comparison export_to_metexp_tabular.py @ 0:9d5f4f5f764b

Initial commit to toolshed
author pieter.lukasse@wur.nl
date Thu, 16 Jan 2014 13:10:00 +0100
parents
children 19d8fd10248e
comparison
equal deleted inserted replaced
-1:000000000000 0:9d5f4f5f764b
1 #!/usr/bin/env python
2 # encoding: utf-8
3 '''
4 Module to combine output from the GCMS Galaxy tools RankFilter, CasLookup and MsClust
5 into a tabular file that can be uploaded to the MetExp database.
6
7 RankFilter, CasLookup are already combined by combine_output.py so here we will use
8 this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust
9 quantification files are to be combined with combine_output.py result as well.
10
11 Extra calculations performed:
12 - The column MW is also added here and is derived from the column FORMULA found
13 in combine_output.py result.
14
15 So in total here we merge 3 files and calculate one new column.
16 '''
17
18 import csv
19 import sys
20 from collections import OrderedDict
21
22 __author__ = "Pieter Lukasse"
23 __contact__ = "pieter.lukasse@wur.nl"
24 __copyright__ = "Copyright, 2013, Plant Research International, WUR"
25 __license__ = "Apache v2"
26
27 def _process_data(in_csv, delim='\t'):
28 '''
29 Generic method to parse a tab-separated file returning a dictionary with named columns
30 @param in_csv: input filename to be parsed
31 '''
32 data = list(csv.reader(open(in_csv, 'rU'), delimiter=delim))
33 header = data.pop(0)
34 # Create dictionary with column name as key
35 output = OrderedDict()
36 for index in xrange(len(header)):
37 output[header[index]] = [row[index] for row in data]
38 return output
39
40 ONE_TO_ONE = 'one_to_one'
41 N_TO_ONE = 'n_to_one'
42
43 def _merge_data(set1, link_field_set1, set2, link_field_set2, compare_function, merge_function, relation_type=ONE_TO_ONE):
44 '''
45 Merges data from both input dictionaries based on the link fields. This method will
46 build up a new list containing the merged hits as the items.
47 @param set1: dictionary holding set1 in the form of N lists (one list per attribute name)
48 @param set2: dictionary holding set2 in the form of N lists (one list per attribute name)
49 '''
50 # TODO test for correct input files -> same link_field values should be there (test at least number of unique link_field values):
51 #
52 # if (len(set1[link_field_set1]) != len(set2[link_field_set2])):
53 # raise Exception('input files should have the same nr of key values ')
54
55
56 merged = []
57 processed = {}
58 for link_field_set1_idx in xrange(len(set1[link_field_set1])):
59 link_field_set1_value = set1[link_field_set1][link_field_set1_idx]
60 if not link_field_set1_value in processed :
61 # keep track of processed items to not repeat them
62 processed[link_field_set1_value] = link_field_set1_value
63
64 # Get the indices for current link_field_set1_value in both data-structures for proper matching
65 set1index = [index for index, value in enumerate(set1[link_field_set1]) if value == link_field_set1_value]
66 set2index = [index for index, value in enumerate(set2[link_field_set2]) if compare_function(value, link_field_set1_value)==True ]
67
68
69
70 merged_hits = []
71 # Combine hits
72 for hit in xrange(len(set1index)):
73 # Create records of hits to be merged ("keys" are the attribute names, so what the lines below do
74 # is create a new "dict" item with same "keys"/attributes, with each attribute filled with its
75 # corresponding value in the rankfilter or caslookup tables; i.e.
76 # rankfilter[key] => returns the list/array with size = nrrows, with the values for the attribute
77 # represented by "key". rindex[hit] => points to the row nr=hit (hit is a rownr/index)
78 # It just ensures the entry is made available as a plain named array for easy access.
79 rf_record = OrderedDict(zip(set1.keys(), [set1[key][set1index[hit]] for key in set1.keys()]))
80 if relation_type == ONE_TO_ONE :
81 cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[hit]] for key in set2.keys()]))
82 else:
83 # is N to 1:
84 cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[0]] for key in set2.keys()]))
85
86 merged_hit = merge_function(rf_record, cl_record)
87 merged_hits.append(merged_hit)
88
89 merged.append(merged_hits)
90
91 return merged, len(set1index)
92
93
94 def _compare_records(key1, key2):
95 '''
96 in this case the compare method is really simple as both keys are expected to contain
97 same value when records are the same
98 '''
99 if key1 == key2:
100 return True
101 else:
102 return False
103
104
105
106 def _merge_records(rank_caslookup_combi, msclust_quant_record):
107 '''
108 Combines single records from both the RankFilter+CasLookup combi file and from MsClust file
109
110 @param rank_caslookup_combi: rankfilter and caslookup combined record (see combine_output.py)
111 @param msclust_quant_record: msclust quantification + spectrum record
112 '''
113 i = 0
114 record = []
115 for column in rank_caslookup_combi:
116 record.append(rank_caslookup_combi[column])
117 i += 1
118
119 for column in msclust_quant_record:
120 record.append(msclust_quant_record[column])
121 i += 1
122
123 return record
124
125
126
127
128 def _save_data(data, headers, nhits, out_csv):
129 '''
130 Writes tab-separated data to file
131 @param data: dictionary containing merged dataset
132 @param out_csv: output csv file
133 '''
134
135 # Open output file for writing
136 outfile_single_handle = open(out_csv, 'wb')
137 output_single_handle = csv.writer(outfile_single_handle, delimiter="\t")
138
139 # Write headers
140 output_single_handle.writerow(headers)
141
142 # Write one line for each centrotype
143 for centrotype_idx in xrange(len(data)):
144 for hit in data[centrotype_idx]:
145 output_single_handle.writerow(hit)
146
147
148 def main():
149 '''
150 Combine Output main function
151
152 RankFilter, CasLookup are already combined by combine_output.py so here we will use
153 this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust
154 quantification files are to be combined with combine_output.py result as well.
155 '''
156 rankfilter_and_caslookup_combined_file = sys.argv[1]
157 msclust_quantification_and_spectra_file = sys.argv[2]
158 output_csv = sys.argv[3]
159
160 # Read RankFilter and CasLookup output files
161 rankfilter_and_caslookup_combined = _process_data(rankfilter_and_caslookup_combined_file)
162 msclust_quantification_and_spectra = _process_data(msclust_quantification_and_spectra_file, ',')
163
164 merged, nhits = _merge_data(rankfilter_and_caslookup_combined, 'Centrotype',
165 msclust_quantification_and_spectra, 'centrotype', _compare_records, _merge_records, N_TO_ONE)
166 headers = rankfilter_and_caslookup_combined.keys() + msclust_quantification_and_spectra.keys()
167 _save_data(merged, headers, nhits, output_csv)
168
169
170 if __name__ == '__main__':
171 main()