Mercurial > repos > pieterlukasse > prims_metabolomics
comparison rankfilterGCMS_tabular.xml @ 0:9d5f4f5f764b
Initial commit to toolshed
author | pieter.lukasse@wur.nl |
---|---|
date | Thu, 16 Jan 2014 13:10:00 +0100 |
parents | |
children | 24fb75fedee0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9d5f4f5f764b |
---|---|
1 <tool id="rankfilterGCMS_tabular" name="RIQC-RankFilter GC-MS from tabular file" version="1.0.2"> | |
2 <description>Convert Retention Time to Retention Index</description> | |
3 <command interpreter="python">rankfilter_GCMS/rankfilter.py $input_file</command> | |
4 <inputs> | |
5 <param format="tabular" name="sample" type="data" label="Sample File" | |
6 help="Converted PDF file in tabular format" /> | |
7 <!-- question: is this calibration file not column specific as it includes RT info?? --> | |
8 <param name="calibration" type="select" label="Calibration File" | |
9 help="Calibration file with reference masses (e.g. alkanes) with their RT and RI values" | |
10 dynamic_options='get_directory_files("tool-data/shared/PRIMS-metabolomics/RankFilter_Calibration_Files")'/> | |
11 | |
12 <param name="analysis_type" type="select" format="text" label="Analysis Type" | |
13 help="Select the type of analysis that has been used to generate the sample file"> | |
14 <option value="NIST">NIST</option> | |
15 <option value="AMDIS">AMDIS</option> | |
16 </param> | |
17 <param name="model" type="select" format="text" label="Select a model to be used " | |
18 help="Both linear and (3rd degree) polynomial models are available "> | |
19 <option value="linear">Linear</option> | |
20 <option value="poly">Polynomial</option> | |
21 </param> | |
22 <param name="lib_data" type="select" label="Library" | |
23 help="Reference global lookup library file with CAS numbers and respective (previously calculated) RIsvr values" | |
24 dynamic_options='get_directory_files("tool-data/shared/PRIMS-metabolomics/RankFilter_lookup_libraries")'/> | |
25 | |
26 <param name="window" type="float" label="Window" value="10.56" /> | |
27 </inputs> | |
28 <outputs> | |
29 <data format="tabular" label="${tool.name}" name="onefile" /> | |
30 </outputs> | |
31 <!-- file with implementation of the function get_directory_files() used above --> | |
32 <code file="match_library.py" /> | |
33 <configfiles> | |
34 <configfile name="input_file"> | |
35 sample = ${sample} | |
36 calibration = ${calibration} | |
37 lib_data = ${lib_data} | |
38 window = ${window} | |
39 analysis_type = ${analysis_type} | |
40 tabular = True | |
41 onefile = ${onefile} | |
42 model = ${model} | |
43 </configfile> | |
44 </configfiles> | |
45 <help> | |
46 Basically estimates the experimental RI (RIexp) by building a RI(RT) function based on the | |
47 given calibration file. | |
48 | |
49 It also determines the estimated RI (RIsvr) by looking up for each entry of the given input file (Sample File), | |
50 based on its CAS number, its respective RIsvr value in the given global lookup library | |
51 (this step is also called the "RankFilter analysis" -see reference below; Sample File may be either from NIST or AMDIS). | |
52 This generates an prediction of the RI for | |
53 a compound according to the "RankFilter procedure" (RIsvr). | |
54 | |
55 Output is a tab separated file in which four columns are added: | |
56 | |
57 - **Rank** Calculated rank | |
58 - **RIexp** Experimental Retention Index (RI) | |
59 - **RIsvr** Calculated RI based on support vector regression (SVR) | |
60 - **%rel.err** Relative RI error (%rel.error = 100 * (RISVR − RIexp) / RIexp) | |
61 | |
62 .. class:: infomark | |
63 | |
64 **Notes** | |
65 | |
66 - The layout of the Calibration file should include the following columns: 'MW', 'R.T.' and 'RI'. | |
67 - Selecting 'Polynomial' in the model parameter will calculate a 3rd degree polynomial model that will | |
68 be used to convert from XXXX to YYYY. | |
69 | |
70 ----- | |
71 | |
72 **References** | |
73 | |
74 - **RankFilter**: Mihaleva et. al. (2009) *Automated procedure for candidate compound selection in GC-MS | |
75 metabolomics based on prediction of Kovats retention index*. Bioinformatics, 25 (2009), pp. 787–794 | |
76 </help> | |
77 </tool> |