6
|
1 #!/usr/bin/env python
|
|
2 # encoding: utf-8
|
|
3 '''
|
|
4 Module to combine output from the GCMS Galaxy tools RankFilter, CasLookup and MsClust
|
|
5 into a tabular file that can be uploaded to the MetExp database.
|
|
6
|
|
7 RankFilter, CasLookup are already combined by combine_output.py so here we will use
|
|
8 this result. Furthermore here one of the MsClust
|
|
9 quantification files containing the respective spectra details are to be combined as well.
|
|
10
|
|
11 Extra calculations performed:
|
|
12 - The column MW is also added here and is derived from the column FORMULA found
|
|
13 in RankFilter, CasLookup combined result.
|
|
14
|
|
15 So in total here we merge 2 files and calculate one new column.
|
|
16 '''
|
|
17 from pkg_resources import resource_filename # @UnresolvedImport # pylint: disable=E0611
|
|
18 import csv
|
|
19 import re
|
|
20 import sys
|
|
21 from collections import OrderedDict
|
|
22
|
|
23 __author__ = "Pieter Lukasse"
|
|
24 __contact__ = "pieter.lukasse@wur.nl"
|
|
25 __copyright__ = "Copyright, 2013, Plant Research International, WUR"
|
|
26 __license__ = "Apache v2"
|
|
27
|
|
28 def _process_data(in_csv, delim='\t'):
|
|
29 '''
|
|
30 Generic method to parse a tab-separated file returning a dictionary with named columns
|
|
31 @param in_csv: input filename to be parsed
|
|
32 '''
|
|
33 data = list(csv.reader(open(in_csv, 'rU'), delimiter=delim))
|
|
34 header = data.pop(0)
|
|
35 # Create dictionary with column name as key
|
|
36 output = OrderedDict()
|
|
37 for index in xrange(len(header)):
|
|
38 output[header[index]] = [row[index] for row in data]
|
|
39 return output
|
|
40
|
|
41 ONE_TO_ONE = 'one_to_one'
|
|
42 N_TO_ONE = 'n_to_one'
|
|
43
|
|
44 def _merge_data(set1, link_field_set1, set2, link_field_set2, compare_function, merge_function, metadata, relation_type=ONE_TO_ONE):
|
|
45 '''
|
|
46 Merges data from both input dictionaries based on the link fields. This method will
|
|
47 build up a new list containing the merged hits as the items.
|
|
48 @param set1: dictionary holding set1 in the form of N lists (one list per attribute name)
|
|
49 @param set2: dictionary holding set2 in the form of N lists (one list per attribute name)
|
|
50 '''
|
|
51 # TODO test for correct input files -> same link_field values should be there
|
|
52 # (test at least number of unique link_field values):
|
|
53 #
|
|
54 # if (len(set1[link_field_set1]) != len(set2[link_field_set2])):
|
|
55 # raise Exception('input files should have the same nr of key values ')
|
|
56
|
|
57
|
|
58 merged = []
|
|
59 processed = {}
|
|
60 for link_field_set1_idx in xrange(len(set1[link_field_set1])):
|
|
61 link_field_set1_value = set1[link_field_set1][link_field_set1_idx]
|
|
62 if not link_field_set1_value in processed :
|
|
63 # keep track of processed items to not repeat them
|
|
64 processed[link_field_set1_value] = link_field_set1_value
|
|
65
|
|
66 # Get the indices for current link_field_set1_value in both data-structures for proper matching
|
|
67 set1index = [index for index, value in enumerate(set1[link_field_set1]) if value == link_field_set1_value]
|
|
68 set2index = [index for index, value in enumerate(set2[link_field_set2]) if compare_function(value, link_field_set1_value)==True ]
|
|
69 # Validation :
|
|
70 if len(set2index) == 0:
|
|
71 # means that corresponding data could not be found in set2, then throw error
|
|
72 raise Exception("Datasets not compatible, merge not possible. " + link_field_set1 + "=" +
|
|
73 link_field_set1_value + " only found in first dataset. ")
|
|
74
|
|
75 merged_hits = []
|
|
76 # Combine hits
|
|
77 for hit in xrange(len(set1index)):
|
|
78 # Create records of hits to be merged ("keys" are the attribute names, so what the lines below do
|
|
79 # is create a new "dict" item with same "keys"/attributes, with each attribute filled with its
|
|
80 # corresponding value in the sets; i.e.
|
|
81 # set1[key] => returns the list/array with size = nrrows, with the values for the attribute
|
|
82 # represented by "key".
|
|
83 # set1index[hit] => points to the row nr=hit (hit is a rownr/index)
|
|
84 # So set1[x][set1index[n]] = set1.attributeX.instanceN
|
|
85 #
|
|
86 # It just ensures the entry is made available as a plain named array for easy access.
|
|
87 rf_record = OrderedDict(zip(set1.keys(), [set1[key][set1index[hit]] for key in set1.keys()]))
|
|
88 if relation_type == ONE_TO_ONE :
|
|
89 cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[hit]] for key in set2.keys()]))
|
|
90 else:
|
|
91 # is N to 1:
|
|
92 cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[0]] for key in set2.keys()]))
|
|
93
|
|
94 merged_hit = merge_function(rf_record, cl_record, metadata)
|
|
95 merged_hits.append(merged_hit)
|
|
96
|
|
97 merged.append(merged_hits)
|
|
98
|
|
99 return merged
|
|
100
|
|
101
|
|
102 def _compare_records(key1, key2):
|
|
103 '''
|
|
104 in this case the compare method is really simple as both keys are expected to contain
|
|
105 same value when records are the same
|
|
106 '''
|
|
107 if key1 == key2:
|
|
108 return True
|
|
109 else:
|
|
110 return False
|
|
111
|
|
112
|
|
113
|
|
114 def _merge_records(rank_caslookup_combi, msclust_quant_record, metadata):
|
|
115 '''
|
|
116 Combines single records from both the RankFilter+CasLookup combi file and from MsClust file
|
|
117
|
|
118 @param rank_caslookup_combi: rankfilter and caslookup combined record (see combine_output.py)
|
|
119 @param msclust_quant_record: msclust quantification + spectrum record
|
|
120 '''
|
|
121 record = []
|
|
122 for column in rank_caslookup_combi:
|
|
123 record.append(rank_caslookup_combi[column])
|
|
124
|
|
125 for column in msclust_quant_record:
|
|
126 record.append(msclust_quant_record[column])
|
|
127
|
|
128 for column in metadata:
|
|
129 record.append(metadata[column])
|
|
130
|
|
131 # add MOLECULAR MASS (MM)
|
|
132 molecular_mass = get_molecular_mass(rank_caslookup_combi['FORMULA'])
|
|
133 # limit to two decimals:
|
|
134 record.append("{0:.2f}".format(molecular_mass))
|
|
135
|
|
136 # add MOLECULAR WEIGHT (MW) - TODO - calculate this
|
|
137 record.append('0.0')
|
|
138
|
|
139 # level of identification and Location of reference standard
|
|
140 record.append('0')
|
|
141 record.append('')
|
|
142
|
|
143 return record
|
|
144
|
|
145
|
|
146 def get_molecular_mass(formula):
|
|
147 '''
|
|
148 Calculates the molecular mass (MM).
|
|
149 E.g. MM of H2O = (relative)atomic mass of H x2 + (relative)atomic mass of O
|
|
150 '''
|
|
151
|
|
152 # Each element is represented by a capital letter, followed optionally by
|
|
153 # lower case, with one or more digits as for how many elements:
|
|
154 element_pattern = re.compile("([A-Z][a-z]?)(\d*)")
|
|
155
|
|
156 total_mass = 0
|
|
157 for (element_name, count) in element_pattern.findall(formula):
|
|
158 if count == "":
|
|
159 count = 1
|
|
160 else:
|
|
161 count = int(count)
|
|
162 element_mass = float(elements_and_masses_map[element_name]) # "found: Python's built-in float type has double precision " (? check if really correct ?)
|
|
163 total_mass += element_mass * count
|
|
164
|
|
165 return total_mass
|
|
166
|
|
167
|
|
168
|
|
169 def _save_data(data, headers, out_csv):
|
|
170 '''
|
|
171 Writes tab-separated data to file
|
|
172 @param data: dictionary containing merged dataset
|
|
173 @param out_csv: output csv file
|
|
174 '''
|
|
175
|
|
176 # Open output file for writing
|
|
177 outfile_single_handle = open(out_csv, 'wb')
|
|
178 output_single_handle = csv.writer(outfile_single_handle, delimiter="\t")
|
|
179
|
|
180 # Write headers
|
|
181 output_single_handle.writerow(headers)
|
|
182
|
|
183 # Write
|
|
184 for item_idx in xrange(len(data)):
|
|
185 for hit in data[item_idx]:
|
|
186 output_single_handle.writerow(hit)
|
|
187
|
|
188
|
|
189 def _get_map_for_elements_and_masses(elements_and_masses):
|
|
190 '''
|
|
191 This method will read out the column 'Chemical symbol' and make a map
|
|
192 of this, storing the column 'Relative atomic mass' as its value
|
|
193 '''
|
|
194 resultMap = {}
|
|
195 index = 0
|
|
196 for entry in elements_and_masses['Chemical symbol']:
|
|
197 resultMap[entry] = elements_and_masses['Relative atomic mass'][index]
|
|
198 index += 1
|
|
199
|
|
200 return resultMap
|
|
201
|
|
202
|
|
203 def init_elements_and_masses_map():
|
|
204 '''
|
|
205 Initializes the lookup map containing the elements and their respective masses
|
|
206 '''
|
|
207 elements_and_masses = _process_data(resource_filename(__name__, "static_resources/elements_and_masses.tab"))
|
|
208 global elements_and_masses_map
|
|
209 elements_and_masses_map = _get_map_for_elements_and_masses(elements_and_masses)
|
|
210
|
|
211
|
|
212 def main():
|
|
213 '''
|
|
214 Combine Output main function
|
|
215
|
|
216 RankFilter, CasLookup are already combined by combine_output.py so here we will use
|
|
217 this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust
|
|
218 quantification files are to be combined with combine_output.py result as well.
|
|
219 '''
|
|
220 rankfilter_and_caslookup_combined_file = sys.argv[1]
|
|
221 msclust_quantification_and_spectra_file = sys.argv[2]
|
|
222 output_csv = sys.argv[3]
|
|
223 # metadata
|
|
224 metadata = OrderedDict()
|
|
225 metadata['organism'] = sys.argv[4]
|
|
226 metadata['tissue'] = sys.argv[5]
|
|
227 metadata['experiment_name'] = sys.argv[6]
|
|
228 metadata['user_name'] = sys.argv[7]
|
|
229 metadata['column_type'] = sys.argv[8]
|
|
230
|
|
231 # Read RankFilter and CasLookup output files
|
|
232 rankfilter_and_caslookup_combined = _process_data(rankfilter_and_caslookup_combined_file)
|
|
233 msclust_quantification_and_spectra = _process_data(msclust_quantification_and_spectra_file, ',')
|
|
234
|
|
235 # Read elements and masses to use for the MW/MM calculation :
|
|
236 init_elements_and_masses_map()
|
|
237
|
|
238 merged = _merge_data(rankfilter_and_caslookup_combined, 'Centrotype',
|
|
239 msclust_quantification_and_spectra, 'centrotype',
|
|
240 _compare_records, _merge_records, metadata,
|
|
241 N_TO_ONE)
|
|
242 headers = rankfilter_and_caslookup_combined.keys() + msclust_quantification_and_spectra.keys() + metadata.keys() + ['MM','MW', 'Level of identification', 'Location of reference standard']
|
|
243 _save_data(merged, headers, output_csv)
|
|
244
|
|
245
|
|
246 if __name__ == '__main__':
|
|
247 main()
|