Mercurial > repos > pmac > iterativepca
comparison R_functions/plotting_functions.R @ 0:64e75e21466e draft default tip
Uploaded
author | pmac |
---|---|
date | Wed, 01 Jun 2016 03:38:39 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:64e75e21466e |
---|---|
1 ## Plotting and grouping ## | |
2 # input data: some number of 2d observations. Each row represents a single observation, | |
3 # column 1 = variable 1, to be plotted on the x-axis, | |
4 # column 2 = variable 2, to be plotted on the y-axis | |
5 # groups: Integer vector with same number of entries as there are rows in the input data, | |
6 # representing which group each observation belongs to. Negative numbers are not plotted | |
7 # tags: the tag to put on the legend for each group | |
8 # plot_colors: colors to use for each group | |
9 # plot_symbols: symbols to use for each group | |
10 # plot_title: as name suggests | |
11 # plot_filename: if this is not null, graph is output to a png with the specified name | |
12 plot_by_groups = function(input_data, groups, tags, plot_colors, plot_symbols, plot_title, plot_filename=NULL) { | |
13 if(!is.null(plot_filename)) { | |
14 png(plot_filename) | |
15 } | |
16 # leave some extra room on the RHS for the legend | |
17 par(mar=c(5.1, 4.1, 4.1, 8.1)) | |
18 x = as.numeric(input_data[, 1]) | |
19 y = as.numeric(input_data[, 2]) | |
20 gids = sort(unique(groups[which(groups >= 0)])) | |
21 n = length(gids) | |
22 | |
23 # first set up the plot area to the correct dimensions | |
24 plot(x, y, col="white") | |
25 | |
26 for (i in 1:n) { | |
27 gid = gids[i] | |
28 pts_x = x[which(groups == gid)] | |
29 pts_y = y[which(groups == gid)] | |
30 pts_color = plot_colors[i] | |
31 pts_symbol = plot_symbols[i] | |
32 points(pts_x, pts_y, col=pts_color, pch=pts_symbol) | |
33 } | |
34 legend(x="topright", | |
35 xpd=TRUE, | |
36 inset=c(-0.3, 0), | |
37 col=plot_colors, | |
38 pch=plot_symbols, | |
39 legend=tags, | |
40 text.col=plot_colors) | |
41 title(main=plot_title) | |
42 if(!is.null(plot_filename)) { | |
43 dev.off() | |
44 } | |
45 } | |
46 | |
47 # Controls vs cases plot. Colour controls blue, cases red, | |
48 # Samples which are neither control nor case are black. | |
49 setup_cvc_plot = function(pca_data, control_tag, cases_tag) { | |
50 plot_info = list() | |
51 nsamples = length(pca_data$ids) | |
52 groups = rep(1, nsamples) | |
53 control_legend = paste0("CO: ", control_tag) | |
54 cases_legend = paste0("CA: ", cases_tag) | |
55 if (!is.null(control_tag)) { | |
56 groups[grep(control_tag, pca_data$ids)] = 2 | |
57 } | |
58 if (!is.null(cases_tag)) { | |
59 groups[grep(cases_tag, pca_data$ids)] = 3 | |
60 } | |
61 res = sort(unique(groups)) | |
62 if (length(res) == 1) { | |
63 tags = c("UNKNOWN") | |
64 plot_colors = c("black") | |
65 } else if (length(res) == 3) { | |
66 tags = c("UNKNOWN", control_legend, cases_legend) | |
67 plot_colors = c("black", "blue", "red") | |
68 } else { | |
69 if (all(res == c(1, 2))) { | |
70 tags = c("UNKNOWN", control_legend) | |
71 plot_colors = c("black", "blue") | |
72 } else if (all(res == c(1, 3))) { | |
73 tags = c("UNKNOWN", cases_legend) | |
74 plot_colors = c("black", "red") | |
75 } else { | |
76 tags = c(control_legend, cases_legend) | |
77 plot_colors = c("blue", "red") | |
78 } | |
79 } | |
80 plot_info$groups = groups | |
81 plot_info$tags = tags | |
82 plot_info$plot_colors = plot_colors | |
83 plot_info$plot_symbols = rep(1, length(res)) | |
84 plot_info$plot_title = "Control vs Cases Plot" | |
85 return(plot_info) | |
86 } | |
87 | |
88 # outliers plot; colour outliers red, non-outliers green | |
89 setup_ol_plot = function(pca_data, outliers) { | |
90 plot_info = list() | |
91 nsamples = dim(pca_data$values)[1] | |
92 groups = 1:nsamples | |
93 groups[outliers] = 1 | |
94 groups[setdiff(1:nsamples, outliers)] = 2 | |
95 plot_info$groups = groups | |
96 plot_info$tags = c("outliers", "good data") | |
97 plot_info$plot_colors = c("red", "green") | |
98 plot_info$plot_symbols = c(1, 20) | |
99 plot_info$plot_title = "Outliers Plot" | |
100 return(plot_info) | |
101 } | |
102 | |
103 # standard deviations plot; colour samples by s.dev | |
104 setup_sd_plot = function(pca_data) { | |
105 plot_info = list() | |
106 nsamples = dim(pca_data$values)[1] | |
107 pc1 = as.numeric(pca_data$values[, 1]) | |
108 pc2 = as.numeric(pca_data$values[, 2]) | |
109 pc1_sds = as.numeric(lapply(pc1, compute_numsds, pc1)) | |
110 pc2_sds = as.numeric(lapply(pc2, compute_numsds, pc2)) | |
111 | |
112 groups = 1:nsamples | |
113 groups[get_sdset2d(pc1_sds, pc2_sds, 1)] = 1 | |
114 groups[get_sdset2d(pc1_sds, pc2_sds, 2)] = 2 | |
115 groups[get_sdset2d(pc1_sds, pc2_sds, 3)] = 3 | |
116 groups[union(which(pc1_sds > 3), which(pc2_sds > 3))] = 4 | |
117 plot_info$groups = groups | |
118 plot_info$tags = c("SD = 1", "SD = 2", "SD = 3", "SD > 3") | |
119 plot_info$plot_colors = rainbow(4) | |
120 plot_info$plot_symbols = rep(20, 4) | |
121 plot_info$plot_title = "Standard Deviations Plot" | |
122 return(plot_info) | |
123 } | |
124 | |
125 # Plot samples, with coloured clusters. Rejected clusters use | |
126 # a cross symbol instead of a filled circle | |
127 setup_cluster_plot = function(pca_data, clusters, rc=NULL) { | |
128 plot_info = list() | |
129 groups = clusters | |
130 ids = sort(unique(groups)) | |
131 n = length(ids) | |
132 tags = 1:n | |
133 for (i in 1:n) { | |
134 tags[i] = sprintf("cluster %s", ids[i]) | |
135 } | |
136 outliers = which(groups == 0) | |
137 if (length(outliers) != 0) { | |
138 tags[1] = "outliers" | |
139 } | |
140 plot_colors = rainbow(n) | |
141 plot_symbols = rep(20, n) | |
142 if (length(outliers) != 0) { | |
143 plot_symbols[1] = 1 | |
144 } | |
145 # labelling for rejected clusters | |
146 if(!is.null(rc)) { | |
147 for(i in 1:n) { | |
148 if((ids[i] != 0) && (ids[i] %in% as.numeric(rc))) { | |
149 tags[i] = "rej. clust." | |
150 plot_symbols[i] = 4 | |
151 } | |
152 } | |
153 } | |
154 plot_info$groups = groups | |
155 plot_info$tags = tags | |
156 plot_info$plot_colors = plot_colors | |
157 plot_info$plot_symbols = plot_symbols | |
158 plot_info$plot_title = "Cluster Plot" | |
159 return(plot_info) | |
160 } | |
161 | |
162 # Plot samples, colouring by ethnicity. Different ethnicities also | |
163 # have different symbols. | |
164 setup_ethnicity_plot = function(pca_data, ethnicity_data) { | |
165 plot_info = list() | |
166 nsamples = dim(pca_data$values)[1] | |
167 eth = 1:nsamples | |
168 | |
169 for (i in 1:nsamples) { | |
170 sample_id = pca_data$ids[i] | |
171 eth[i] = as.character(ethnicity_data[sample_id, "population"]) | |
172 if(is.na(eth[i])) { | |
173 eth[i] = "UNKNOWN" | |
174 } | |
175 } | |
176 n = length(unique(eth)) | |
177 plot_info$groups = as.numeric(as.factor(eth)) | |
178 plot_info$tags = sort(unique(eth)) | |
179 plot_info$plot_colors = rainbow(n) | |
180 plot_info$plot_symbols = 1:n | |
181 plot_info$plot_title = "Ethnicity Plot" | |
182 return(plot_info) | |
183 } | |
184 | |
185 draw_cutoffs = function(input_data, x, y, numsds) { | |
186 pcx = as.numeric(input_data[x, ]) | |
187 pcy = as.numeric(input_data[y, ]) | |
188 | |
189 vlines = c(median(pcx) - numsds*sd(pcx), | |
190 median(pcx) + numsds*sd(pcx)) | |
191 hlines = c(median(pcy) - numsds*sd(pcy), | |
192 median(pcy) + numsds*sd(pcy)) | |
193 abline(v=vlines) | |
194 abline(h=hlines) | |
195 } | |
196 | |
197 # Following helper functions are used in the 'setup_sd_plot' function | |
198 # given a list of standard deviations, work out which points are n standard deviations away | |
199 get_sdset2d = function(x1, x2, n) { | |
200 if (n == 1) { | |
201 ind = intersect(which(x1 == 1), which(x2 == 1)) | |
202 } else { | |
203 lower = get_sdset2d(x1, x2, n - 1) | |
204 upper = union(which(x1 > n), which(x2 > n)) | |
205 xset = union(lower, upper) | |
206 bigset = union(which(x1 == n), which(x2 == n)) | |
207 ind = setdiff(bigset, xset) | |
208 } | |
209 return(ind) | |
210 } | |
211 | |
212 # work out how many standard deviations away from the sample median a single point is | |
213 # accuracy of this decreases for outliers, as the error in the estimated sd is | |
214 # multiplied | |
215 compute_numsds = function(point, x) { | |
216 x_sd = sd(x) | |
217 sum = x_sd | |
218 m = median(x) | |
219 i = 1 | |
220 while(abs(point - m) > sum) { | |
221 i = i + 1 | |
222 sum = sum + x_sd | |
223 } | |
224 return(i) | |
225 } |