_columns[i], "..", sep="")) | |
129 breaks <- 0 | |
130 for (j in (i+1):length(gc_columns)) { | |
131 col1 = ridb[which(ridb['Column.name'][,1] == gc_columns[i]),] | |
132 col2 = ridb[which(ridb['Column.name'][,1] == gc_columns[j]),] | |
133 | |
134 # Find CAS numbers for which both columns have data (intersect) | |
135 cas_intersect = intersect(col1[['CAS']], col2[['CAS']]) | |
136 | |
137 # Skip if number of shared CAS entries is < cutoff | |
138 if (length(cas_intersect) < min_residuals) { | |
139 breaks = breaks + 1 | |
140 next | |
141 } | |
142 # Gather Retention Indices | |
143 col1_data = col1[['RI']][match(cas_intersect, col1[['CAS']])] | |
144 col2_data = col2[['RI']][match(cas_intersect, col2[['CAS']])] | |
145 | |
146 # Calculate the range within which regression is possible (and move if 'range_mod' != 0) | |
147 range = c(min(c(min(col1_data), min(col2_data))), max(c(max(col1_data), max(col2_data)))) | |
148 if (range_mod != 0) { | |
149 # Calculate percentage and add/subtract from range | |
150 perc = diff(range) / 100 | |
151 perc_cutoff = range_mod * perc | |
152 range = as.integer(range + c(perc_cutoff, -perc_cutoff)) | |
153 } | |
154 | |
155 # Calculate model for column1 vs column2 and plot if requested | |
156 fit = get_fit(col1_data, col2_data, method) | |
157 m[k,] = add_fit(fit, i, j, range, method) | |
158 | |
159 if (plot == 'true') | |
160 plot_fit(col1_data, col2_data, i, j, coefficients(fit), range, method) | |
161 | |
162 # Calculate model for column2 vs column1 and plot if requested | |
163 fit = get_fit(col2_data, col1_data, method) | |
164 m[k + 1,] = add_fit(fit, j, i, range, method) | |
165 | |
166 if (plot == 'true') | |
167 plot_fit(col2_data, col1_data, j, i, coefficients(fit), range, method) | |
168 | |
169 k = k + 2 | |
170 } | |
171 logger(paste("\t\t", breaks, " comparisons have been skipped due to nr. of datapoints < cutoff", sep="")) | |
172 } | |
173 | |
174 # Filter on pvalue and R-squared | |
175 logger("Filtering on pvalue and R-squared..") | |
176 if (method == 'poly') { | |
177 pval_index <- which(m[,10] < pvalue) | |
178 rsquared_index <- which(m[,11] > rsquared) | |
179 } else { | |
180 pval_index <- which(m[,8] < pvalue) | |
181 rsquared_index <- which(m[,9] > rsquared) | |
182 } | |
183 logger(paste(nrow(m) - length(pval_index), " models discarded due to pvalue > ", pvalue, sep="")) | |
184 | |
185 logger(paste(nrow(m) - length(rsquared_index), " models discarded due to R-squared < ", rsquared, sep="")) | |
186 | |
187 # Remaining rows | |
188 index = unique(c(pval_index, rsquared_index)) | |
189 | |
190 # Reduce dataset | |
191 m = m[index,] | |
192 sink() | |
193 | |
194 # Place plots in the history as a ZIP file | |
195 if (plot == 'true') { | |
196 logger("Creating archive with model graphics..") | |
197 system(paste("zip -9 -r models.zip *.pdf > /dev/null", sep="")) | |
198 system(paste("cp models.zip ", plot_archive, sep="")) | |
199 } | |
200 | |
201 # Save dataframe as tab separated file | |
202 logger("All done, saving data..") | |
203 header = c("Column1", "Column2", "Coefficient1", "Coefficient2", "Coefficient3", "Coefficient4", | |
204 "LeftLimit", "RightLimit", "Residuals", "pvalue", "Rsquared") | |
205 if (method != 'poly') | |
206 header = header[c(1:4, 7:11)] | |
207 write(progress, logfile) | |
208 write.table(m, file=out_file, sep="\t", quote=FALSE, col.names=header, row.names=FALSE) |