Mercurial > repos > proteomisc > preprocess_dataset
view preprocess_datasets/Affymetrix_Preprocessing.R @ 23:c0cc4bdf07af draft
Uploaded
author | proteomisc |
---|---|
date | Mon, 04 Dec 2023 10:04:13 +0000 |
parents | 2f468dd9ea39 |
children | adbd4545d00d |
line wrap: on
line source
options(show.error.messages=F,warn=-1, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) sink(stdout(), type = "message") sink(stdout() ,type = "output") suppressWarnings(suppressMessages(library(affy))) suppressWarnings(suppressMessages(library(affyPLM))) suppressWarnings(suppressMessages(library(batch))) suppressWarnings(suppressMessages(library(annotate))) suppressWarnings(suppressMessages(library(limma))) suppressWarnings(suppressMessages(library(markdown))) suppressWarnings(suppressMessages(library(knitr))) source_local <- function(fname){ argv <- commandArgs(trailingOnly = FALSE) base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) source(paste(base_dir, fname, sep="/")) } file_path <- function(fname){ argv <- commandArgs(trailingOnly = FALSE) base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) pato <- paste(base_dir, fname, sep="/") return(pato) } base_dir <- function(){ argv <- commandArgs(trailingOnly = FALSE) base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) return(base_dir) } source_local("Affymetrix_Preprocessing_Functions.R") listArguments = parseCommandArgs(evaluate=FALSE) thefunctions=listArguments[["thefunctions"]] listArguments[["thefunctions"]]=NULL h=listArguments[["h"]] listArguments[["h"]]=NULL w=listArguments[["w"]] listArguments[["w"]]=NULL if (!is.null(listArguments[["image"]])){ load(listArguments[["image"]]) listArguments[["image"]]=NULL } listArguments[["rawdata"]]=MicroArray_Object$affy_object if(datasetsource=="intern"){ designo<-MicroArray_Object$designo } if(datasetsource=="extern"){ listArguments<-append(listArguments,list(datasetsource=datasetsource,listfullnames=listfullnames)) } Prepro_object<-do.call(thefunctions,listArguments) if(datasetsource=="extern"){ rownames(Prepro_object$data.bg@phenoData@data)<-listfullnames colnames(exprs(Prepro_object$data.bg))<-listfullnames colnames(exprs(Prepro_object$data.sm))<-listfullnames colnames(exprs(Prepro_object$data.norm))<-listfullnames colnames(exprs(Prepro_object$data.bg))<-listfullnames colnames(exprs(Prepro_object$data.norm))<-listfullnames rownames(Prepro_object$data.norm@phenoData@data)<-listfullnames rownames(Prepro_object$data.norm@protocolData@data)<-listfullnames } par(las=2,mar=c(15,2,1,1)) png(filename ="boxplot_before_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") par(las=2,mar=c(15,2,1,1)) boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.bg)))), main="Boxplot of intensities before Normalization",col="red",las=2,mar=c(15,2,1,1)) dev.off() par(las=2,mar=c(15,2,1,1)) png(filename ="boxplot_after_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") par(las=2,mar=c(15,2,1,1)) boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.sm)))), main="Boxplot of intensities After Normalization",col="red",ylab="(intensities)",las=2,mar=c(15,2,1,1)) dev.off() png(filename ="MA_plot.png",width = w, height = h) MAplot((Prepro_object$data.norm) , show.statistics = F, span = 2/3, family.loess = "gaussian", cex = 2, plot.method = as.character("smoothScatter"), azdd.loess = TRUE, lwd = 1, lty = 1, loess.col = "red") dev.off() png(filename = "densities_plot_before_NM.png",width = w, height = h) plotDensities(exprs(Prepro_object$data.bg),log=T) dev.off() png(filename = "densities_plot_after_NM.png",width = w, height = h) plotDensities(exprs(Prepro_object$data.norm),log=T) dev.off() AffymetrixRmd=file_path("Affymetrix.Rmd") Style=file_path("look.css") suppressWarnings(suppressMessages(knit2html(AffymetrixRmd,output="PreprocessingPlots.html",quiet = T))) rm(listArguments) save.image("MicroArray.Preprocessing.RData") sink() sink()