Mercurial > repos > pieterlukasse > prims_metabolomics2
view METEXPtools/export_to_metexp_tabular.py @ 22:f0c6feab06e7
fixed import match_library
author | linda.bakker@wur.nl <linda.bakker@wur.nl> |
---|---|
date | Wed, 03 Jun 2015 11:54:12 +0200 |
parents | 4393f982d18f |
children |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 ''' Module to combine output from the GCMS Galaxy tools RankFilter, CasLookup and MsClust into a tabular file that can be uploaded to the MetExp database. RankFilter, CasLookup are already combined by combine_output.py so here we will use this result. Furthermore here one of the MsClust quantification files containing the respective spectra details are to be combined as well. Extra calculations performed: - The column MW is also added here and is derived from the column FORMULA found in RankFilter, CasLookup combined result. So in total here we merge 2 files and calculate one new column. ''' from pkg_resources import resource_filename # @UnresolvedImport # pylint: disable=E0611 import csv import re import sys from collections import OrderedDict __author__ = "Pieter Lukasse" __contact__ = "pieter.lukasse@wur.nl" __copyright__ = "Copyright, 2013, Plant Research International, WUR" __license__ = "Apache v2" def _process_data(in_csv, delim='\t'): ''' Generic method to parse a tab-separated file returning a dictionary with named columns @param in_csv: input filename to be parsed ''' data = list(csv.reader(open(in_csv, 'rU'), delimiter=delim)) header = data.pop(0) # Create dictionary with column name as key output = OrderedDict() for index in xrange(len(header)): output[header[index]] = [row[index] for row in data] return output ONE_TO_ONE = 'one_to_one' N_TO_ONE = 'n_to_one' def _merge_data(set1, link_field_set1, set2, link_field_set2, compare_function, merge_function, metadata, relation_type=ONE_TO_ONE): ''' Merges data from both input dictionaries based on the link fields. This method will build up a new list containing the merged hits as the items. @param set1: dictionary holding set1 in the form of N lists (one list per attribute name) @param set2: dictionary holding set2 in the form of N lists (one list per attribute name) ''' # TODO test for correct input files -> same link_field values should be there # (test at least number of unique link_field values): # # if (len(set1[link_field_set1]) != len(set2[link_field_set2])): # raise Exception('input files should have the same nr of key values ') merged = [] processed = {} for link_field_set1_idx in xrange(len(set1[link_field_set1])): link_field_set1_value = set1[link_field_set1][link_field_set1_idx] if not link_field_set1_value in processed : # keep track of processed items to not repeat them processed[link_field_set1_value] = link_field_set1_value # Get the indices for current link_field_set1_value in both data-structures for proper matching set1index = [index for index, value in enumerate(set1[link_field_set1]) if value == link_field_set1_value] set2index = [index for index, value in enumerate(set2[link_field_set2]) if compare_function(value, link_field_set1_value)==True ] # Validation : if len(set2index) == 0: # means that corresponding data could not be found in set2, then throw error raise Exception("Datasets not compatible, merge not possible. " + link_field_set1 + "=" + link_field_set1_value + " only found in first dataset. ") merged_hits = [] # Combine hits for hit in xrange(len(set1index)): # Create records of hits to be merged ("keys" are the attribute names, so what the lines below do # is create a new "dict" item with same "keys"/attributes, with each attribute filled with its # corresponding value in the sets; i.e. # set1[key] => returns the list/array with size = nrrows, with the values for the attribute # represented by "key". # set1index[hit] => points to the row nr=hit (hit is a rownr/index) # So set1[x][set1index[n]] = set1.attributeX.instanceN # # It just ensures the entry is made available as a plain named array for easy access. rf_record = OrderedDict(zip(set1.keys(), [set1[key][set1index[hit]] for key in set1.keys()])) if relation_type == ONE_TO_ONE : cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[hit]] for key in set2.keys()])) else: # is N to 1: cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[0]] for key in set2.keys()])) merged_hit = merge_function(rf_record, cl_record, metadata) merged_hits.append(merged_hit) merged.append(merged_hits) return merged def _compare_records(key1, key2): ''' in this case the compare method is really simple as both keys are expected to contain same value when records are the same ''' if key1 == key2: return True else: return False def _merge_records(rank_caslookup_combi, msclust_quant_record, metadata): ''' Combines single records from both the RankFilter+CasLookup combi file and from MsClust file @param rank_caslookup_combi: rankfilter and caslookup combined record (see combine_output.py) @param msclust_quant_record: msclust quantification + spectrum record ''' record = [] for column in rank_caslookup_combi: record.append(rank_caslookup_combi[column]) for column in msclust_quant_record: record.append(msclust_quant_record[column]) for column in metadata: record.append(metadata[column]) # add MOLECULAR MASS (MM) molecular_mass = get_molecular_mass(rank_caslookup_combi['FORMULA']) # limit to two decimals: record.append("{0:.2f}".format(molecular_mass)) # add MOLECULAR WEIGHT (MW) - TODO - calculate this record.append('0.0') # level of identification and Location of reference standard record.append('0') record.append('') return record def get_molecular_mass(formula): ''' Calculates the molecular mass (MM). E.g. MM of H2O = (relative)atomic mass of H x2 + (relative)atomic mass of O ''' # Each element is represented by a capital letter, followed optionally by # lower case, with one or more digits as for how many elements: element_pattern = re.compile("([A-Z][a-z]?)(\d*)") total_mass = 0 for (element_name, count) in element_pattern.findall(formula): if count == "": count = 1 else: count = int(count) element_mass = float(elements_and_masses_map[element_name]) # "found: Python's built-in float type has double precision " (? check if really correct ?) total_mass += element_mass * count return total_mass def _save_data(data, headers, out_csv): ''' Writes tab-separated data to file @param data: dictionary containing merged dataset @param out_csv: output csv file ''' # Open output file for writing outfile_single_handle = open(out_csv, 'wb') output_single_handle = csv.writer(outfile_single_handle, delimiter="\t") # Write headers output_single_handle.writerow(headers) # Write for item_idx in xrange(len(data)): for hit in data[item_idx]: output_single_handle.writerow(hit) def _get_map_for_elements_and_masses(elements_and_masses): ''' This method will read out the column 'Chemical symbol' and make a map of this, storing the column 'Relative atomic mass' as its value ''' resultMap = {} index = 0 for entry in elements_and_masses['Chemical symbol']: resultMap[entry] = elements_and_masses['Relative atomic mass'][index] index += 1 return resultMap def init_elements_and_masses_map(): ''' Initializes the lookup map containing the elements and their respective masses ''' elements_and_masses = _process_data(resource_filename(__name__, "static_resources/elements_and_masses.tab")) global elements_and_masses_map elements_and_masses_map = _get_map_for_elements_and_masses(elements_and_masses) def main(): ''' Combine Output main function RankFilter, CasLookup are already combined by combine_output.py so here we will use this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust quantification files are to be combined with combine_output.py result as well. ''' rankfilter_and_caslookup_combined_file = sys.argv[1] msclust_quantification_and_spectra_file = sys.argv[2] output_csv = sys.argv[3] # metadata metadata = OrderedDict() metadata['organism'] = sys.argv[4] metadata['tissue'] = sys.argv[5] metadata['experiment_name'] = sys.argv[6] metadata['user_name'] = sys.argv[7] metadata['column_type'] = sys.argv[8] # Read RankFilter and CasLookup output files rankfilter_and_caslookup_combined = _process_data(rankfilter_and_caslookup_combined_file) msclust_quantification_and_spectra = _process_data(msclust_quantification_and_spectra_file, ',') # Read elements and masses to use for the MW/MM calculation : init_elements_and_masses_map() merged = _merge_data(rankfilter_and_caslookup_combined, 'Centrotype', msclust_quantification_and_spectra, 'centrotype', _compare_records, _merge_records, metadata, N_TO_ONE) headers = rankfilter_and_caslookup_combined.keys() + msclust_quantification_and_spectra.keys() + metadata.keys() + ['MM','MW', 'Level of identification', 'Location of reference standard'] _save_data(merged, headers, output_csv) if __name__ == '__main__': main()