Mercurial > repos > pieterlukasse > prims_proteomics
view csv2apml.xml @ 12:a4d11b23377b
new release, including better permgen solution for msfilt
author | pieter.lukasse@wur.nl |
---|---|
date | Fri, 07 Mar 2014 14:51:54 +0100 |
parents | d50f079096ee |
children | 40ec8770780d |
line wrap: on
line source
<tool name="Csv2Apml" id="csv2apml" version="1.0.2"> <description>Converts MS/MS data in CSV format to APML format</description> <!-- For remote debugging start you listener on port 8000 and use the following as command interpreter: java -jar -Xdebug -Xrunjdwp:transport=dt_socket,address=D0100564.wurnet.nl:8000 ////////////////////////// --> <command interpreter="java -jar "> Csv2Apml.jar -peptideAndProteinMatchListCSV $peptideAndProteinMatchListCSV -attributesMappingCSV $attributesMappingCSV -apmlFile $apmlFile </command> <inputs> <param name="peptideAndProteinMatchListCSV" type="data" format="csv" label="MS/MS CSV file" help="MS/MS CSV file containing peptide identifications and protein matches" /> <param name="mz" type="text" optional="false" size="30" label="Column name for precursor m/z" /> <param name="rt" type="text" optional="false" size="30" label="Column name for precursor rt" /> <param name="charge" type="text" optional="false" size="30" label="Column name for precursor charge (z)" /> <param name="pepSequence" type="text" optional="false" size="30" label="Column name for peptide sequence" /> <param name="ppidScore" type="text" optional="false" size="30" label="Column name for peptide identification score" /> <param name="scoringSchemeName" type="text" optional="true" size="30" label="(Optional) Column name containing scoring scheme name" /> <param name="statisticalMeasure" type="text" optional="true" size="30" label="(Optional) Column name for reported statistical measure values" help="(e.g. column containing p-values or e-values)" /> <param name="ppidTheoreticalMz" type="text" optional="true" size="30" label="(Optional) Column name for peptide theoretical m/z" /> <param name="modifications" type="text" optional="true" size="30" label="(Optional) Column name for reported modifications" /> <param name="proteinAccession" type="text" optional="false" size="30" label="Column name for protein accession code" /> <param name="protSequenceLength" type="text" optional="true" size="30" label="(Optional) Column name for protein sequence length" /> <param name="pepProtStart" type="text" optional="true" size="30" label="(Optional) Column name for protein match location start" help="Where peptide sequence starts in protein"/> <param name="pepProtEnd" type="text" optional="true" size="30" label="(Optional) Column name for protein match location end" help="Where peptide sequence ends in protein"/> <param name="sourceName" type="text" optional="true" size="30" label="(Optional) Column name for sample names" /> </inputs> <configfiles> <configfile name="attributesMappingCSV">Generic name,name in S1 table CSV mz,${mz} rt,${rt} charge,${charge} pepSequence,${pepSequence} ppidScore,${ppidScore} proteinAccession,${proteinAccession} #if $ppidTheoreticalMz != "None" ppidTheoreticalMz,${ppidTheoreticalMz} #end if #if $modifications != "None" modifications,${modifications} #end if #if $scoringSchemeName != "None" scoringSchemeName,${scoringSchemeName} #end if #if $statisticalMeasure != "None" statisticalMeasure,${statisticalMeasure} #end if #if $protSequenceLength != "None" protSequenceLength,${protSequenceLength} #end if #if $pepProtStart != "None" pepProtStart,${pepProtStart} #end if #if $pepProtEnd != "None" pepProtEnd,${pepProtEnd} #end if #if $sourceName != "None" sourceName,${sourceName} #end if</configfile> </configfiles> <outputs> <data name="apmlFile" format="apml" label="${tool.name} on ${on_string}: APML" > </data> </outputs> <tests> </tests> <help> .. class:: infomark This tool converts a CSV file containing MS/MS peptide identifications and their respective protein matches to the APML xml format. The identifications in APML format can be used for example to annotate unidentified MS features via SEDMAT(*). This format is also compatible with what is expected by other post-processing tools like Quantifere (for protein inference). (*)SEDMAT can use MS2 identification data and couple it to this MS1 data, thereby annotating the MS1 feature list with identifications. ----- **Output** This tools returns the input data in APML xml format. </help> </tool>