# HG changeset patch # User proteomisc # Date 1701612443 0 # Node ID bdc430a41508b9ec8e315fb01e514b56845c86ba # Parent 09a8947f1031eda4358121a3b54bb0df430ced51 Uploaded diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Affymetrix.Rmd --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Affymetrix.Rmd Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,373 @@ + + + Preprocessing Plots Before and After + + + +
+

Preprocessing

+

+Preprocessing of an `r datasetsource` DataSet, issued from +`r technology` +technology. +

+

Used methods for each step

+ +

Background correction methods

+
method : `r listArguments[["backgroundcorrection_method"]]`
+

Normalization methods

+
method : `r listArguments[["normalization_method"]]`
+

Summarization methods

+
method : `r listArguments[["summary_method"]]`
+

Boxplots

+

Before NM

+

+
+ +
+

+

After NM

+

+
+ +
+

+

MA plots

+

+
+ +
+

+

Densities plot

+

Before NM

+

+
+ +
+

+

After NM

+

+
+ +
+

+ + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Affymetrix_Preprocessing.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Affymetrix_Preprocessing.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,93 @@ +options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) +sink(stdout(), type = "message") +suppressWarnings(suppressMessages(library(affy))) +suppressWarnings(suppressMessages(library(affyPLM))) +suppressWarnings(suppressMessages(library(batch))) +suppressWarnings(suppressMessages(library(annotate))) +suppressWarnings(suppressMessages(library(limma))) +suppressWarnings(suppressMessages(library(markdown))) +suppressWarnings(suppressMessages(library(knitr))) +suppressWarnings(suppressMessages(library(BiocInstaller))) +source_local <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + source(paste(base_dir, fname, sep="/")) +} +file_path <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + pato <- paste(base_dir, fname, sep="/") + return(pato) +} +base_dir <- function(){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + return(base_dir) +} +source_local("Affymetrix_Preprocessing_Functions.R") +listArguments = parseCommandArgs(evaluate=FALSE) +thefunctions=listArguments[["thefunctions"]] +listArguments[["thefunctions"]]=NULL +h=listArguments[["h"]] +listArguments[["h"]]=NULL +w=listArguments[["w"]] +listArguments[["w"]]=NULL +if (!is.null(listArguments[["image"]])){ + load(listArguments[["image"]]) + listArguments[["image"]]=NULL +} +listArguments[["path"]]="" +print(listArguments) +listArguments[["rawdata"]]=MicroArray_Object$affy_object +if(datasetsource=="intern"){ +designo<-MicroArray_Object$designo +} + +if(datasetsource=="extern"){ +listArguments<-append(listArguments,list(datasetsource=datasetsource,listfullnames=listfullnames)) +} +Prepro_object<-do.call(thefunctions,listArguments) +if(datasetsource=="extern"){ +rownames(Prepro_object$data.bg@phenoData@data)<-listfullnames +colnames(exprs(Prepro_object$data.bg))<-listfullnames +colnames(exprs(Prepro_object$data.sm))<-listfullnames +colnames(exprs(Prepro_object$data.norm))<-listfullnames +colnames(exprs(Prepro_object$data.bg))<-listfullnames +colnames(exprs(Prepro_object$data.norm))<-listfullnames +rownames(Prepro_object$data.norm@phenoData@data)<-listfullnames +rownames(Prepro_object$data.norm@protocolData@data)<-listfullnames +} +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_before_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +par(las=2,mar=c(15,2,1,1)) +boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.bg)))), main="Boxplot of intensities before Normalization",col="red",las=2,mar=c(15,2,1,1)) + +dev.off() + + + +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_after_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +par(las=2,mar=c(15,2,1,1)) +boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.sm)))), main="Boxplot of intensities After Normalization",col="red",ylab="(intensities)",las=2,mar=c(15,2,1,1)) + +dev.off() +png(filename ="MA_plot.png",width = w, height = h) +MAplot((Prepro_object$data.norm) , + show.statistics = F, span = 2/3, family.loess = "gaussian", + cex = 2, plot.method = as.character("smoothScatter"), + azdd.loess = TRUE, lwd = 1, lty = 1, loess.col = "red") + +dev.off() +png(filename = "densities_plot_before_NM.png",width = w, height = h) +plotDensities(exprs(Prepro_object$data.bg),log=T) +dev.off() + +png(filename = "densities_plot_after_NM.png",width = w, height = h) +plotDensities(exprs(Prepro_object$data.norm),log=T) +dev.off() +AffymetrixRmd=file_path("Affymetrix.Rmd") +Style=file_path("look.css") +suppressWarnings(suppressMessages(knit2html(AffymetrixRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) +rm(listArguments) +save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Affymetrix_Preprocessing_Functions.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Affymetrix_Preprocessing_Functions.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,32 @@ +AffymetrixPreprocessingFunction<-function(path="",rawdata,backgroundcorrection_method,normalization_method,summary_method,datasetsource="",listfullnames="") +{ + colnames(exprs(rawdata))<-listfullnames + data.bg<-bg.correct(rawdata, method=backgroundcorrection_method) + data.norm<-normalize(data.bg, method=normalization_method) + data.sm<-threestep(data.norm, background=F, normalize=F,summary.method=summary_method) + data_matrix=exprs(data.sm) + sampleNames(data.sm)<-listfullnames + if(datasetsource=="extern"){ + colnames(data_matrix)<-listfullnames + data.sm=ExpressionSet(data_matrix,phenoData=phenoData(data.sm),featureData=featureData(data.sm), + experimentData=experimentData(data.sm),annotation=annotation(data.sm),protocolData=protocolData(data.sm)) + write.table(format(exprs(data.sm), justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + }else{ + colnames(data_matrix)<-designo$sample + data.sm=ExpressionSet(data_matrix,phenoData=phenoData(data.sm),featureData=featureData(data.sm), + experimentData=experimentData(data.sm),annotation=annotation(data.sm),protocolData=protocolData(data.sm)) + write.table(format(exprs(data.sm), justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + } + installed<-as.data.frame(installed.packages()) + lbraries=paste(annotation(data.sm),"db",sep='.') + if(!lbraries%in%installed$Package){ + biocLite(lbraries[!lbraries%in%installed$Package])} + + suppressWarnings(suppressMessages(library(lbraries,character.only = TRUE))) + + symbol<-getSYMBOL(rownames(exprs(data.sm)), annotation(data.sm)) + return(list(data.bg=data.bg,data.norm=data.norm,data.sm=data.sm,matrix_data=exprs(data.sm),symbol=symbol)) + + } diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Agilent_One_Color_Preprocessing.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Agilent_One_Color_Preprocessing.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,89 @@ +options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) +sink(stdout(), type = "message") +suppressWarnings(suppressMessages(library(limma))) +suppressWarnings(suppressMessages(library(batch))) +suppressWarnings(suppressMessages(library(marray))) +suppressWarnings(suppressMessages(library(IDPmisc))) +suppressWarnings(suppressMessages(library(markdown))) +suppressWarnings(suppressMessages(library(knitr))) +source_local <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + source(paste(base_dir, fname, sep="/")) +} +file_path <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + pato <- paste(base_dir, fname, sep="/") + return(pato) +} +base_dir <- function(){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + return(base_dir) +} +source_local("Agilent_One_Color_Preprocessing_Functions.R") +listArguments = parseCommandArgs(evaluate=FALSE) +print(listArguments) +load(listArguments[["image"]]) +names(listArguments)[which(names(listArguments)=="image")]="data" +listArguments[["data"]]=MicroArray_Object$RFile +if(datasetsource=="intern"){ +designo<-MicroArray_Object$designo +} +thefunction=listArguments[["thefunction"]] +listArguments[["thefunction"]]=NULL +listArguments[["thefunctions"]]=NULL +h=listArguments[["h"]] +listArguments[["h"]]=NULL +w=listArguments[["w"]] +listArguments[["w"]]=NULL +Prepro_object<-do.call(thefunction,listArguments) +if(datasetsource=="extern"){ +colnames(MicroArray_Object[[1]]$E)<-listfullnames +colnames(Prepro_object$dataBG$E)<-listfullnames +colnames(Prepro_object$dataNBA$E)<-listfullnames +colnames(MicroArray_Object[[1]]@.Data[[1]])<-listcelsnames[-1] +colnames(MicroArray_Object[[1]]@.Data[[2]])<-listcelsnames[-1] +rownames(MicroArray_Object[[1]]@.Data[[3]])<-listcelsnames[-1] +MicroArray_Object[[1]]@.Data[[3]]$FileName<-listfullnames +colnames(Prepro_object$dataBG@.Data[[1]])<-listcelsnames[-1] +Prepro_object$dataBG@.Data[[2]]$FileName<-listfullnames +colnames(Prepro_object$dataNBA[[1]])<-listcelsnames[-1] +Prepro_object$dataNBA[[2]]$FileName<-listfullnames +} +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$E))), main="Boxplot of log2( intensities) before Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() + +png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") + +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$E))), main="Boxplot of log2( intensities) After Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() + + +png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") + +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNBA$E))), main="Boxplot of log2( intensities) After Normalization Between Arrays",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() +png(filename = "densities_plot_before_BG.png",width = w, height = h) +plotDensities(MicroArray_Object[[1]],log=T) +dev.off() + +png(filename = "densities_plot_after_BG.png",width = w, height = h) +plotDensities(Prepro_object$dataBG,log=T) +dev.off() + + +png(filename = "densities_plot_after_NBA.png",width = w, height = h) +plotDensities(Prepro_object$dataNBA,log=T) +dev.off() +OneColorRmd=file_path("OneColor.Rmd") +Style=file_path("look.css") +suppressWarnings(suppressMessages(knit2html(OneColorRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) +rm(listArguments) +save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Agilent_One_Color_Preprocessing_Functions.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Agilent_One_Color_Preprocessing_Functions.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,17 @@ +AgilentOneColorPreprocessingFunction<- function(path,data,methodBC,methodNBA) +{ +MA <<- backgroundCorrect(data, method=methodBC ,offset = 2) +rownames(MA$E)=MA$genes$ProbeName +MA<-MA[rm.na(rownames(MA$E)),] +MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) +data_mt<-NaRV.omit(as.data.frame(MAb$E)) +MAb$E=(data_mt) +MAb$genes=(MAb$genes[(MAb$genes$ProbeName %in% rownames(MAb$E)),]) +MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ProbeName))) +data_matrix=NaRV.omit(MA.avg$E) +colnames(data_matrix)<-designo$sample +write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + +return(list(dataNBA=MA.avg,dataBG=MA,matrix_data=as.matrix(MA.avg$E),symbol=MA.avg$genes$GeneName)) +} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Agilent_Two_Colors_Preprocessing.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Agilent_Two_Colors_Preprocessing.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,113 @@ +options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) +sink(stdout(), type = "message") +suppressWarnings(suppressMessages(library(limma))) +suppressWarnings(suppressMessages(library(batch))) +suppressWarnings(suppressMessages(library(marray))) +suppressWarnings(suppressMessages(library(IDPmisc))) +suppressWarnings(suppressMessages(library(affy))) +suppressWarnings(suppressMessages(library(markdown))) +suppressWarnings(suppressMessages(library(knitr))) +source_local <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + source(paste(base_dir, fname, sep="/")) +} +file_path <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + pato <- paste(base_dir, fname, sep="/") + return(pato) +} +base_dir <- function(){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + return(base_dir) +} +source_local("Make_matrix_two_channels.R") +source_local("Agilent_Two_Colors_Preprocessing_Functions.R") +listArguments = parseCommandArgs(evaluate=FALSE) +print(listArguments) +# print(thefunction) +load(listArguments[["image"]]) +names(listArguments)[which(names(listArguments)=="image")]="data" +listArguments[["data"]]=MicroArray_Object$RFile + +thefunction=listArguments[["thefunction"]] +listArguments[["thefunction"]]=NULL +h=listArguments[["h"]] +listArguments[["h"]]=NULL +w=listArguments[["w"]] +listArguments[["w"]]=NULL +# print(thefunction) +if(datasetsource=="intern"){ +designo<-MicroArray_Object$designo +} + +Prepro_object<-do.call(thefunction,listArguments) +designo<-Prepro_object$designo +RGNBA=RG.MA(Prepro_object$dataNBA) +if(datasetsource=="extern"){ +colnames(MicroArray_Object[[1]]$G)<-listcelsnames[-1] +colnames(MicroArray_Object[[1]]$R)<-listcelsnames[-1] +colnames(Prepro_object$dataBG$G)<-listcelsnames[-1] +colnames(Prepro_object$dataBG$R)<-listcelsnames[-1] +colnames(Prepro_object$dataNWA$G)<-listcelsnames[-1] +colnames(Prepro_object$dataNWA$R)<-listcelsnames[-1] +colnames(RGNBA$G)<-listcelsnames[-1] +colnames(RGNBA$R)<-listcelsnames[-1] + +} +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$R))), main="Boxplot of log2(R intensities) before BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$G))), main="Boxplot of log2(G intensities) before BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() + +png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$R))), main="Boxplot of log2(R intensities) After BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$G))), main="Boxplot of log2(G intensities) After BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() + +png(filename ="boxplot_after_NWA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$R))), main="Boxplot of log2(R intensities) After NWA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$G))), main="Boxplot of log2(G intensities) After NWA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() +png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(RGNBA$R))), main="Boxplot of log2(R intensities) After NBA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(RGNBA$G))), main="Boxplot of log2(G intensities) After NBA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() +png(filename ="MA_plot.png",width = w, height = h) +ma.plot(na.omit(Prepro_object$dataNBA$A), na.omit(Prepro_object$dataNBA$M), + show.statistics = F, span = 2/3, family.loess = "gaussian", + cex = 2, plot.method = as.character("smoothScatter"), + add.loess = TRUE, lwd = 1, lty = 1, loess.col = "red",main="MA plot") + +dev.off() +png(filename = "densities_plot_before_BG.png",width = w, height = h) +plotDensities(MicroArray_Object[[1]],log=T) +dev.off() + +png(filename = "densities_plot_after_BG.png",width = w, height = h) +plotDensities(Prepro_object$dataBG,log=T) +dev.off() + +png(filename = "densities_plot_after_NWA.png",width = w, height = h) +plotDensities(Prepro_object$dataNWA,log=T) +dev.off() + +png(filename = "densities_plot_after_NBA.png",width = w, height = h) +plotDensities(Prepro_object$dataNBA,log=T) +dev.off() +TwoColorsRmd=file_path("TwoColors.Rmd") +Style=file_path("look.css") +suppressWarnings(suppressMessages(knit2html(TwoColorsRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) +rm(listArguments) +save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Agilent_Two_Colors_Preprocessing_Functions.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Agilent_Two_Colors_Preprocessing_Functions.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,21 @@ +AgilentTwoChannelsPreprocessingFunction<- function(path,data,methodBC,methodNWA,methodNBA) +{ + RG <<- suppressWarnings(suppressMessages(backgroundCorrect(data,method=methodBC, offset= 16))) + MA <<- suppressWarnings(suppressMessages(normalizeWithinArrays(RG, method=methodNWA,bc.method="none"))) + rownames(MA$A)=rownames(MA$M)=MA$gene$ProbeName + MA<-MA[rm.na(rownames(MA$M)),] + MAb <<- suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) + data_mt<-NaRV.omit(as.data.frame(MAb$M)) + MAb$M=(data_mt) + MAb$A=NaRV.omit(as.data.frame(MAb$A)) + MAb$genes=(MAb$genes[(MAb$genes$ProbeName %in% c(rownames(MAb$A),rownames(MAb$M))),]) + RG.pq <<- RG.MA(MA) + MA.avg <- suppressWarnings(suppressMessages(avereps(MAb,ID=MAb$genes$ProbeName))) + data_matrix=NaRV.omit(MA.avg$M) + colnames(data_matrix)<-designo$sample + write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + Prepro_object1<-list(dataBG=RG,dataNWA=RG.pq,dataNBA=MA.avg,matrix_data=as.matrix(data_matrix),symbol=(MA.avg$genes$GeneName)) + Prepro_object1=make_design(MA_matrix=Prepro_object1) + return(Prepro_object1) +} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/GenePix_One_Color_Preprocessing.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/GenePix_One_Color_Preprocessing.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,91 @@ +options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) +sink(stdout(), type = "message") +suppressWarnings(suppressMessages(library(limma))) +suppressWarnings(suppressMessages(library(marray))) +suppressWarnings(suppressMessages(library(batch))) +suppressWarnings(suppressMessages(library(IDPmisc))) +suppressWarnings(suppressMessages(library(markdown))) +suppressWarnings(suppressMessages(library(knitr))) +source_local <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + source(paste(base_dir, fname, sep="/")) +} +file_path <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + pato <- paste(base_dir, fname, sep="/") + return(pato) +} +base_dir <- function(){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + return(base_dir) +} +source_local("GenePix_One_Color_Preprocessing_Functions.R") +listArguments = parseCommandArgs(evaluate=FALSE) +print(listArguments) +load(listArguments[["image"]]) +names(listArguments)[which(names(listArguments)=="image")]="data" +listArguments[["data"]]=MicroArray_Object$RFile +if(datasetsource=="intern"){ +designo<-MicroArray_Object$designo +} +thefunction=listArguments[["thefunction"]] +listArguments[["thefunction"]]=NULL +listArguments[["thefunctions"]]=NULL +h=listArguments[["h"]] +listArguments[["h"]]=NULL +w=listArguments[["w"]] +listArguments[["w"]]=NULL +Prepro_object<-do.call(thefunction,listArguments) +RGNBA=RG.MA(Prepro_object$dataNBA) +if(datasetsource=="extern"){ +colnames(MicroArray_Object[[1]]$E)<-listfullnames# +colnames(Prepro_object$dataBG$E)<-listfullnames# +colnames(Prepro_object$dataNBA$E)<-listfullnames# +colnames(MicroArray_Object[[1]]@.Data[[1]])<-listcelsnames[-1]# +colnames(MicroArray_Object[[1]]@.Data[[2]])<-listcelsnames[-1]# +rownames(MicroArray_Object[[1]]@.Data[[3]])<-listcelsnames[-1]# +MicroArray_Object[[1]]@.Data[[3]]$FileName<-listfullnames# +colnames(Prepro_object$dataBG@.Data[[1]])<-listcelsnames[-1]# +Prepro_object$dataBG@.Data[[2]]$FileName<-listfullnames# +colnames(Prepro_object$dataNBA[[1]])<-listcelsnames[-1]# +Prepro_object$dataNBA[[2]]$FileName<-listfullnames# +} +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") + +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$E))), main="Boxplot of log2( intensities) before Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() + +png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") + +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$E))), main="Boxplot of log2( intensities) After Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() + + +png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") + +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNBA$E))), main="Boxplot of log2( intensities) After Normalization Between Arrays",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) + +dev.off() +png(filename = "densities_plot_before_BG.png",width = w, height = h) +plotDensities(MicroArray_Object[[1]],log=T) +dev.off() + +png(filename = "densities_plot_after_BG.png",width = w, height = h) +plotDensities(Prepro_object$dataBG,log=T) +dev.off() + + +png(filename = "densities_plot_after_NBA.png",width = w, height = h) +plotDensities(Prepro_object$dataNBA,log=T) +dev.off() +OneColorRmd=file_path("OneColor.Rmd") +Style=file_path("look.css") +suppressWarnings(suppressMessages(knit2html(OneColorRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) +rm(listArguments) +save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/GenePix_One_Color_Preprocessing_Functions.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/GenePix_One_Color_Preprocessing_Functions.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,17 @@ +GenePixOneColorPreprocessingFunction<- function(path,data,methodBC,methodNBA) +{ + MA <<- suppressWarnings(suppressMessages(backgroundCorrect(data, method=methodBC ,offset = 16))) + rownames(MA$E)=MA$genes$ID + MA<-MA[rm.na(rownames(MA$E)),] + MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) + data_mt<-NaRV.omit(as.data.frame(MAb$E)) + MAb$E=(data_mt) + MAb$genes=(MAb$genes[(MAb$genes$ID %in% rownames(MAb$E)),]) + MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ID))) + data_matrix=NaRV.omit(MA.avg$E) + colnames(data_matrix)<-designo$sample + write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + return(list(dataNBA=MA.avg,dataBG=MA,matrix_data=as.matrix(MA.avg$E),symbol=MA.avg$genes$Name)) +} + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/GenePix_Two_Colors_Preprocessing.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/GenePix_Two_Colors_Preprocessing.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,110 @@ +options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) +sink(stdout(), type = "message") +suppressWarnings(suppressMessages(library(limma))) +suppressWarnings(suppressMessages(library(marray))) +suppressWarnings(suppressMessages(library(batch))) +suppressWarnings(suppressMessages(library(IDPmisc))) +suppressWarnings(suppressMessages(library(affy))) +suppressWarnings(suppressMessages(library(markdown))) +suppressWarnings(suppressMessages(library(knitr))) +source_local <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + source(paste(base_dir, fname, sep="/")) +} +file_path <- function(fname){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + pato <- paste(base_dir, fname, sep="/") + return(pato) +} +base_dir <- function(){ + argv <- commandArgs(trailingOnly = FALSE) + base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) + return(base_dir) +} +source_local("Make_matrix_two_channels.R") +source_local("GenePix_Two_Colors_Preprocessing_Functions.R") +listArguments = parseCommandArgs(evaluate=FALSE) +print(listArguments) +load(listArguments[["image"]]) +names(listArguments)[which(names(listArguments)=="image")]="data" +listArguments[["data"]]=MicroArray_Object$RFile +thefunction=listArguments[["thefunction"]] +listArguments[["thefunction"]]=NULL +h=listArguments[["h"]] +listArguments[["h"]]=NULL +w=listArguments[["w"]] +listArguments[["w"]]=NULL +# print(thefunction) +if(datasetsource=="intern"){ +designo<-MicroArray_Object$designo +} +Prepro_object<-do.call(thefunction,listArguments) +designo<-Prepro_object$designo +RGNBA=RG.MA(Prepro_object$dataNBA) +if(datasetsource=="extern"){ +colnames(MicroArray_Object[[1]]$G)<-listcelsnames[-1] +colnames(MicroArray_Object[[1]]$R)<-listcelsnames[-1] +colnames(Prepro_object$dataBG$G)<-listcelsnames[-1] +colnames(Prepro_object$dataBG$R)<-listcelsnames[-1] +colnames(Prepro_object$dataNWA$G)<-listcelsnames[-1] +colnames(Prepro_object$dataNWA$R)<-listcelsnames[-1] +colnames(RGNBA$G)<-listcelsnames[-1] +colnames(RGNBA$R)<-listcelsnames[-1] + +} +par(las=2,mar=c(15,2,1,1)) +png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$R))), main="Boxplot of log2(R intensities) before BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$G))), main="Boxplot of log2(G intensities) before BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() + +png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$R))), main="Boxplot of log2(R intensities) After BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$G))), main="Boxplot of log2(G intensities) After BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() + +png(filename ="boxplot_after_NWA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$R))), main="Boxplot of log2(R intensities) After NWA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$G))), main="Boxplot of log2(G intensities) After NWA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() +png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") +old.par <- par(mfrow=c(1, 2)) +boxplot(log2(na.omit(as.data.frame(RGNBA$R))), main="Boxplot of log2(R intensities) After NBA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) +boxplot(log2(na.omit(as.data.frame(RGNBA$G))), main="Boxplot of log2(G intensities) After NBA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) +par(old.par) +dev.off() +png(filename ="MA_plot.png",width = w, height = h) +ma.plot(na.omit(Prepro_object$dataNBA$A), na.omit(Prepro_object$dataNBA$M), + show.statistics = F, span = 2/3, family.loess = "gaussian", + cex = 2, plot.method = as.character("smoothScatter"), + add.loess = TRUE, lwd = 1, lty = 1, loess.col = "red",main="MA plot") + +dev.off() +png(filename = "densities_plot_before_BG.png",width = w, height = h) +plotDensities(MicroArray_Object[[1]],log=T) +dev.off() + +png(filename = "densities_plot_after_BG.png",width = w, height = h) +plotDensities(Prepro_object$dataBG,log=T) +dev.off() + +png(filename = "densities_plot_after_NWA.png",width = w, height = h) +plotDensities(Prepro_object$dataNWA,log=T) +dev.off() + +png(filename = "densities_plot_after_NBA.png",width = w, height = h) +plotDensities(Prepro_object$dataNBA,log=T) +dev.off() +TwoColorsRmd=file_path("TwoColors.Rmd") +Style=file_path("look.css") +suppressWarnings(suppressMessages(knit2html(TwoColorsRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) +rm(listArguments) +save.image(file="MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,21 @@ +GenePixTwoChannelsPreprocessingFunction<- function(path,data,methodBC,methodNWA,methodNBA) +{ + RG <<- backgroundCorrect(data,method=methodBC, offset=64) + MA <<- suppressWarnings(suppressMessages(normalizeWithinArrays(RG, method=methodNWA,bc.method="none"))) + rownames(MA$A)=rownames(MA$M)=MA$gene$ID + MA<-MA[rm.na(rownames(MA$M)),] + RG.pq <<- RG.MA(MA) + MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) + data_mt<-NaRV.omit(as.data.frame(MAb$M)) + MAb$M=(data_mt) + MAb$A=NaRV.omit(as.data.frame(MAb$A)) + MAb$genes=(MAb$genes[(MAb$genes$ID %in% c(rownames(MAb$A),rownames(MAb$M))),]) + MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ID))) + data_matrix=NaRV.omit(MA.avg$M) + colnames(data_matrix)<-designo$sample + write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="Matrix.Data.tsv") + +return(make_design(MA_matrix=list(dataBG=RG,dataNWA=RG.pq,dataNBA=MA.avg,matrix_data=as.matrix(data_matrix),symbol=MA.avg$genes$Name))) +} + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Make_matrix_two_channels.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Make_matrix_two_channels.R Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,28 @@ +make_design<-function(MA_matrix){ + matrix<-RG.MA(MA_matrix$dataNBA) + colnames_matrix<-NULL + tmp<-strsplit(colnames(MA_matrix$dataNBA),split=".",fixed = T) + for(i in 1:ncol(MA_matrix$dataNBA)){ + colnames_matrix[i]<-paste(tmp[[i]][1],"R",sep=".") + + # .Red intensity + } + i=1; + for(j in (ncol(MA_matrix$dataNBA)+1):((ncol(MA_matrix$dataNBA)*2))){ + + colnames_matrix[j]<-paste(tmp[[i]][1],"G",sep=".") + i<-i+1; + # .Green intensity + } + matrix_data<-cbind(matrix$R,matrix$G) + colnames(matrix_data)<-colnames_matrix + rownames(matrix_data)<-rownames(MA_matrix$dataNBA) + MA_matrix$matrix_data<-log2(matrix_data) + groupe<-c(rep("case",ncol(matrix$R)),rep("control",ncol(matrix$G))) + sample=colnames(matrix_data) + designo<-data.frame(sample=sample,groupetype=rep(designo$group,2),group=groupe) + MA_matrix$designo<-designo + write.table(format(designo, justify="right"),sep="\t", quote=FALSE, + row.names=T, col.names=T,file="design.txt") + return(MA_matrix) +} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/OneColor.Rmd --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/OneColor.Rmd Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,370 @@ + + + Preprocessing Plots Before and After + + + +
+

Preprocessing

+

+Preprocessing of an `r datasetsource` DataSet, issued from +`r technology` +technology. +

+

Used methods for each step

+ +

Background correction methods

+
method : `r listArguments[["methodBC"]]`
+

Normalization methods

+
method : `r listArguments[["methodNBA"]]`
+

Boxplots

+

Before BG

+

+
+ +
+

+

After NBA

+

+
+ +
+

+

Densities plot

+

Before BG

+

+
+ +
+

+

After BG and NBA

+

+
+ +
+

+

+
+ +
+

+ + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/Preprocess_DataSet.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/Preprocess_DataSet.xml Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,306 @@ + + Preprocessing microarrays datasets.Contains Background Correction, Normalization within arrays, between arrays (depending on the number of channels) and summarization. + + citations.xml + + + r-base + r-batch + bioconductor-affyplm + bioconductor-affy + bioconductor-annotate + r-knitr + bioconductor-marray + r-idpmisc + r-kernsmooth + r-rmarkdown + r-markdown + bioconductor-limma + r-idpmisc + + + + + + + + + + 'Read.Project' in value.name + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +.. class:: infomark + +**Authors** T.Bensellak, B.Ettetuani. + +--------------------------------------------------- + +================================== +Preprocessing Microarray DataSet +================================== + +----------- +Description +----------- + +This tool is used as first phase of the global workflow, the preprocessing . + +----------------- +Workflow position +----------------- + +**Upstream tools** + ++-------------------------------+------------------------------+---------+ +| Name | output file |format | ++===============================+==============================+=========+ +| Read.DataSet.Microarray | MicroArrayObject.RData | Rdat | ++-------------------------------+------------------------------+---------+ + + +**Downstream tools** + ++-----------------------------------------------+----------------------------------------------+---------+ +| Name | Output file | Format | ++===============================================+==============================================+=========+ +|Tests and Selection | Test.results.tsv | Tabular | ++-----------------------------------------------+----------------------------------------------+---------+ + +----------- +Input files +----------- + ++---------------------------+------------+ +| Parameter : num + label | Format | ++===========================+============+ +| Image | Rdata | ++---------------------------+------------+ +| Methods parmeters | Numeric | ++---------------------------+------------+ + +------------ +Output files +------------ + +**Microarray.Preprocessing.RData** + +**Matrix.Data.tsv** + +------------------------------ +General schema of the workflow +------------------------------ + +https://bensellak.github.io/microarrays-galaxy/workflow.png + + + + + + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/TwoColors.Rmd --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/TwoColors.Rmd Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,387 @@ + + + Preprocessing Plots Before and After + + + +
+

Preprocessing

+

+Preprocessing of an `r datasetsource` DataSet, issued from +`r technology` +technology. +

+

Used methods for each step

+ +

Background correction methods

+
method : `r listArguments[["methodBC"]]`
+

Normalization methods

+
methodNWA : `r listArguments[["methodNWA"]]`
+
methodNBA : `r listArguments[["methodNBA"]]`
+

Boxplots

+

Before BG

+

+
+ +
+

+

After BG, NWA and NBA

+

+
+ +
+

+

+
+ +
+

+

+
+ +
+

+

MA plots

+

+
+ +
+

+

Densities plot

+

Before BG

+

+
+ +
+

+

After BG and NWA

+

+
+ +
+

+

+
+ +
+

+ + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/citations.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/citations.xml Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,113 @@ + + 1.0 + + + + @Manual{, + title = {R: A Language and Environment for Statistical Computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + address = {Vienna, Austria}, + year = {2017}, + url = {https://www.R-project.org/}, + } + + + @Article{, + title = {Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in {R} with {batch}}, + author = {Thomas J. Hoffmann}, + journal = {Journal of Statistical Software, Code Snippets}, + year = {2011}, + volume = {39}, + number = {1}, + pages = {1--11}, + url = {http://www.jstatsoft.org/v39/c01/}, + } + + + @Article{, + author = {Laurent Gautier and Leslie Cope and Benjamin M. Bolstad and Rafael A. Irizarry}, + title = {affy---analysis of Affymetrix GeneChip data at the probe level}, + journal = {Bioinformatics}, + volume = {20}, + number = {3}, + year = {2004}, + issn = {1367-4803}, + pages = {307--315}, + doi = {10.1093/bioinformatics/btg405}, + publisher = {Oxford University Press}, + address = {Oxford, UK}, + } + + + @Article{, + author = {Matthew E Ritchie and Belinda Phipson and Di Wu and Yifang Hu and Charity W Law and Wei Shi and Gordon K Smyth}, + title = {{limma} powers differential expression analyses for {RNA}-sequencing and microarray studies}, + journal = {Nucleic Acids Research}, + year = {2015}, + volume = {43}, + number = {7}, + pages = {e47}, + } + + + @Article{, + title = {Quality assessment for short oligonucleotide arrays.}, + author = {Julia Brettschneider and Francois Collin and Benjamin M Bolstad and Terence P Speed}, + journal = {Technometrics}, + year = {2007}, + volume = {In press}, + } + + + @Manual{, + title = {annotate: Annotation for microarrays}, + author = {R. Gentleman}, + year = {2017}, + note = {R package version 1.56.0}, + } + + + @Manual{, + title = {knitr: A General-Purpose Package for Dynamic Report Generation in R}, + author = {Yihui Xie}, + year = {2017}, + note = {R package version 1.16}, + url = {http://yihui.name/knitr/}, + } + + + @Manual{, + title = {marray: Exploratory analysis for two-color spotted microarray data}, + author = {Yee Hwa Yang with contributions from Agnes Paquet and Sandrine Dudoit.}, + year = {2009}, + note = {R package version 1.58.0}, + url = {http://www.maths.usyd.edu.au/u/jeany/}, + } + + + @Manual{, + title = {IDPmisc: Utilities of Institute of Data Analyses and Process Design +(www.idp.zhaw.ch)}, + author = {Rene Locher and Andreas Ruckstuhl et al.}, + year = {2012}, + note = {R package version 1.1.17}, + url = {https://CRAN.R-project.org/package=IDPmisc}, + } + + + @Manual{, + title = {KernSmooth: Functions for Kernel Smoothing Supporting Wand and Jones (1995)}, + author = {Matt Wand}, + year = {2015}, + note = {R package version 2.23-15}, + url = {https://CRAN.R-project.org/package=KernSmooth}, + } + + + + + + + + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/look.css --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/look.css Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,317 @@ +/* css racine */ + +body { +/* font-family: Comic Sans MS;*/ +} + +div.research { + background-color: #33ffff; /*#208090 */ /*#228491*/; + color: #0000ff; /* ffffff */ +} + +div.ensg { + background-color: #bbee00; + color: #0000ff; +} + +div.research span.invisible { + visibility:hidden; +} + +kbd { + color: #000000; +} + +pre { + color: #000000; +} + +A:link { + color: #0000ee; /*#ffffff;*/ +} + +A:active { + color: #ff0000; /* #ffffff */ +} + +A:hover { +/* font-size: 2em; */ + text-decoration: none; + color: #0000ee; /* ffffff */ + background-color: #FFFF33; +} + +h3 { + color: #FF0000; +} + +h4 { + color: #FF0000; +} + +div.correction { + color: #008800; +/* color: #000000; */ +} + +div.detail { + font-size: 70%; +} + +div.section { + text-align: center; + font-size: 140%; + color: #FF0000; +} + +div.subsection { + text-align: left; + font-size: 120%; + color: #bb0000; + background-color: #FFFF33; +} + +div.titreDuModule { + text-align: center; + font-size: 200%; + color: #FF0099; +} + +div.formation { + text-align: center; + font-size: 120%; + color: #FF0099; +} + +div.ensg.titreDuModule { + text-align: center; + font-size: 200%; + color: #FF0099; +} + +div.ensg.formation { + text-align: center; + font-size: 120%; + color: #FF0099; +} + +span.indice { + font-size: 70%; +} + +span.question { + color: #bb0000; +} + +span.tresImportant { + color: #bb0000; + font-size: 200% +} + +span.assezImportant { + color: #bb0000; + font-size: 150% +} + +span.important { + color: #bb0000; +} + +span.crucial { + color: #bb0000; +} + +span.crucial:hover { + font-size: 400%; +} + +acronym { + text-decoration: none; +} + +div.theoreme:before { + content: "Théorème : "; +} + +div.theoreme:after { + content: "emèroéhT"; +} + +div.theoreme ul li:before { + content: "1 alinéa "; +} + +div.theoreme li:after { + content: " ce qui termine l'alinéa"; +} + +div.tpID { + background-color: #33ffff; + color: #0000ff; +} + +div.tpR { + font-family: serif; + color: #000000; + background-color: #fff; +} + +div.tpR span.detail { + font-size: 75%; +} + +div.tpR div.correction:before { + content: "Idée de la correction : "; +} + +div.tpR div.correction { + background-color: #00ffff; + border: solid #009999; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +div.tpR div.exercices:before { + content: "Exercices : "; +} +div.tpR div.exercices { + background-color: #00ee00; + border: solid #00cc00; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +div.tpR div.solution:before { + content: "Solution : "; +} +div.tpR div.solution { + background-color: #ff00ff; + border: solid #990099; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +div.tpR div.exercice:before { + content: "Exercice : "; +} +div.tpR div.exercice { + background-color: #00ee00; + border: solid #00cc00; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +div.tpR div.questions:before { + content: "Questions : "; +} +div.tpR div.questions { + background-color: #ff99ff; + border: solid #ff99ff; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +div.tpR span.index { +/* background-color: #ffff33;*/ +} + +div.tpR h1 { + font-family: sans-serif; + color: #000; + border-style: solid; + background-color: #ddf; + border-color: #88f; + border-width: 1px; + padding-left: 0.5em; +} + +div.tpR h2 { + font-family: sans-serif; + color: #000; + border-style: solid; + border-color: #8f8; + background-color: #dfd; + border-width: 1px; + padding-left: 0.5em; +} + +div.tpR h3 { + font-family: sans-serif; + color: #000; + border-style: solid; + background-color: #fdd; + border-color: #f88; + border-width: 1px; + padding-left: 0.5em; +} + +div.tpR a:link { + color: #00f +} + +div.tpR a:visited { + color: #f0f +} + +div.tpR p { + margin-left: 1em; +} + +div.tpR pre { + background-color: #eee; + border: solid #ccc; + padding: 0.5em; + margin-left: 2em; + border-width: 1px; +} + +.redify pre { + color: #ff0000; +} + +div.tpR hr { + border-style: solid; + border-color: #02c; + background-color: #ddf; + border-color: #88f; + border-width: 1px; + padding-top: 1px; + padding-bottom: 1px; +} + +div.pp { + color: #FF0000; +} + +div.infobulle{ + position: absolute; + visibility : hidden; + border: 1px solid Black; + padding: 10px; + font-family: Verdana, Arial; + font-size: 13px; + background-color: #ffffff; + -moz-border-radius: 20px; /* pour avoir des coins arrondis */ +} + +/* http://www.w3schools.com/CSS/css_display_visibility.asp */ +span.commentPub{ + background-color: #77ff33; +} + +span.moreCommentOnPub{ +/* position: absolute;*/ +/* visibility : hidden;*/ +/* border: 1px solid Black; + padding: 10px; + font-family: Verdana, Arial; + font-size: 13px;*/ + background-color: #77ff33; + -moz-border-radius: 3em 1em /* 20px; pour avoir des coins arrondis */ + border-radius: 3em 1em; /* 20px; pour avoir des coins arrondis */ +} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Affymetrix.Rmd --- a/preprocess_datasets/preprocess_datasets/Affymetrix.Rmd Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,373 +0,0 @@ - - - Preprocessing Plots Before and After - - - -
-

Preprocessing

-

-Preprocessing of an `r datasetsource` DataSet, issued from -`r technology` -technology. -

-

Used methods for each step

- -

Background correction methods

-
method : `r listArguments[["backgroundcorrection_method"]]`
-

Normalization methods

-
method : `r listArguments[["normalization_method"]]`
-

Summarization methods

-
method : `r listArguments[["summary_method"]]`
-

Boxplots

-

Before NM

-

-
- -
-

-

After NM

-

-
- -
-

-

MA plots

-

-
- -
-

-

Densities plot

-

Before NM

-

-
- -
-

-

After NM

-

-
- -
-

- - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Affymetrix_Preprocessing.R --- a/preprocess_datasets/preprocess_datasets/Affymetrix_Preprocessing.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,93 +0,0 @@ -options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) -sink(stdout(), type = "message") -suppressWarnings(suppressMessages(library(affy))) -suppressWarnings(suppressMessages(library(affyPLM))) -suppressWarnings(suppressMessages(library(batch))) -suppressWarnings(suppressMessages(library(annotate))) -suppressWarnings(suppressMessages(library(limma))) -suppressWarnings(suppressMessages(library(markdown))) -suppressWarnings(suppressMessages(library(knitr))) -suppressWarnings(suppressMessages(library(BiocInstaller))) -source_local <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - source(paste(base_dir, fname, sep="/")) -} -file_path <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - pato <- paste(base_dir, fname, sep="/") - return(pato) -} -base_dir <- function(){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - return(base_dir) -} -source_local("Affymetrix_Preprocessing_Functions.R") -listArguments = parseCommandArgs(evaluate=FALSE) -thefunctions=listArguments[["thefunctions"]] -listArguments[["thefunctions"]]=NULL -h=listArguments[["h"]] -listArguments[["h"]]=NULL -w=listArguments[["w"]] -listArguments[["w"]]=NULL -if (!is.null(listArguments[["image"]])){ - load(listArguments[["image"]]) - listArguments[["image"]]=NULL -} -listArguments[["path"]]="" -print(listArguments) -listArguments[["rawdata"]]=MicroArray_Object$affy_object -if(datasetsource=="intern"){ -designo<-MicroArray_Object$designo -} - -if(datasetsource=="extern"){ -listArguments<-append(listArguments,list(datasetsource=datasetsource,listfullnames=listfullnames)) -} -Prepro_object<-do.call(thefunctions,listArguments) -if(datasetsource=="extern"){ -rownames(Prepro_object$data.bg@phenoData@data)<-listfullnames -colnames(exprs(Prepro_object$data.bg))<-listfullnames -colnames(exprs(Prepro_object$data.sm))<-listfullnames -colnames(exprs(Prepro_object$data.norm))<-listfullnames -colnames(exprs(Prepro_object$data.bg))<-listfullnames -colnames(exprs(Prepro_object$data.norm))<-listfullnames -rownames(Prepro_object$data.norm@phenoData@data)<-listfullnames -rownames(Prepro_object$data.norm@protocolData@data)<-listfullnames -} -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_before_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -par(las=2,mar=c(15,2,1,1)) -boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.bg)))), main="Boxplot of intensities before Normalization",col="red",las=2,mar=c(15,2,1,1)) - -dev.off() - - - -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_after_NM.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -par(las=2,mar=c(15,2,1,1)) -boxplot((na.omit(as.data.frame(exprs(Prepro_object$data.sm)))), main="Boxplot of intensities After Normalization",col="red",ylab="(intensities)",las=2,mar=c(15,2,1,1)) - -dev.off() -png(filename ="MA_plot.png",width = w, height = h) -MAplot((Prepro_object$data.norm) , - show.statistics = F, span = 2/3, family.loess = "gaussian", - cex = 2, plot.method = as.character("smoothScatter"), - azdd.loess = TRUE, lwd = 1, lty = 1, loess.col = "red") - -dev.off() -png(filename = "densities_plot_before_NM.png",width = w, height = h) -plotDensities(exprs(Prepro_object$data.bg),log=T) -dev.off() - -png(filename = "densities_plot_after_NM.png",width = w, height = h) -plotDensities(exprs(Prepro_object$data.norm),log=T) -dev.off() -AffymetrixRmd=file_path("Affymetrix.Rmd") -Style=file_path("look.css") -suppressWarnings(suppressMessages(knit2html(AffymetrixRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) -rm(listArguments) -save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Affymetrix_Preprocessing_Functions.R --- a/preprocess_datasets/preprocess_datasets/Affymetrix_Preprocessing_Functions.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,32 +0,0 @@ -AffymetrixPreprocessingFunction<-function(path="",rawdata,backgroundcorrection_method,normalization_method,summary_method,datasetsource="",listfullnames="") -{ - colnames(exprs(rawdata))<-listfullnames - data.bg<-bg.correct(rawdata, method=backgroundcorrection_method) - data.norm<-normalize(data.bg, method=normalization_method) - data.sm<-threestep(data.norm, background=F, normalize=F,summary.method=summary_method) - data_matrix=exprs(data.sm) - sampleNames(data.sm)<-listfullnames - if(datasetsource=="extern"){ - colnames(data_matrix)<-listfullnames - data.sm=ExpressionSet(data_matrix,phenoData=phenoData(data.sm),featureData=featureData(data.sm), - experimentData=experimentData(data.sm),annotation=annotation(data.sm),protocolData=protocolData(data.sm)) - write.table(format(exprs(data.sm), justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - }else{ - colnames(data_matrix)<-designo$sample - data.sm=ExpressionSet(data_matrix,phenoData=phenoData(data.sm),featureData=featureData(data.sm), - experimentData=experimentData(data.sm),annotation=annotation(data.sm),protocolData=protocolData(data.sm)) - write.table(format(exprs(data.sm), justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - } - installed<-as.data.frame(installed.packages()) - lbraries=paste(annotation(data.sm),"db",sep='.') - if(!lbraries%in%installed$Package){ - biocLite(lbraries[!lbraries%in%installed$Package])} - - suppressWarnings(suppressMessages(library(lbraries,character.only = TRUE))) - - symbol<-getSYMBOL(rownames(exprs(data.sm)), annotation(data.sm)) - return(list(data.bg=data.bg,data.norm=data.norm,data.sm=data.sm,matrix_data=exprs(data.sm),symbol=symbol)) - - } diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Agilent_One_Color_Preprocessing.R --- a/preprocess_datasets/preprocess_datasets/Agilent_One_Color_Preprocessing.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,89 +0,0 @@ -options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) -sink(stdout(), type = "message") -suppressWarnings(suppressMessages(library(limma))) -suppressWarnings(suppressMessages(library(batch))) -suppressWarnings(suppressMessages(library(marray))) -suppressWarnings(suppressMessages(library(IDPmisc))) -suppressWarnings(suppressMessages(library(markdown))) -suppressWarnings(suppressMessages(library(knitr))) -source_local <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - source(paste(base_dir, fname, sep="/")) -} -file_path <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - pato <- paste(base_dir, fname, sep="/") - return(pato) -} -base_dir <- function(){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - return(base_dir) -} -source_local("Agilent_One_Color_Preprocessing_Functions.R") -listArguments = parseCommandArgs(evaluate=FALSE) -print(listArguments) -load(listArguments[["image"]]) -names(listArguments)[which(names(listArguments)=="image")]="data" -listArguments[["data"]]=MicroArray_Object$RFile -if(datasetsource=="intern"){ -designo<-MicroArray_Object$designo -} -thefunction=listArguments[["thefunction"]] -listArguments[["thefunction"]]=NULL -listArguments[["thefunctions"]]=NULL -h=listArguments[["h"]] -listArguments[["h"]]=NULL -w=listArguments[["w"]] -listArguments[["w"]]=NULL -Prepro_object<-do.call(thefunction,listArguments) -if(datasetsource=="extern"){ -colnames(MicroArray_Object[[1]]$E)<-listfullnames -colnames(Prepro_object$dataBG$E)<-listfullnames -colnames(Prepro_object$dataNBA$E)<-listfullnames -colnames(MicroArray_Object[[1]]@.Data[[1]])<-listcelsnames[-1] -colnames(MicroArray_Object[[1]]@.Data[[2]])<-listcelsnames[-1] -rownames(MicroArray_Object[[1]]@.Data[[3]])<-listcelsnames[-1] -MicroArray_Object[[1]]@.Data[[3]]$FileName<-listfullnames -colnames(Prepro_object$dataBG@.Data[[1]])<-listcelsnames[-1] -Prepro_object$dataBG@.Data[[2]]$FileName<-listfullnames -colnames(Prepro_object$dataNBA[[1]])<-listcelsnames[-1] -Prepro_object$dataNBA[[2]]$FileName<-listfullnames -} -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$E))), main="Boxplot of log2( intensities) before Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() - -png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") - -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$E))), main="Boxplot of log2( intensities) After Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() - - -png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") - -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNBA$E))), main="Boxplot of log2( intensities) After Normalization Between Arrays",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() -png(filename = "densities_plot_before_BG.png",width = w, height = h) -plotDensities(MicroArray_Object[[1]],log=T) -dev.off() - -png(filename = "densities_plot_after_BG.png",width = w, height = h) -plotDensities(Prepro_object$dataBG,log=T) -dev.off() - - -png(filename = "densities_plot_after_NBA.png",width = w, height = h) -plotDensities(Prepro_object$dataNBA,log=T) -dev.off() -OneColorRmd=file_path("OneColor.Rmd") -Style=file_path("look.css") -suppressWarnings(suppressMessages(knit2html(OneColorRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) -rm(listArguments) -save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Agilent_One_Color_Preprocessing_Functions.R --- a/preprocess_datasets/preprocess_datasets/Agilent_One_Color_Preprocessing_Functions.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,17 +0,0 @@ -AgilentOneColorPreprocessingFunction<- function(path,data,methodBC,methodNBA) -{ -MA <<- backgroundCorrect(data, method=methodBC ,offset = 2) -rownames(MA$E)=MA$genes$ProbeName -MA<-MA[rm.na(rownames(MA$E)),] -MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) -data_mt<-NaRV.omit(as.data.frame(MAb$E)) -MAb$E=(data_mt) -MAb$genes=(MAb$genes[(MAb$genes$ProbeName %in% rownames(MAb$E)),]) -MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ProbeName))) -data_matrix=NaRV.omit(MA.avg$E) -colnames(data_matrix)<-designo$sample -write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - -return(list(dataNBA=MA.avg,dataBG=MA,matrix_data=as.matrix(MA.avg$E),symbol=MA.avg$genes$GeneName)) -} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Agilent_Two_Colors_Preprocessing.R --- a/preprocess_datasets/preprocess_datasets/Agilent_Two_Colors_Preprocessing.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,113 +0,0 @@ -options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) -sink(stdout(), type = "message") -suppressWarnings(suppressMessages(library(limma))) -suppressWarnings(suppressMessages(library(batch))) -suppressWarnings(suppressMessages(library(marray))) -suppressWarnings(suppressMessages(library(IDPmisc))) -suppressWarnings(suppressMessages(library(affy))) -suppressWarnings(suppressMessages(library(markdown))) -suppressWarnings(suppressMessages(library(knitr))) -source_local <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - source(paste(base_dir, fname, sep="/")) -} -file_path <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - pato <- paste(base_dir, fname, sep="/") - return(pato) -} -base_dir <- function(){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - return(base_dir) -} -source_local("Make_matrix_two_channels.R") -source_local("Agilent_Two_Colors_Preprocessing_Functions.R") -listArguments = parseCommandArgs(evaluate=FALSE) -print(listArguments) -# print(thefunction) -load(listArguments[["image"]]) -names(listArguments)[which(names(listArguments)=="image")]="data" -listArguments[["data"]]=MicroArray_Object$RFile - -thefunction=listArguments[["thefunction"]] -listArguments[["thefunction"]]=NULL -h=listArguments[["h"]] -listArguments[["h"]]=NULL -w=listArguments[["w"]] -listArguments[["w"]]=NULL -# print(thefunction) -if(datasetsource=="intern"){ -designo<-MicroArray_Object$designo -} - -Prepro_object<-do.call(thefunction,listArguments) -designo<-Prepro_object$designo -RGNBA=RG.MA(Prepro_object$dataNBA) -if(datasetsource=="extern"){ -colnames(MicroArray_Object[[1]]$G)<-listcelsnames[-1] -colnames(MicroArray_Object[[1]]$R)<-listcelsnames[-1] -colnames(Prepro_object$dataBG$G)<-listcelsnames[-1] -colnames(Prepro_object$dataBG$R)<-listcelsnames[-1] -colnames(Prepro_object$dataNWA$G)<-listcelsnames[-1] -colnames(Prepro_object$dataNWA$R)<-listcelsnames[-1] -colnames(RGNBA$G)<-listcelsnames[-1] -colnames(RGNBA$R)<-listcelsnames[-1] - -} -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$R))), main="Boxplot of log2(R intensities) before BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$G))), main="Boxplot of log2(G intensities) before BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() - -png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$R))), main="Boxplot of log2(R intensities) After BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$G))), main="Boxplot of log2(G intensities) After BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() - -png(filename ="boxplot_after_NWA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$R))), main="Boxplot of log2(R intensities) After NWA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$G))), main="Boxplot of log2(G intensities) After NWA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() -png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(RGNBA$R))), main="Boxplot of log2(R intensities) After NBA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(RGNBA$G))), main="Boxplot of log2(G intensities) After NBA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() -png(filename ="MA_plot.png",width = w, height = h) -ma.plot(na.omit(Prepro_object$dataNBA$A), na.omit(Prepro_object$dataNBA$M), - show.statistics = F, span = 2/3, family.loess = "gaussian", - cex = 2, plot.method = as.character("smoothScatter"), - add.loess = TRUE, lwd = 1, lty = 1, loess.col = "red",main="MA plot") - -dev.off() -png(filename = "densities_plot_before_BG.png",width = w, height = h) -plotDensities(MicroArray_Object[[1]],log=T) -dev.off() - -png(filename = "densities_plot_after_BG.png",width = w, height = h) -plotDensities(Prepro_object$dataBG,log=T) -dev.off() - -png(filename = "densities_plot_after_NWA.png",width = w, height = h) -plotDensities(Prepro_object$dataNWA,log=T) -dev.off() - -png(filename = "densities_plot_after_NBA.png",width = w, height = h) -plotDensities(Prepro_object$dataNBA,log=T) -dev.off() -TwoColorsRmd=file_path("TwoColors.Rmd") -Style=file_path("look.css") -suppressWarnings(suppressMessages(knit2html(TwoColorsRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) -rm(listArguments) -save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Agilent_Two_Colors_Preprocessing_Functions.R --- a/preprocess_datasets/preprocess_datasets/Agilent_Two_Colors_Preprocessing_Functions.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,21 +0,0 @@ -AgilentTwoChannelsPreprocessingFunction<- function(path,data,methodBC,methodNWA,methodNBA) -{ - RG <<- suppressWarnings(suppressMessages(backgroundCorrect(data,method=methodBC, offset= 16))) - MA <<- suppressWarnings(suppressMessages(normalizeWithinArrays(RG, method=methodNWA,bc.method="none"))) - rownames(MA$A)=rownames(MA$M)=MA$gene$ProbeName - MA<-MA[rm.na(rownames(MA$M)),] - MAb <<- suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) - data_mt<-NaRV.omit(as.data.frame(MAb$M)) - MAb$M=(data_mt) - MAb$A=NaRV.omit(as.data.frame(MAb$A)) - MAb$genes=(MAb$genes[(MAb$genes$ProbeName %in% c(rownames(MAb$A),rownames(MAb$M))),]) - RG.pq <<- RG.MA(MA) - MA.avg <- suppressWarnings(suppressMessages(avereps(MAb,ID=MAb$genes$ProbeName))) - data_matrix=NaRV.omit(MA.avg$M) - colnames(data_matrix)<-designo$sample - write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - Prepro_object1<-list(dataBG=RG,dataNWA=RG.pq,dataNBA=MA.avg,matrix_data=as.matrix(data_matrix),symbol=(MA.avg$genes$GeneName)) - Prepro_object1=make_design(MA_matrix=Prepro_object1) - return(Prepro_object1) -} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/GenePix_One_Color_Preprocessing.R --- a/preprocess_datasets/preprocess_datasets/GenePix_One_Color_Preprocessing.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,91 +0,0 @@ -options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) -sink(stdout(), type = "message") -suppressWarnings(suppressMessages(library(limma))) -suppressWarnings(suppressMessages(library(marray))) -suppressWarnings(suppressMessages(library(batch))) -suppressWarnings(suppressMessages(library(IDPmisc))) -suppressWarnings(suppressMessages(library(markdown))) -suppressWarnings(suppressMessages(library(knitr))) -source_local <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - source(paste(base_dir, fname, sep="/")) -} -file_path <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - pato <- paste(base_dir, fname, sep="/") - return(pato) -} -base_dir <- function(){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - return(base_dir) -} -source_local("GenePix_One_Color_Preprocessing_Functions.R") -listArguments = parseCommandArgs(evaluate=FALSE) -print(listArguments) -load(listArguments[["image"]]) -names(listArguments)[which(names(listArguments)=="image")]="data" -listArguments[["data"]]=MicroArray_Object$RFile -if(datasetsource=="intern"){ -designo<-MicroArray_Object$designo -} -thefunction=listArguments[["thefunction"]] -listArguments[["thefunction"]]=NULL -listArguments[["thefunctions"]]=NULL -h=listArguments[["h"]] -listArguments[["h"]]=NULL -w=listArguments[["w"]] -listArguments[["w"]]=NULL -Prepro_object<-do.call(thefunction,listArguments) -RGNBA=RG.MA(Prepro_object$dataNBA) -if(datasetsource=="extern"){ -colnames(MicroArray_Object[[1]]$E)<-listfullnames# -colnames(Prepro_object$dataBG$E)<-listfullnames# -colnames(Prepro_object$dataNBA$E)<-listfullnames# -colnames(MicroArray_Object[[1]]@.Data[[1]])<-listcelsnames[-1]# -colnames(MicroArray_Object[[1]]@.Data[[2]])<-listcelsnames[-1]# -rownames(MicroArray_Object[[1]]@.Data[[3]])<-listcelsnames[-1]# -MicroArray_Object[[1]]@.Data[[3]]$FileName<-listfullnames# -colnames(Prepro_object$dataBG@.Data[[1]])<-listcelsnames[-1]# -Prepro_object$dataBG@.Data[[2]]$FileName<-listfullnames# -colnames(Prepro_object$dataNBA[[1]])<-listcelsnames[-1]# -Prepro_object$dataNBA[[2]]$FileName<-listfullnames# -} -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") - -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$E))), main="Boxplot of log2( intensities) before Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() - -png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") - -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$E))), main="Boxplot of log2( intensities) After Background Correction",col="red",ylab="log2( intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() - - -png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") - -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNBA$E))), main="Boxplot of log2( intensities) After Normalization Between Arrays",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) - -dev.off() -png(filename = "densities_plot_before_BG.png",width = w, height = h) -plotDensities(MicroArray_Object[[1]],log=T) -dev.off() - -png(filename = "densities_plot_after_BG.png",width = w, height = h) -plotDensities(Prepro_object$dataBG,log=T) -dev.off() - - -png(filename = "densities_plot_after_NBA.png",width = w, height = h) -plotDensities(Prepro_object$dataNBA,log=T) -dev.off() -OneColorRmd=file_path("OneColor.Rmd") -Style=file_path("look.css") -suppressWarnings(suppressMessages(knit2html(OneColorRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) -rm(listArguments) -save.image("MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/GenePix_One_Color_Preprocessing_Functions.R --- a/preprocess_datasets/preprocess_datasets/GenePix_One_Color_Preprocessing_Functions.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,17 +0,0 @@ -GenePixOneColorPreprocessingFunction<- function(path,data,methodBC,methodNBA) -{ - MA <<- suppressWarnings(suppressMessages(backgroundCorrect(data, method=methodBC ,offset = 16))) - rownames(MA$E)=MA$genes$ID - MA<-MA[rm.na(rownames(MA$E)),] - MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) - data_mt<-NaRV.omit(as.data.frame(MAb$E)) - MAb$E=(data_mt) - MAb$genes=(MAb$genes[(MAb$genes$ID %in% rownames(MAb$E)),]) - MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ID))) - data_matrix=NaRV.omit(MA.avg$E) - colnames(data_matrix)<-designo$sample - write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - return(list(dataNBA=MA.avg,dataBG=MA,matrix_data=as.matrix(MA.avg$E),symbol=MA.avg$genes$Name)) -} - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/GenePix_Two_Colors_Preprocessing.R --- a/preprocess_datasets/preprocess_datasets/GenePix_Two_Colors_Preprocessing.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,110 +0,0 @@ -options(show.error.messages=F, error=function(){cat(geterrmessage(),file=stderr());q("no",1,F)}) -sink(stdout(), type = "message") -suppressWarnings(suppressMessages(library(limma))) -suppressWarnings(suppressMessages(library(marray))) -suppressWarnings(suppressMessages(library(batch))) -suppressWarnings(suppressMessages(library(IDPmisc))) -suppressWarnings(suppressMessages(library(affy))) -suppressWarnings(suppressMessages(library(markdown))) -suppressWarnings(suppressMessages(library(knitr))) -source_local <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - source(paste(base_dir, fname, sep="/")) -} -file_path <- function(fname){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - pato <- paste(base_dir, fname, sep="/") - return(pato) -} -base_dir <- function(){ - argv <- commandArgs(trailingOnly = FALSE) - base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) - return(base_dir) -} -source_local("Make_matrix_two_channels.R") -source_local("GenePix_Two_Colors_Preprocessing_Functions.R") -listArguments = parseCommandArgs(evaluate=FALSE) -print(listArguments) -load(listArguments[["image"]]) -names(listArguments)[which(names(listArguments)=="image")]="data" -listArguments[["data"]]=MicroArray_Object$RFile -thefunction=listArguments[["thefunction"]] -listArguments[["thefunction"]]=NULL -h=listArguments[["h"]] -listArguments[["h"]]=NULL -w=listArguments[["w"]] -listArguments[["w"]]=NULL -# print(thefunction) -if(datasetsource=="intern"){ -designo<-MicroArray_Object$designo -} -Prepro_object<-do.call(thefunction,listArguments) -designo<-Prepro_object$designo -RGNBA=RG.MA(Prepro_object$dataNBA) -if(datasetsource=="extern"){ -colnames(MicroArray_Object[[1]]$G)<-listcelsnames[-1] -colnames(MicroArray_Object[[1]]$R)<-listcelsnames[-1] -colnames(Prepro_object$dataBG$G)<-listcelsnames[-1] -colnames(Prepro_object$dataBG$R)<-listcelsnames[-1] -colnames(Prepro_object$dataNWA$G)<-listcelsnames[-1] -colnames(Prepro_object$dataNWA$R)<-listcelsnames[-1] -colnames(RGNBA$G)<-listcelsnames[-1] -colnames(RGNBA$R)<-listcelsnames[-1] - -} -par(las=2,mar=c(15,2,1,1)) -png(filename ="boxplot_before_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$R))), main="Boxplot of log2(R intensities) before BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(MicroArray_Object[[1]]$G))), main="Boxplot of log2(G intensities) before BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() - -png(filename ="boxplot_after_BG.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$R))), main="Boxplot of log2(R intensities) After BGC",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataBG$G))), main="Boxplot of log2(G intensities) After BGC",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() - -png(filename ="boxplot_after_NWA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$R))), main="Boxplot of log2(R intensities) After NWA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(Prepro_object$dataNWA$G))), main="Boxplot of log2(G intensities) After NWA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() -png(filename ="boxplot_after_NBA.png",width = w, height = h, units = "px", pointsize = 14, bg = "white") -old.par <- par(mfrow=c(1, 2)) -boxplot(log2(na.omit(as.data.frame(RGNBA$R))), main="Boxplot of log2(R intensities) After NBA",col="red",ylab="log2(R intensities)",xlab="",las=2,mar=c(15,2,1,1)) -boxplot(log2(na.omit(as.data.frame(RGNBA$G))), main="Boxplot of log2(G intensities) After NBA",col="green",ylab="log2(G intensities)",xlab="",las=2,mar=c(15,2,1,1)) -par(old.par) -dev.off() -png(filename ="MA_plot.png",width = w, height = h) -ma.plot(na.omit(Prepro_object$dataNBA$A), na.omit(Prepro_object$dataNBA$M), - show.statistics = F, span = 2/3, family.loess = "gaussian", - cex = 2, plot.method = as.character("smoothScatter"), - add.loess = TRUE, lwd = 1, lty = 1, loess.col = "red",main="MA plot") - -dev.off() -png(filename = "densities_plot_before_BG.png",width = w, height = h) -plotDensities(MicroArray_Object[[1]],log=T) -dev.off() - -png(filename = "densities_plot_after_BG.png",width = w, height = h) -plotDensities(Prepro_object$dataBG,log=T) -dev.off() - -png(filename = "densities_plot_after_NWA.png",width = w, height = h) -plotDensities(Prepro_object$dataNWA,log=T) -dev.off() - -png(filename = "densities_plot_after_NBA.png",width = w, height = h) -plotDensities(Prepro_object$dataNBA,log=T) -dev.off() -TwoColorsRmd=file_path("TwoColors.Rmd") -Style=file_path("look.css") -suppressWarnings(suppressMessages(knit2html(TwoColorsRmd,output="PreprocessingPlots.html",quiet = T, stylesheet=Style))) -rm(listArguments) -save.image(file="MicroArray.Preprocessing.RData") diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R --- a/preprocess_datasets/preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,21 +0,0 @@ -GenePixTwoChannelsPreprocessingFunction<- function(path,data,methodBC,methodNWA,methodNBA) -{ - RG <<- backgroundCorrect(data,method=methodBC, offset=64) - MA <<- suppressWarnings(suppressMessages(normalizeWithinArrays(RG, method=methodNWA,bc.method="none"))) - rownames(MA$A)=rownames(MA$M)=MA$gene$ID - MA<-MA[rm.na(rownames(MA$M)),] - RG.pq <<- RG.MA(MA) - MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) - data_mt<-NaRV.omit(as.data.frame(MAb$M)) - MAb$M=(data_mt) - MAb$A=NaRV.omit(as.data.frame(MAb$A)) - MAb$genes=(MAb$genes[(MAb$genes$ID %in% c(rownames(MAb$A),rownames(MAb$M))),]) - MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=MAb$genes$ID))) - data_matrix=NaRV.omit(MA.avg$M) - colnames(data_matrix)<-designo$sample - write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="Matrix.Data.tsv") - -return(make_design(MA_matrix=list(dataBG=RG,dataNWA=RG.pq,dataNBA=MA.avg,matrix_data=as.matrix(data_matrix),symbol=MA.avg$genes$Name))) -} - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Make_matrix_two_channels.R --- a/preprocess_datasets/preprocess_datasets/Make_matrix_two_channels.R Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,28 +0,0 @@ -make_design<-function(MA_matrix){ - matrix<-RG.MA(MA_matrix$dataNBA) - colnames_matrix<-NULL - tmp<-strsplit(colnames(MA_matrix$dataNBA),split=".",fixed = T) - for(i in 1:ncol(MA_matrix$dataNBA)){ - colnames_matrix[i]<-paste(tmp[[i]][1],"R",sep=".") - - # .Red intensity - } - i=1; - for(j in (ncol(MA_matrix$dataNBA)+1):((ncol(MA_matrix$dataNBA)*2))){ - - colnames_matrix[j]<-paste(tmp[[i]][1],"G",sep=".") - i<-i+1; - # .Green intensity - } - matrix_data<-cbind(matrix$R,matrix$G) - colnames(matrix_data)<-colnames_matrix - rownames(matrix_data)<-rownames(MA_matrix$dataNBA) - MA_matrix$matrix_data<-log2(matrix_data) - groupe<-c(rep("case",ncol(matrix$R)),rep("control",ncol(matrix$G))) - sample=colnames(matrix_data) - designo<-data.frame(sample=sample,groupetype=rep(designo$group,2),group=groupe) - MA_matrix$designo<-designo - write.table(format(designo, justify="right"),sep="\t", quote=FALSE, - row.names=T, col.names=T,file="design.txt") - return(MA_matrix) -} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/OneColor.Rmd --- a/preprocess_datasets/preprocess_datasets/OneColor.Rmd Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,370 +0,0 @@ - - - Preprocessing Plots Before and After - - - -
-

Preprocessing

-

-Preprocessing of an `r datasetsource` DataSet, issued from -`r technology` -technology. -

-

Used methods for each step

- -

Background correction methods

-
method : `r listArguments[["methodBC"]]`
-

Normalization methods

-
method : `r listArguments[["methodNBA"]]`
-

Boxplots

-

Before BG

-

-
- -
-

-

After NBA

-

-
- -
-

-

Densities plot

-

Before BG

-

-
- -
-

-

After BG and NBA

-

-
- -
-

-

-
- -
-

- - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/Preprocess_DataSet.xml --- a/preprocess_datasets/preprocess_datasets/Preprocess_DataSet.xml Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,306 +0,0 @@ - - Preprocessing microarrays datasets.Contains Background Correction, Normalization within arrays, between arrays (depending on the number of channels) and summarization. - - citations.xml - - - r-base - r-batch - bioconductor-affyplm - bioconductor-affy - bioconductor-annotate - r-knitr - bioconductor-marray - r-idpmisc - r-kernsmooth - r-rmarkdown - r-markdown - bioconductor-limma - r-idpmisc - - - - - - - - - - 'Read.Project' in value.name - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. class:: infomark - -**Authors** T.Bensellak, B.Ettetuani. - ---------------------------------------------------- - -================================== -Preprocessing Microarray DataSet -================================== - ------------ -Description ------------ - -This tool is used as first phase of the global workflow, the preprocessing . - ------------------ -Workflow position ------------------ - -**Upstream tools** - -+-------------------------------+------------------------------+---------+ -| Name | output file |format | -+===============================+==============================+=========+ -| Read.DataSet.Microarray | MicroArrayObject.RData | Rdat | -+-------------------------------+------------------------------+---------+ - - -**Downstream tools** - -+-----------------------------------------------+----------------------------------------------+---------+ -| Name | Output file | Format | -+===============================================+==============================================+=========+ -|Tests and Selection | Test.results.tsv | Tabular | -+-----------------------------------------------+----------------------------------------------+---------+ - ------------ -Input files ------------ - -+---------------------------+------------+ -| Parameter : num + label | Format | -+===========================+============+ -| Image | Rdata | -+---------------------------+------------+ -| Methods parmeters | Numeric | -+---------------------------+------------+ - ------------- -Output files ------------- - -**Microarray.Preprocessing.RData** - -**Matrix.Data.tsv** - ------------------------------- -General schema of the workflow ------------------------------- - -https://bensellak.github.io/microarrays-galaxy/workflow.png - - - - - - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/TwoColors.Rmd --- a/preprocess_datasets/preprocess_datasets/TwoColors.Rmd Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,387 +0,0 @@ - - - Preprocessing Plots Before and After - - - -
-

Preprocessing

-

-Preprocessing of an `r datasetsource` DataSet, issued from -`r technology` -technology. -

-

Used methods for each step

- -

Background correction methods

-
method : `r listArguments[["methodBC"]]`
-

Normalization methods

-
methodNWA : `r listArguments[["methodNWA"]]`
-
methodNBA : `r listArguments[["methodNBA"]]`
-

Boxplots

-

Before BG

-

-
- -
-

-

After BG, NWA and NBA

-

-
- -
-

-

-
- -
-

-

-
- -
-

-

MA plots

-

-
- -
-

-

Densities plot

-

Before BG

-

-
- -
-

-

After BG and NWA

-

-
- -
-

-

-
- -
-

- - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/citations.xml --- a/preprocess_datasets/preprocess_datasets/citations.xml Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,113 +0,0 @@ - - 1.0 - - - - @Manual{, - title = {R: A Language and Environment for Statistical Computing}, - author = {{R Core Team}}, - organization = {R Foundation for Statistical Computing}, - address = {Vienna, Austria}, - year = {2017}, - url = {https://www.R-project.org/}, - } - - - @Article{, - title = {Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in {R} with {batch}}, - author = {Thomas J. Hoffmann}, - journal = {Journal of Statistical Software, Code Snippets}, - year = {2011}, - volume = {39}, - number = {1}, - pages = {1--11}, - url = {http://www.jstatsoft.org/v39/c01/}, - } - - - @Article{, - author = {Laurent Gautier and Leslie Cope and Benjamin M. Bolstad and Rafael A. Irizarry}, - title = {affy---analysis of Affymetrix GeneChip data at the probe level}, - journal = {Bioinformatics}, - volume = {20}, - number = {3}, - year = {2004}, - issn = {1367-4803}, - pages = {307--315}, - doi = {10.1093/bioinformatics/btg405}, - publisher = {Oxford University Press}, - address = {Oxford, UK}, - } - - - @Article{, - author = {Matthew E Ritchie and Belinda Phipson and Di Wu and Yifang Hu and Charity W Law and Wei Shi and Gordon K Smyth}, - title = {{limma} powers differential expression analyses for {RNA}-sequencing and microarray studies}, - journal = {Nucleic Acids Research}, - year = {2015}, - volume = {43}, - number = {7}, - pages = {e47}, - } - - - @Article{, - title = {Quality assessment for short oligonucleotide arrays.}, - author = {Julia Brettschneider and Francois Collin and Benjamin M Bolstad and Terence P Speed}, - journal = {Technometrics}, - year = {2007}, - volume = {In press}, - } - - - @Manual{, - title = {annotate: Annotation for microarrays}, - author = {R. Gentleman}, - year = {2017}, - note = {R package version 1.56.0}, - } - - - @Manual{, - title = {knitr: A General-Purpose Package for Dynamic Report Generation in R}, - author = {Yihui Xie}, - year = {2017}, - note = {R package version 1.16}, - url = {http://yihui.name/knitr/}, - } - - - @Manual{, - title = {marray: Exploratory analysis for two-color spotted microarray data}, - author = {Yee Hwa Yang with contributions from Agnes Paquet and Sandrine Dudoit.}, - year = {2009}, - note = {R package version 1.58.0}, - url = {http://www.maths.usyd.edu.au/u/jeany/}, - } - - - @Manual{, - title = {IDPmisc: Utilities of Institute of Data Analyses and Process Design -(www.idp.zhaw.ch)}, - author = {Rene Locher and Andreas Ruckstuhl et al.}, - year = {2012}, - note = {R package version 1.1.17}, - url = {https://CRAN.R-project.org/package=IDPmisc}, - } - - - @Manual{, - title = {KernSmooth: Functions for Kernel Smoothing Supporting Wand and Jones (1995)}, - author = {Matt Wand}, - year = {2015}, - note = {R package version 2.23-15}, - url = {https://CRAN.R-project.org/package=KernSmooth}, - } - - - - - - - - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/look.css --- a/preprocess_datasets/preprocess_datasets/look.css Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,317 +0,0 @@ -/* css racine */ - -body { -/* font-family: Comic Sans MS;*/ -} - -div.research { - background-color: #33ffff; /*#208090 */ /*#228491*/; - color: #0000ff; /* ffffff */ -} - -div.ensg { - background-color: #bbee00; - color: #0000ff; -} - -div.research span.invisible { - visibility:hidden; -} - -kbd { - color: #000000; -} - -pre { - color: #000000; -} - -A:link { - color: #0000ee; /*#ffffff;*/ -} - -A:active { - color: #ff0000; /* #ffffff */ -} - -A:hover { -/* font-size: 2em; */ - text-decoration: none; - color: #0000ee; /* ffffff */ - background-color: #FFFF33; -} - -h3 { - color: #FF0000; -} - -h4 { - color: #FF0000; -} - -div.correction { - color: #008800; -/* color: #000000; */ -} - -div.detail { - font-size: 70%; -} - -div.section { - text-align: center; - font-size: 140%; - color: #FF0000; -} - -div.subsection { - text-align: left; - font-size: 120%; - color: #bb0000; - background-color: #FFFF33; -} - -div.titreDuModule { - text-align: center; - font-size: 200%; - color: #FF0099; -} - -div.formation { - text-align: center; - font-size: 120%; - color: #FF0099; -} - -div.ensg.titreDuModule { - text-align: center; - font-size: 200%; - color: #FF0099; -} - -div.ensg.formation { - text-align: center; - font-size: 120%; - color: #FF0099; -} - -span.indice { - font-size: 70%; -} - -span.question { - color: #bb0000; -} - -span.tresImportant { - color: #bb0000; - font-size: 200% -} - -span.assezImportant { - color: #bb0000; - font-size: 150% -} - -span.important { - color: #bb0000; -} - -span.crucial { - color: #bb0000; -} - -span.crucial:hover { - font-size: 400%; -} - -acronym { - text-decoration: none; -} - -div.theoreme:before { - content: "Théorème : "; -} - -div.theoreme:after { - content: "emèroéhT"; -} - -div.theoreme ul li:before { - content: "1 alinéa "; -} - -div.theoreme li:after { - content: " ce qui termine l'alinéa"; -} - -div.tpID { - background-color: #33ffff; - color: #0000ff; -} - -div.tpR { - font-family: serif; - color: #000000; - background-color: #fff; -} - -div.tpR span.detail { - font-size: 75%; -} - -div.tpR div.correction:before { - content: "Idée de la correction : "; -} - -div.tpR div.correction { - background-color: #00ffff; - border: solid #009999; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -div.tpR div.exercices:before { - content: "Exercices : "; -} -div.tpR div.exercices { - background-color: #00ee00; - border: solid #00cc00; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -div.tpR div.solution:before { - content: "Solution : "; -} -div.tpR div.solution { - background-color: #ff00ff; - border: solid #990099; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -div.tpR div.exercice:before { - content: "Exercice : "; -} -div.tpR div.exercice { - background-color: #00ee00; - border: solid #00cc00; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -div.tpR div.questions:before { - content: "Questions : "; -} -div.tpR div.questions { - background-color: #ff99ff; - border: solid #ff99ff; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -div.tpR span.index { -/* background-color: #ffff33;*/ -} - -div.tpR h1 { - font-family: sans-serif; - color: #000; - border-style: solid; - background-color: #ddf; - border-color: #88f; - border-width: 1px; - padding-left: 0.5em; -} - -div.tpR h2 { - font-family: sans-serif; - color: #000; - border-style: solid; - border-color: #8f8; - background-color: #dfd; - border-width: 1px; - padding-left: 0.5em; -} - -div.tpR h3 { - font-family: sans-serif; - color: #000; - border-style: solid; - background-color: #fdd; - border-color: #f88; - border-width: 1px; - padding-left: 0.5em; -} - -div.tpR a:link { - color: #00f -} - -div.tpR a:visited { - color: #f0f -} - -div.tpR p { - margin-left: 1em; -} - -div.tpR pre { - background-color: #eee; - border: solid #ccc; - padding: 0.5em; - margin-left: 2em; - border-width: 1px; -} - -.redify pre { - color: #ff0000; -} - -div.tpR hr { - border-style: solid; - border-color: #02c; - background-color: #ddf; - border-color: #88f; - border-width: 1px; - padding-top: 1px; - padding-bottom: 1px; -} - -div.pp { - color: #FF0000; -} - -div.infobulle{ - position: absolute; - visibility : hidden; - border: 1px solid Black; - padding: 10px; - font-family: Verdana, Arial; - font-size: 13px; - background-color: #ffffff; - -moz-border-radius: 20px; /* pour avoir des coins arrondis */ -} - -/* http://www.w3schools.com/CSS/css_display_visibility.asp */ -span.commentPub{ - background-color: #77ff33; -} - -span.moreCommentOnPub{ -/* position: absolute;*/ -/* visibility : hidden;*/ -/* border: 1px solid Black; - padding: 10px; - font-family: Verdana, Arial; - font-size: 13px;*/ - background-color: #77ff33; - -moz-border-radius: 3em 1em /* 20px; pour avoir des coins arrondis */ - border-radius: 3em 1em; /* 20px; pour avoir des coins arrondis */ -} diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/test-data/Matrix.Data.tsv --- a/preprocess_datasets/preprocess_datasets/test-data/Matrix.Data.tsv Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,481 +0,0 @@ -GSM103772_1 GSM103772_2 GSM103773_1 GSM103773_2 GSM103774_1 GSM103774_2 GSM103775_1 GSM103775_2 -1D1 1.070483387 0.782966364 0.339185222 0.237142755 1.178593368 1.146017852 1.478460492 1.483053632 -1D3 -1.838900971 -1.985528114 -1.724478282 -1.961731079 -0.947095566 -0.950124879 -0.946812055 -0.880750063 -1D5 0.554352301 0.331671074 0.186974297 -0.269399606 1.036665860 0.885424189 -0.098387005 -0.114605947 -1D7 1.668501575 1.460589544 1.793182680 1.211817213 0.722140004 0.673965161 1.272594354 1.369054218 -1D9 -0.281406948 -0.383774769 -0.305013846 -0.437412604 -0.383087034 -0.533569526 -0.094848194 -0.106079303 -1D11 -0.113140313 -0.178561344 0.163712497 -0.070070473 1.061037414 0.766667635 1.554574463 1.776605676 -1F1 1.807916488 1.809425975 1.061610335 0.551347858 1.463763330 1.379750985 2.122051315 2.155120184 -1F3 -2.449859520 -2.520289313 -2.800666926 -2.808549116 -3.653098811 -3.005475382 -3.253703664 -2.794533722 -1F5 -2.463435943 -2.416859988 -2.514264858 -2.762291073 -2.340893184 -2.363873211 -2.104734012 -2.104734012 -1F7 -0.441136818 -0.493000250 -0.735023143 -0.849958459 -1.367878629 -1.379722928 -1.092560434 -1.099855075 -1F9 0.197763379 -0.032820388 0.038456806 -0.446089117 0.374560741 0.320454365 1.157033832 1.336629705 -1F11 1.400029823 1.433562159 0.383174857 0.594630992 1.571901946 1.058929170 2.081615263 2.011792859 -1H1 -0.444815395 -0.414932078 -0.820589347 -1.016009836 -0.348952679 -0.447379514 -0.029798446 -0.115536909 -1H3 2.328006611 2.139424022 1.166661827 0.929091180 2.695808522 2.071832171 2.702733294 3.099575183 -1H5 0.251757900 0.231974993 0.093549683 -0.215606103 1.126337979 0.955564922 1.440065879 1.513044539 -1H7 -0.640143060 -0.581703062 -0.558970380 -0.661478019 1.051399884 0.963643353 0.989153849 1.122288049 -1H9 -0.405157899 -0.409547177 -0.533415341 -0.540710039 -0.495851627 -0.553854279 -0.299865921 -0.287102833 -1H11 -2.084347832 -2.131959338 -1.902273813 -1.974999865 -1.609216346 -1.589203422 -1.393350778 -1.414317248 -1B1 0.120720853 0.098028002 0.248945803 0.176797609 -1.652187135 -1.684454278 -1.394866960 -1.398662625 -1B3 0.935857682 0.900363029 1.539634182 1.305631257 0.630620216 0.681519825 1.313598748 1.378056236 -1B5 -2.401064528 -2.399952809 -2.327206321 -2.398198936 -1.418255905 -1.395556877 -1.079086028 -1.060650186 -1B7 -0.217927843 -0.210438597 -0.279243127 -0.291290255 -0.485290939 -0.452997133 -0.063973810 0.017871377 -1B9 -2.751879314 -2.697880042 -2.969488443 -2.980107435 -2.161560029 -2.053862443 -1.837373736 -1.817762128 -1B11 -0.560065928 -0.539768787 -0.292268353 -0.349484844 -0.698327999 -0.708464981 -0.421317745 -0.475797929 -2E1 -1.690725111 -1.713193127 -1.662054628 -1.745766078 -0.745375529 -0.796157320 -0.578399004 -0.615830576 -2E3 -0.270422234 -0.244488879 -0.078086499 -0.202956335 -0.471070084 -0.551788257 -0.204433119 -0.203018426 -2E5 2.370053110 2.230463089 2.648967948 2.723131219 1.640690257 1.413326116 2.786537945 2.835662135 -2E7 -0.478336029 -0.688558932 -0.127302490 -0.374347769 -0.064182558 -0.088407033 0.751345580 0.804886944 -2E9 1.025377343 1.051984639 1.060923403 0.978160119 1.236259125 1.205484132 1.593812681 1.614206872 -2E11 0.645918290 0.472171995 0.820944844 0.612391510 0.587299900 0.594851890 0.727040838 0.695744111 -2G1 0.074255962 0.044474663 0.529500987 0.413935514 -0.129834763 -0.252117620 0.114433126 0.082921145 -2G3 0.585051355 0.835606013 0.314852533 0.498892903 1.031363579 0.826131378 1.422989011 1.367951915 -2G5 -0.950589597 -1.035732379 -1.642384809 -1.764788551 -1.291758577 -1.308783013 -1.346870685 -1.340040282 -2G7 0.563253235 0.433368070 0.391641667 0.317117528 0.425062693 0.314408850 0.800142667 0.813190959 -2G9 -1.096969338 -1.234217141 -0.881501488 -1.065633879 -0.878203024 -0.911462365 -0.907926513 -0.874773603 -2G11 -1.659687069 -1.639769646 -1.191176629 -1.168448513 -1.027860164 -0.988898564 -0.770456149 -0.803959914 -2A1 -1.431004441 -1.325452941 -1.550179315 -1.516964739 -3.826925120 -4.036002598 -3.587773748 -3.615505860 -2A3 -0.779434169 -0.802686599 -0.955091740 -1.007446960 -0.960008805 -0.966751042 -0.537984155 -0.496469400 -2A5 0.296907008 0.305108215 0.369385576 0.541649175 -0.326425328 -0.412198753 0.131331193 0.148448005 -2A7 1.547548935 1.481913249 1.518629013 1.492038142 1.870680932 1.592318392 2.742395284 2.799795504 -2A9 0.465454413 0.501987477 0.280907205 0.425712260 0.610204442 0.523723132 0.837507993 0.794645792 -2A11 -0.329651141 -0.329651141 -0.448195458 -0.610871559 -1.388559468 -1.423460255 -1.332270138 -1.375002133 -2C1 -0.590112380 -0.606227899 -0.688560167 -0.692151578 -1.213041309 -1.298656430 -0.943294257 -1.025581034 -2C3 -1.635740680 -1.611623354 -0.954522216 -0.777848589 -2.656097150 -2.641398690 -2.372692488 -2.378943051 -2C5 0.762471350 0.696425717 0.926629028 0.815146182 0.803709095 0.716475813 1.112618143 1.105109258 -2C7 0.356259744 0.451293220 0.452062471 0.419481733 0.930704264 0.836679035 1.813576534 1.640391184 -2C9 2.885171324 2.373263241 1.592672887 1.604052593 3.199542177 1.970350268 3.287251167 3.723475459 -2C11 0.386669239 0.574182590 0.478882234 0.760396786 1.320771672 1.289996865 2.027278921 1.847911211 -3D1 0.351405080 0.214583336 -0.076988431 -0.182307900 0.223913776 0.204180319 0.197256732 0.258906153 -3D3 -1.290368262 -1.263225510 -1.440665329 -1.403155435 -2.344129195 -2.298299880 -2.040556239 -2.059951308 -3D5 -0.195702524 -0.223096165 0.529921548 0.334866745 -1.062358993 -1.029225395 -0.955037166 -0.937046815 -3D7 -0.543974583 -0.499803594 0.481529137 0.366744488 -0.089438357 -0.027260244 0.456726223 0.474652585 -3D9 -0.990010747 -0.974502623 -0.713483846 -0.800480086 -0.703786440 -0.691271992 -0.009585639 -0.016864812 -3D11 -0.409559430 -0.412825409 -0.322177344 -0.371550935 0.082136997 0.142493125 0.554223587 0.557690888 -3F1 -2.929134146 -2.914620829 -2.897946379 -2.925669114 -0.836035655 -0.814400041 -0.494231143 -0.511971947 -3F3 -0.585369936 -0.446880442 -0.652390688 -0.578437315 0.793636682 0.769230750 1.397982126 1.388947209 -3F5 0.357728739 0.467504767 0.410413976 0.276124130 0.481988181 0.466556380 0.999221423 1.002767022 -3F7 -1.055686422 -1.010545347 -0.412692916 -0.191533872 -1.853169937 -1.882122943 -1.875686195 -1.933754840 -3F9 -0.136374944 -0.166255977 1.202527918 0.700198343 0.441076018 0.479208320 1.043448828 1.157709273 -3F11 1.698215838 1.711208778 1.376281818 1.077943027 1.803028090 1.853539380 2.512708749 2.534394286 -3H1 -2.271204999 -2.219568076 -2.015668447 -2.057594577 -3.373887553 -3.346510165 -2.916293618 -2.935367333 -3H3 -0.782941758 -0.704539402 -0.474170505 -0.427212741 -0.659628450 -0.672993028 -0.328297591 -0.374975812 -3H5 -0.229275508 -0.127991380 -0.107652716 0.005033837 0.164058943 0.206353512 0.751068045 0.740109955 -3H7 -0.099495603 -0.025737544 -0.173944919 -0.173579945 -1.200693214 -1.188082767 -0.485569924 -0.493342173 -3H9 -0.371972533 -0.525794917 -0.664457029 -0.758980180 -0.364367923 -0.415851990 -0.083362074 -0.019341447 -3H11 -0.147494831 -0.230305561 -0.045747510 -0.023017904 0.159756774 0.222168550 0.393339143 0.442252047 -3B1 -0.669078553 -0.733192992 -0.474512761 -0.616567065 -0.501303918 -0.460781223 -0.335960387 -0.304324461 -3B3 -1.316090714 -1.301116055 -0.985058661 -1.009402254 -0.277314256 -0.274526021 -0.232102727 -0.226369424 -3B5 -2.523478875 -2.521667853 -2.485124426 -2.527360901 -3.006443972 -2.975828628 -2.530602991 -2.530602991 -3B7 -0.080124218 -0.049314931 -0.167748980 -0.175385369 -0.023017962 0.027971576 0.512425441 0.517699230 -3B9 -0.827234278 -0.871623207 -0.705246888 -0.879701575 -1.272594354 -1.271377922 -0.937155775 -0.890080407 -3B11 -1.152774000 -0.939300747 -0.533235783 -0.241589921 0.336036048 0.260330024 1.311531869 1.189765916 -6E1 -3.032060296 -2.944614081 -2.955986861 -2.883368765 -0.209066718 -0.162977650 0.128204243 0.124482574 -6E3 -2.976278088 -2.946944327 -3.241393834 -3.218528513 -0.893204489 -0.947604569 -0.290979260 -0.283030672 -6E5 -0.686410638 -0.715992909 -0.555529109 -0.647801356 -0.913275289 -0.926537859 -0.610253372 -0.667883210 -6E7 1.017897404 1.117976813 1.543807685 1.681276096 0.874046352 0.878090128 1.608659248 1.536116405 -6E9 1.224515827 1.381307849 1.114798467 1.148914919 1.545307446 1.556093164 2.274360998 2.286314611 -6E11 -0.846287257 -0.813979557 -0.205392452 -0.348240044 -0.632627288 -0.651203837 -0.464402715 -0.436725539 -6G1 0.129948422 0.104391488 0.886223924 0.426668416 -0.137802630 -0.148503513 0.134565052 0.140848963 -6G3 -2.948209209 -3.129426737 -2.638174776 -2.760450740 0.703015247 0.826602782 1.828582271 1.791801887 -6G5 0.665288674 0.573804790 0.174183332 0.000000000 0.197439507 0.089428267 0.316281353 0.364003639 -6G7 -1.651328067 -1.557444746 -0.654400404 -0.669323163 -4.039163837 -4.018640690 -3.934219916 -3.926549199 -6G9 0.527085673 0.470577191 0.496511558 0.511318056 0.168483966 0.110242922 0.630482435 0.621979935 -6G11 0.290033975 0.216149550 1.120825312 0.852499684 0.387059101 0.430014794 1.133687651 1.224371675 -6A1 0.995649732 0.822469961 1.448985899 0.963550192 0.331857548 0.386450370 1.163460528 1.179730361 -6A3 -0.389218221 -0.374428850 -0.528865583 -0.484141442 0.212394774 0.208525370 1.090512369 1.134719294 -6A5 -0.266265561 -0.310852959 -0.173299652 -0.153458487 0.309436549 0.264238041 0.727677223 0.713704725 -6A7 -0.631930176 -0.640146418 -0.287670949 -0.457408118 -0.082286394 -0.025378000 0.201430855 0.239800329 -6A9 -1.026900905 -1.030609627 -0.823410775 -0.867214057 -0.503836971 -0.500527095 -0.254241517 -0.264517838 -6A11 -1.654424377 -1.602174157 -0.758754997 -0.709652231 -0.891176749 -0.997249900 -0.547796391 -0.623570829 -6C1 -1.895367835 -1.848094700 -2.149904739 -2.193680487 -1.076733418 -1.068984099 -0.834892492 -0.843307171 -6C3 -1.605818913 -1.589033001 -1.105797753 -1.104409164 -1.388766579 -1.377798152 -1.429516903 -1.414316781 -6C5 -1.108500477 -1.028518496 -0.887658416 -0.668395937 -1.254782988 -1.245118610 -0.993360091 -1.027568014 -6C7 -1.215398363 -1.178286244 -1.181857814 -1.119385036 -0.684557167 -0.748869363 -0.294601592 -0.350103762 -6C9 -0.863578550 -0.829926910 -0.473642019 -0.370457443 0.149297422 0.139131871 0.219623925 0.163806662 -6C11 1.139462130 1.110009309 1.366415126 1.241694725 2.115302919 2.208003790 2.573577924 2.582883964 -5D1 -1.458447218 -1.534923981 -1.691561009 -1.921538908 -2.685902282 -2.589917362 -2.533046912 -2.502818161 -5D3 0.559901328 0.631943905 0.678611735 0.453710652 0.080503042 0.029978483 0.370712359 0.367150334 -5D5 0.544183692 0.528943375 1.266746028 0.937591461 0.463300355 0.505705373 0.308704745 0.345273090 -5D7 0.614865457 0.542192814 0.358402084 0.197414013 0.249069680 0.236646078 0.672612515 0.799520310 -5D9 -1.993601192 -2.039682478 -1.890071521 -1.712642052 -1.291402774 -1.265909575 -0.312811015 -0.371943676 -5D11 -1.557598148 -1.558054078 -1.342087284 -1.370359628 -1.691514923 -1.677124512 -1.198010898 -1.146842458 -5F1 -0.958835659 -0.918689906 -1.011125488 -0.745226031 -0.458794231 -0.396852227 -0.041195391 -0.041195391 -5F3 -1.470649604 -1.416335855 -0.782077229 -0.683367449 -0.730174154 -0.716750447 -0.435124241 -0.486771338 -5F5 -1.931924421 -1.905362823 -2.085665061 -2.082493715 -0.918701883 -0.857815410 -0.975336355 -0.967144871 -5F7 -0.719138665 -0.720189522 0.115012916 0.111417197 -0.085020300 -0.079410949 0.088732064 0.129861791 -5F9 -2.863248201 -2.775795769 -2.684392830 -2.610572459 -2.870390691 -2.883607988 -2.610035987 -2.624104077 -5F11 -0.403271559 0.000000000 -0.409519327 0.037841120 -0.475725194 -0.558355751 0.448163054 0.448163054 -5H1 -0.308195719 -0.276428042 -0.240708744 -0.269896613 0.434026990 0.521608013 0.800019984 0.836323110 -5H3 -1.183783506 -1.138435026 -1.281671590 -1.417349987 -0.906298692 -0.893576484 -0.540658795 -0.535196850 -5H5 -0.008220178 -0.013730370 0.421047713 0.509791792 1.267951292 1.316669696 1.753177078 1.706181187 -5H7 -0.688572273 -0.627413144 -0.234859612 -0.306678024 0.836672359 0.915710632 1.155716868 1.164133062 -5H9 0.799680684 0.584272683 -0.010683900 -0.328882054 0.393857908 0.354408414 0.449068928 0.542954470 -5H11 -1.281441388 -1.316707932 -0.730142227 -0.978667101 -2.657407160 -2.591920924 -2.385783734 -2.343600346 -5B1 -0.629218548 -0.637821573 -0.541789849 -0.635701447 -1.384585827 -1.411088453 -1.259229054 -1.255744111 -5B3 -0.271268524 -0.408810078 -0.151043808 -0.279223293 0.774510943 0.792696936 1.039389573 1.137161519 -5B5 1.243491143 1.110239096 1.617251503 1.386304065 0.290394730 0.428982309 1.192071342 1.263365703 -5B7 0.579901830 0.560065928 1.186527159 1.088862752 0.994170860 1.011518145 1.462749221 1.497351921 -5B9 0.506211478 0.556754646 0.774850192 0.937370320 1.013075775 0.955893736 1.602055549 1.614715898 -5B11 -0.755045834 -0.705121535 -0.498213925 -0.567463550 0.569376671 0.551868920 0.439078639 0.488121560 -2B1 2.422731019 2.890027416 1.455724841 2.207745631 2.816042631 2.654131045 3.276749836 3.043683905 -2B3 3.423979241 3.431580934 2.855633902 3.601964267 3.999512767 3.852125783 3.852125783 4.001151710 -2B5 -2.337226448 -2.325603124 -2.412374947 -2.398654420 -1.415902270 -1.462651439 -1.427547412 -1.454368317 -2B7 0.000000000 0.070443451 0.243140539 0.258656723 0.463938008 0.604259112 0.826567325 0.788310060 -2B9 0.393848193 0.421318350 1.440238701 1.207113469 0.193391241 0.134444911 0.560950635 0.496145270 -2B11 0.240779724 0.264052367 0.587535455 0.823572602 1.072570539 1.139740709 1.077975639 1.028697485 -2D1 -0.994888514 -0.569259195 -1.236221132 -0.912695612 -2.111906322 -2.265441599 -1.698287312 -2.074533929 -2D3 0.039339326 0.154823231 0.060974836 0.271228697 -0.260874484 -0.252899738 -0.631856588 -0.680934407 -2D5 -0.172489495 0.044187235 -1.845816260 -1.971038577 -0.092525286 -0.530021300 -0.621628104 -0.579675120 -2D7 1.109511978 0.889912734 1.258446118 1.231610529 2.062914271 1.995532726 1.510680345 1.545232221 -2D9 0.324206532 0.381959292 0.284661647 0.176776394 0.819226759 0.948401432 0.717498298 0.658482475 -2D11 -1.920212761 -1.924623189 -1.842410528 -1.792338242 -1.378690657 -1.444162185 -1.717831892 -1.724609523 -2F1 -0.219517265 -0.134373139 0.007104451 0.222745031 0.316181366 0.282855421 0.320541531 0.203845649 -2F3 0.961749908 1.099019452 0.954329050 1.099041429 1.212154738 1.117330706 1.147979232 1.096092394 -2F5 4.555065639 4.486024101 3.338334915 4.717101956 4.744018189 3.423395789 4.954248109 4.988515190 -2F7 -2.491746302 -2.471104277 -2.116212237 -2.068454258 -1.858135098 -1.830966863 -1.747093234 -1.834388087 -2F9 1.643785222 2.110152746 1.484895489 1.890646133 0.068841189 -0.279338688 0.515237919 0.289939341 -2F11 0.493769378 0.667143612 0.628012076 0.802286553 0.556284222 0.404976057 0.801297342 0.648911145 -2H1 0.310544494 0.414379433 0.809762488 1.049900068 0.360502986 0.257007178 0.524980379 0.431852592 -2H3 2.973861150 3.315753108 3.274557716 4.285433987 3.148309857 2.310927089 3.700520002 3.057199639 -2H5 0.172652353 0.200352634 -0.089744387 0.185286130 -0.349454146 -0.400854754 0.035509858 -0.005492475 -2H7 0.077183725 0.114701556 0.817904581 0.974467254 -0.252825541 -0.404588605 -0.493443828 -0.590883518 -2H9 -0.861025954 -0.770575022 -1.140255516 -0.964637238 -1.883462733 -1.901144556 -1.800537372 -1.825735845 -2H11 0.174352573 0.174674542 -0.460880463 -0.145348646 -0.016227101 0.040316244 -0.289735900 -0.332277155 -6B1 1.964969073 2.091324479 2.362143814 2.185905832 0.423263711 0.399696582 1.540350417 1.640088395 -6B3 -0.053841196 -0.038362645 -0.123893453 -0.196693871 0.159609080 0.183002286 0.146642530 0.139210892 -6B5 -0.398272181 -0.338763975 -0.106196500 0.831589224 0.842433930 0.762479074 1.245681838 1.301172768 -6B7 1.481715989 1.781078350 1.967020361 2.067981933 1.899919915 1.881774572 3.215702264 2.731251565 -6B9 2.235640438 1.575027343 2.055552516 1.343628263 3.791010537 3.278299307 3.696750917 4.591082750 -6B11 -0.379116110 -0.348610428 -0.166176508 0.034207923 -1.147879053 -1.172625630 -0.906503741 -0.936947636 -6D1 2.346983850 2.789137188 1.418290750 1.487509811 2.680213433 2.111521416 3.721080334 3.099953762 -6D3 -0.122853494 -0.076400996 0.069210237 0.093888627 0.380063992 0.362298571 0.191461756 0.225365280 -6D5 0.419394373 0.447335680 -1.618169197 -1.711429174 -1.412357399 -1.426542006 -1.552185921 -1.543710317 -6D7 1.126293479 1.220880605 1.390353654 1.116678023 1.141588368 1.701032457 1.291743110 1.240767180 -6D9 -1.730251529 -1.649376048 -1.604549604 -1.367596466 0.930281269 0.884098776 0.824225588 0.783680786 -6D11 3.174818914 3.338060767 3.528604788 3.499269427 2.891595354 2.237413165 2.543183052 2.751649225 -6F1 -1.672041100 -1.626008020 -1.617154439 -1.477774200 -1.412017742 -1.444009481 -1.440128824 -1.459713881 -6F3 -1.857546334 -1.831304222 -1.545062081 -1.403181523 -1.387774393 -1.488249086 -1.214653675 -1.269258761 -6F5 -2.031340435 -1.734840392 -1.678315515 -1.150415295 0.777687936 0.637022243 0.890615051 0.745446158 -6F7 -3.571466864 -3.717688654 -3.478148719 -3.458658237 -3.789181474 -3.029824558 -3.724365244 -3.559864561 -6F9 -0.200193835 0.003440863 0.014679412 0.184178606 -0.182127848 -0.183561921 -0.088586924 -0.134821545 -6F11 -0.543596797 -0.558901263 -0.690619210 -0.461548384 -0.335080613 -0.414885328 -0.335659767 -0.403405723 -6H1 -0.648243018 -0.714248948 -0.483709393 -0.432339945 1.038180504 1.171795957 0.831682236 0.785415685 -6H3 2.488630869 2.965829760 2.339570651 2.811092141 2.950004694 2.685933193 3.529299616 3.020961668 -6H5 2.442284239 2.801063647 2.742420577 3.439694868 2.283213063 2.168470099 3.242348138 3.144163067 -6H7 -0.599241783 -0.561930020 -0.442481224 -0.462242825 0.408861505 0.420534572 0.441038729 0.469321584 -6H9 1.749388912 1.956018040 2.085492214 2.089362408 2.006162529 1.839590449 2.774971258 2.219642568 -6H11 2.394840482 2.581195575 2.977302800 3.527164962 0.997367356 1.022392080 2.059421031 2.252180424 -1C1 -0.915893263 -0.853618786 -1.064036958 -1.028041375 -0.597785132 -0.593916157 -0.541281640 -0.558970380 -1C3 0.111517598 0.105511053 0.307470934 0.346625001 0.274220573 0.263186321 0.676205007 0.542378574 -1C5 1.487744739 1.394678174 1.622560222 1.071547116 -0.301386356 -0.341559274 -0.542946609 -0.499334560 -1C7 2.434041269 2.195905886 1.513848886 1.444130820 2.720028097 2.566865155 1.813681747 1.851951402 -1C9 0.630604509 0.712663348 -0.164382362 0.265742659 -0.817302230 -0.899525818 -0.767550950 -0.759398679 -1C11 0.508744684 0.417481610 0.087993135 0.238535952 0.162532819 0.104846821 0.051068421 0.094498448 -1E1 -0.264990809 -0.139527528 -0.281153503 -0.124699779 -0.186269435 -0.129443608 -0.232546044 -0.324697379 -1E3 -0.823348531 -0.760296711 -1.424609720 -1.474210834 -1.484401040 -1.475285417 -1.330519929 -1.251493582 -1E5 1.165152755 0.955429145 -0.178333464 -0.112332177 -0.366361685 -0.517425693 -0.265188672 -0.176937270 -1E7 1.292459724 1.259040952 -0.141489201 -0.047140213 2.049985524 1.984373894 1.666493231 1.707019488 -1E9 -1.393229529 -1.382237285 -2.034566823 -2.021355435 -3.807464730 -4.266086853 -4.021839977 -3.553236903 -1E11 0.151636354 0.959970334 -0.613358721 -0.224245849 1.371417096 1.475799027 1.241263429 1.220595646 -1G1 -2.909064482 -2.861138264 -3.039055249 -3.053988204 -1.331011119 -1.353548844 -1.563396302 -1.608632445 -1G3 -1.421275359 -1.358185889 -1.815548904 -1.611535568 -1.990801941 -2.033866673 -2.011738953 -2.099740145 -1G5 -0.121696960 -0.207380565 -0.911848319 -0.871143543 -0.348013847 -0.263220681 -0.648719994 -0.641752278 -1G7 -0.467416308 -0.946860151 -2.446151523 -2.373189630 -2.352326907 -2.356823955 -2.702851557 -2.712705103 -1G9 1.416123596 1.716766629 1.759302505 2.058426323 1.371046884 1.384961606 1.779116105 1.656707947 -1G11 0.560867297 0.655069077 0.256909976 0.431452519 -0.530918419 -0.524307478 -0.261670711 -0.391073247 -1A1 2.391488555 2.442323349 1.386939857 1.572154785 2.470012917 2.458213926 2.194510275 2.276398309 -1A3 1.448672976 1.344800321 0.128328976 0.305168117 0.249014781 0.399728782 0.092869298 0.100686412 -1A5 0.946002177 1.070614914 0.427615151 0.564693139 1.507298716 1.435272584 1.293960188 1.175920072 -1A7 -0.237568264 -0.307068261 -0.220120574 -0.366690976 1.031786855 0.962211855 1.162925463 1.182653019 -1A9 1.217888747 1.543111415 0.996794038 1.310454408 1.760572661 1.810056003 2.115972134 1.935133844 -1A11 -0.330127491 -0.316150316 -0.403542538 -0.162894400 1.095168210 1.287331168 1.201714868 1.157932779 -3C1 1.176934378 1.524138335 1.056724913 1.210830517 0.831746297 0.837657798 1.016953192 1.026457791 -3C3 0.354758320 0.405456314 0.112515649 0.093649272 -1.358273329 -1.290521542 -0.859383007 -0.901158486 -3C5 1.030030128 0.850485959 0.501302400 0.299378264 -0.654632825 -0.780414225 -0.736752096 -0.785786195 -3C7 1.944158202 1.832806828 1.150200363 1.088897899 2.332661523 2.267955929 2.071692198 2.117940148 -3C9 2.057192220 1.943649548 1.701054422 1.658299755 1.485696976 1.574891517 1.242915276 1.225060532 -3C11 0.750728760 0.700476504 0.838617229 0.800125557 -1.380417839 -1.386657888 -1.659906603 -1.673193327 -3E1 1.634646535 1.814514620 1.930355248 1.960209442 -1.018598560 -0.980486918 -0.824450420 -0.869907297 -3E3 0.510118735 1.000386533 1.017867740 1.221332939 1.116507915 1.288871353 1.317163005 1.460255793 -3E5 -0.164443087 -0.020717156 -0.764404410 -0.621336006 -0.770454001 -0.683891615 -0.832879314 -0.881814263 -3E7 -0.036708027 0.092440149 -0.353843215 -0.126197500 -0.942429071 -0.810121542 -0.834870562 -0.896893724 -3E9 1.564304710 1.928946196 1.234921219 1.342359920 1.147183969 1.308079820 1.194625192 1.196563295 -3E11 -1.042574971 -0.948823195 -1.176753630 -1.043890785 -1.127779301 -1.097141392 -1.309427189 -1.379093621 -3G1 -1.235247911 -1.166184862 -1.491982739 -1.477930011 -2.158541103 -2.072305104 -2.006390579 -2.040072849 -3G3 1.033841598 1.137634971 0.962542411 1.137634971 -2.925389192 -2.876623320 -2.803829804 -2.816444582 -3G5 -0.782712110 -0.727012274 -1.090781715 -1.023980399 0.660071303 0.741120787 0.274289228 0.264004035 -3G7 -0.546415531 -0.501830788 -1.767744676 -1.767744676 0.343610302 0.424854158 -1.076223730 -1.057311437 -3G9 -2.035939746 -1.855634508 -1.973782899 -1.910337926 -0.010290735 0.007804278 0.198707844 0.181939484 -3G11 -0.133407445 -0.097174931 -0.666372619 -0.586122199 -1.383710134 -1.375145168 -1.325985649 -1.370030511 -3A1 0.376182165 0.413267743 -0.483827316 -0.352334820 -1.052091493 -1.060421168 -0.911861110 -0.841547118 -3A3 -1.068512061 -1.030554614 -1.427323638 -1.549182220 -1.074877368 -1.049119817 -1.359290924 -1.350228553 -3A5 2.731829487 2.994476376 2.296666612 2.385670161 2.603071592 2.516152705 2.181731302 2.160891618 -3A7 1.035682746 1.017773300 0.184492851 0.140239344 2.013740969 1.965661416 2.086935571 2.144138440 -3A9 1.122653893 1.115458132 1.114371059 1.628626171 1.836956422 1.757438753 1.587716836 1.671292434 -3A11 0.544453401 0.763289626 1.199171499 1.446404529 0.860599821 0.909359562 0.992001277 0.982815649 -5C1 -0.066569231 -0.013960908 0.308001763 0.121109414 0.345159118 0.485917780 0.267960155 0.288453919 -5C3 -0.824836736 -0.722922249 -1.311192804 -1.177198281 -1.703868782 -1.676376346 -1.740701777 -1.774377044 -5C5 1.695590474 1.737032290 1.263369419 1.484107592 2.072004848 2.089188715 2.061249314 2.090325625 -5C7 0.437890874 0.743502743 0.183393456 0.688118167 -0.326286060 -0.101012236 -0.287704820 -0.412158131 -5C9 1.317071113 1.457829750 1.983239651 2.291000643 1.678103393 1.705269211 2.193452276 2.118755387 -5C11 1.409183404 1.434957424 1.777548893 2.165679348 1.858821867 1.995770821 1.961724560 1.903077115 -5E1 2.115414825 2.541570186 1.871040487 2.295212096 0.624940035 0.636516743 0.643848364 0.462001602 -5E3 -0.140379906 0.402186847 -0.891396232 -0.870940061 1.684917302 1.953364866 1.253751784 1.426166026 -5E5 2.208222040 2.333559929 1.990844072 1.929123951 0.738049281 0.810319976 0.386898803 0.332293950 -5E7 0.975239488 1.199517119 0.210329021 0.473413873 1.059270436 1.217981730 0.982134631 0.968506150 -5E9 2.137047328 2.273958389 1.827593517 1.800523676 1.153935197 1.279120663 1.343248489 1.411281495 -5E11 1.074279104 1.136176387 0.618239289 0.990484189 0.109397785 0.146717998 -0.150459250 -0.170052795 -5G1 1.131686157 1.254775446 1.464381654 1.650832347 0.319475144 0.493000250 0.384749512 0.399913987 -5G3 1.874481050 1.928715061 1.111507672 1.367415828 1.086582238 1.389910593 1.250628211 1.246190682 -5G5 0.551874120 0.682996850 -0.226056633 -0.316472337 -1.369968126 -1.299683434 -1.456281466 -1.427659210 -5G7 -0.809816731 -0.783936325 -1.198293662 -1.254516425 0.963292640 1.016918311 -0.739455850 -0.803056469 -5G9 -0.084947455 -0.044617694 0.080697884 0.104618151 -1.901268729 -1.807768974 -1.993412677 -2.001577776 -5G11 0.390698611 0.611554710 -0.089503070 0.251459737 -0.483639812 -0.463027206 -0.534955412 -0.745284433 -5A1 -0.307868335 -0.170502023 0.109902283 0.502053514 -1.572114936 -1.598463522 -1.391532111 -1.391532111 -5A3 -1.602380658 -1.549428435 -1.539084321 -1.392318505 -1.997874319 -1.988974454 -2.027894415 -2.077199685 -5A5 1.253193964 0.902795489 0.698374019 0.622907494 0.853300290 1.013563157 0.587600670 0.609249434 -5A7 1.011657852 0.663961526 0.035489243 0.238896673 1.593495340 1.710463426 1.275235784 1.237438279 -5A9 0.584660982 0.651735516 0.269106818 0.320640271 0.153992571 0.193538602 0.004942693 -0.071887934 -5A11 -0.820678889 -0.804991243 -1.231071435 -1.191896515 1.574406916 1.479338311 1.590221462 1.575940103 -2E4 -0.836187427 -0.851709936 -1.128868718 -1.138435026 -1.815267171 -1.857686195 -1.785556621 -1.789584408 -2E6 0.301062199 0.259011213 -0.065010968 -0.160324423 -0.194212902 -0.203837519 -0.338483628 -0.343938904 -2E8 2.506498867 2.053329647 1.948187785 1.436929978 1.143049197 1.065933359 1.043653629 1.247223929 -2E10 -1.058394679 -1.121076775 -1.033060963 -1.156105332 -0.419134937 -0.367929271 -0.168159580 -0.194830488 -2E12 -0.649549129 -0.623788489 -0.780553560 -0.920228423 -1.676230891 -1.671353727 -1.390990827 -1.389715176 -2E2 -0.812437776 -0.783293718 -0.209209927 0.064920279 0.562726578 0.538170200 0.766397488 0.725332306 -2G4 0.152668681 0.177126037 0.006428116 0.031473150 -0.290173441 -0.266305081 0.111770979 0.093499755 -2G6 0.134768868 0.159605020 -0.195812067 -0.062732894 0.561883660 0.448096429 0.507774393 0.486171963 -2G8 -0.715936196 -0.649313840 -2.007421641 -1.770110691 -1.604457618 -1.639082594 -1.603600422 -1.580114249 -2G10 0.255874161 0.210766228 0.495653344 0.141072180 0.607418082 0.679019493 0.502332043 0.564822635 -2G12 0.219562863 0.063591028 -0.028452555 -0.123113166 0.547699300 0.590293423 0.488204577 0.557461040 -2G2 -0.718212295 -0.750695996 -0.718286982 -0.685972864 -1.629435556 -1.629435556 -1.610623137 -1.613975232 -2A4 1.361095028 1.204969447 1.370956462 1.222053008 0.706819028 0.656080960 0.773909428 0.934344055 -2A6 -3.101498337 -3.160421850 -3.065123740 -3.100689034 -1.932888638 -1.955576339 -1.606365967 -1.588546189 -2A8 -0.944584311 -0.957120013 -0.718585582 -0.816315822 -1.182723809 -1.195889057 -0.949298959 -0.931523257 -2A10 1.381665437 1.304808424 0.939037046 0.480142246 1.362739033 1.137370063 1.781004419 1.993079881 -2A12 -1.217165048 -1.228233231 -1.654023100 -1.666483757 0.518891794 0.492053650 0.317349977 0.218776492 -2A2 0.078193640 0.011267480 0.768169208 0.686440725 0.572369262 0.517484317 0.639111269 0.691458630 -2C4 0.672467145 0.712140245 0.497297822 -0.218396598 -2.885873567 -2.896569227 -2.882234692 -2.889777781 -2C6 0.604770871 0.523093830 0.590601375 0.845642586 0.097547890 -0.247389239 0.092704860 0.065763940 -2C8 -1.121632643 -1.168452117 -0.958722716 -0.880160225 -0.935180451 -0.993710916 -0.695055645 -0.732310674 -2C10 2.554176468 2.191834497 2.974870405 2.318948620 2.561067679 2.376534591 2.462150398 2.490476022 -2C12 -1.782586648 -1.789788166 -1.826001240 -1.765965799 -0.400604855 -0.512081897 -0.737454135 -0.785912371 -2C2 2.549912102 2.562999819 2.220319689 2.448746702 1.745657415 1.595397295 2.068587260 2.133498722 -6E4 0.806543097 0.850264553 0.806543097 0.870719221 0.242786123 0.171923618 0.829590490 0.626999230 -6E6 -1.380676621 -1.381872682 -1.193810636 -1.263844086 1.061369812 1.201939910 1.854799134 1.884146809 -6E8 1.807435254 1.754920895 0.563351296 0.272037690 1.863450166 1.957682592 2.129618059 2.167640237 -6E10 0.219143210 0.275918646 0.476387032 0.687806872 -0.821471031 -0.826577260 -0.980737597 -0.964578634 -6E12 1.490852854 1.492776008 1.105558484 0.751653807 1.484518818 1.513060453 1.647906925 1.559532458 -6E2 0.088404813 0.020676486 0.254255119 0.204942224 0.745629978 0.815105953 0.548899394 0.570209817 -6G4 1.562088910 1.509478385 1.091088067 0.972615551 1.767890799 1.747326154 2.134669045 2.089466630 -6G6 0.555144905 0.602366367 0.186933684 0.377784551 1.754960875 2.121570188 1.579646751 1.631158896 -6G8 -1.558488793 -1.573728831 -1.981168607 -2.135638552 -1.635019114 -1.498342684 -1.654481159 -1.615080476 -6G10 -3.274098782 -3.365225642 -2.962078115 -2.929174053 -5.075358621 -5.556662460 -5.051241061 -4.990380709 -6G12 1.414733306 1.294752085 1.011918437 0.508696155 1.405892630 1.607821892 1.047608861 1.188050634 -6G2 -1.965723858 -1.834033894 -2.595804355 -2.433374700 -2.130886683 -2.127471701 -1.989341018 -2.035730270 -6A4 1.080745903 1.025718122 0.627010495 0.737697136 -0.734799628 -0.623907223 -0.739475881 -0.717995085 -6A6 -0.106700711 -0.154777762 -0.085673416 -0.362684013 -0.356781831 -0.208107336 -0.351694616 -0.391697911 -6A8 0.241397171 0.036782710 0.545416961 0.493306502 -0.391879614 -0.363295695 -0.341905095 -0.287939397 -6A10 -1.965929391 -2.010534752 -1.922067669 -2.061471078 -1.957438349 -1.836033079 -1.950758565 -1.906274974 -6A12 0.832350396 0.897475113 0.634458867 -0.056047913 0.422040125 0.480607373 0.538521866 0.540605578 -6A2 1.159615768 1.148113915 0.852595923 0.652728356 -1.411467861 -1.388253945 -1.493533137 -1.470720239 -6C4 -0.537927822 -0.710744993 -0.476126801 -0.640132590 -1.607907415 -1.538917870 -1.581816248 -1.520768421 -6C6 1.651372713 1.715416685 0.805011435 1.065745708 2.150662211 1.859871383 1.507671071 1.515116102 -6C8 -1.357066994 -1.316331335 -1.186119805 -1.181118904 -0.751192891 -0.760130568 -0.534903239 -0.522377110 -6C10 -0.528615924 -0.687544095 -0.247606009 -0.460645803 0.345260385 0.492898532 0.424047796 0.549907860 -6C12 1.624784425 1.600958338 1.170057858 1.113865750 1.717995585 1.701790262 1.498908373 1.499696572 -6C2 1.342276259 1.332169304 0.833853807 1.173372645 -1.070778731 -1.111291401 -1.200605107 -1.204965622 -2B4 -1.234827987 -1.167568903 -1.572341776 -1.406229200 0.004310543 -0.087003782 -0.655472256 -0.723765703 -2B6 -1.088751696 -0.966892263 -1.038915868 -0.856162148 2.043736851 1.961951436 1.744279390 1.702340528 -2B8 2.013198220 2.496066559 2.165289625 2.875212586 2.148117243 1.841131473 2.118584975 1.970535853 -2B10 1.240260161 1.279479566 -0.669142377 -0.626203233 1.795879840 1.309215602 1.772104999 1.688661937 -2B12 1.270474023 1.168742262 1.165365322 1.077922409 1.291661646 1.219088074 1.077922409 1.113979373 -2B2 0.414960198 0.388647240 0.665174958 0.741816123 -0.771586767 -0.824399154 -1.023405173 -1.012698192 -2D4 1.254433895 1.121840660 1.052164812 1.134679641 1.127996973 1.072221471 0.440189686 0.300448607 -2D6 2.503871213 2.599185088 2.437203333 2.665776974 2.137919395 1.862632429 1.835530122 1.275971203 -2D8 -0.305414819 -0.272620103 -0.841479814 -0.880214684 0.205068527 0.022291222 -0.231768204 -0.270240585 -2D10 0.381863707 0.200910591 0.292660327 0.047083341 0.195113668 0.026605135 -0.292262548 -0.211062685 -2D12 -0.506439021 -0.516168404 -0.266986229 -0.226639370 1.221664216 1.115133049 0.698418176 0.642049683 -2D2 1.056483366 1.044698381 1.125293970 0.918784498 0.542404564 0.544711399 -0.020138714 -0.016399997 -2F4 0.996651762 0.635867241 1.017121865 0.782335359 2.867426609 2.100617047 1.204881699 1.325642533 -2F6 3.486938117 3.336716209 2.715343674 2.970414173 2.925726435 2.593328063 2.285692666 2.303067840 -2F8 1.010353058 1.019419938 0.937573585 0.872963191 0.172914562 0.096505415 -0.093657982 -0.092469517 -2F10 1.231306676 1.195659891 0.699618637 0.701175933 -2.714883316 -2.698386414 -3.055307658 -2.961704171 -2F12 -0.058468780 0.115007957 -0.322239458 0.174022934 -0.207592315 -0.477766531 -0.966244981 -1.011652085 -2F2 -1.165061187 -1.161227551 -0.101997627 0.056571962 -1.531295712 -1.556705005 -1.989825441 -2.056911612 -2H4 1.957069512 2.372211356 1.763561821 2.130507711 3.504584222 3.059335725 2.599680317 2.454332251 -2H6 -1.800164700 -1.763446343 -1.067238910 -0.935075858 -2.243607310 -2.317100953 -2.197570558 -2.296075138 -2H8 2.071914096 2.438640768 1.864209695 2.413299909 -0.435462063 -0.759859505 -0.712918523 -0.858483217 -2H10 1.330119563 1.402084437 1.689330553 2.117428492 -2.090464892 -2.209701076 -2.343126533 -2.434937299 -2H12 1.417265940 1.633767176 1.855527634 2.049657072 1.933765146 1.974626192 1.592504441 1.554193105 -2H2 0.883813996 0.883813996 0.839811716 0.895553871 1.527822508 0.937651582 0.771944492 0.679323820 -6B4 -0.469723412 -0.465612940 -0.276027366 -0.191053148 -0.329899178 -0.329498281 -0.505824873 -0.472113397 -6B6 1.393337025 1.308190693 1.379348742 1.192656475 2.622947186 2.564976730 1.907208409 2.080972360 -6B8 -0.036539001 0.008720144 -0.110900929 -0.069525010 0.666620081 0.646203030 0.196702291 0.221690333 -6B10 -2.684138122 -2.726079167 -2.388121955 -2.224688774 -1.940369877 -1.989353666 -1.917936758 -2.105442773 -6B12 -1.410355851 -1.435836729 -1.402244701 -1.295567443 -1.584939720 -1.650368674 -1.823486501 -1.852516425 -6B2 -0.844177312 -0.804261082 0.017238452 0.313728329 1.050930586 0.571321230 1.366046628 1.357399766 -6D4 0.661601654 0.684976036 1.131760298 1.237578989 -1.429346736 -1.401093076 -1.700482768 -1.705530532 -6D6 0.631169785 0.412840180 0.551566894 0.523751001 0.069298580 0.301980057 0.147530037 -0.148875264 -6D8 0.947325242 0.825967498 -2.994424872 -2.897999876 -0.071610121 -0.660319422 -0.574736893 -0.525144443 -6D10 1.560605531 1.413359091 1.501740084 1.137575006 -1.109861060 -1.245175543 -1.418016231 -1.400893144 -6D12 -0.798466865 -0.721436991 -0.806904465 -0.752971144 -1.376970416 -1.441730992 -1.689854121 -1.706763547 -6D2 1.195844056 0.988222671 0.896330505 0.916900757 0.657230624 0.173637719 0.609684984 0.707498034 -6F4 1.040568526 1.094567345 1.378667115 1.433740949 2.083209282 2.057924133 1.677347523 1.689888112 -6F6 -0.696693349 -0.682865665 -0.766974321 -0.753784570 -1.517294865 -1.507205076 -1.780899884 -1.768510453 -6F8 -0.430537244 -0.380477239 0.044751737 0.184862836 0.553005314 0.661387101 0.285120991 0.244118106 -6F10 0.856032916 0.881593908 0.384920045 0.483709317 2.245529908 2.369430488 1.589377881 1.679306940 -6F12 -4.214105868 -4.214105868 -4.427445769 -4.376354941 -4.132663412 -4.251720711 -4.518885402 -4.631456443 -6F2 -0.509474805 -0.430904690 -0.214852198 -0.137323455 -0.419564442 -0.393739985 -0.801191064 -0.781449308 -6H4 -0.947872339 -0.960448389 -0.867656515 -0.638007042 -0.998420801 -1.036816724 -1.292505604 -1.320734524 -6H6 2.029713137 2.158168226 1.560830227 1.724001388 2.160973629 2.232855789 2.415360500 2.443524984 -6H8 -0.062605410 0.122886805 1.026867521 1.108595066 0.507510769 0.468291213 0.306720354 0.255497620 -6H10 0.411056029 0.500261867 0.682736817 0.914026653 -0.011054877 -0.002986187 -0.175405325 -0.175573810 -6H12 0.266623703 0.245624510 0.277710431 0.322869240 0.446310010 0.502530773 0.232805712 0.254289763 -6H2 -1.147695330 -1.061195826 -1.052395560 -0.779189329 -1.564288155 -1.571349053 -1.976660524 -1.989684732 -1D2 -2.431555046 -2.510558158 -3.056140595 -2.849860411 -3.198091197 -3.109686384 -3.230803664 -3.237200431 -1D4 0.083586200 -0.123669861 0.493558325 0.155820714 -0.062606699 0.024980146 -0.187564018 -0.135431890 -1D6 -3.887105314 -3.893128930 -3.449027766 -3.407015893 -1.524915999 -1.690204182 -1.665973080 -1.698793505 -1D8 -1.163582879 -1.280735364 -0.730097424 -1.105177429 -0.827128754 -1.002127776 -0.976216610 -0.974263116 -1D10 -0.091492984 -0.246833449 -0.263576338 -0.628183368 -0.262628597 -0.532336693 -0.403191040 -0.368486854 -1D12 0.240678737 0.115106008 0.445356253 -0.156490524 -0.264889233 -0.269904133 -0.088047741 -0.025774020 -1F2 -3.212463041 -3.233778105 -2.910424477 -2.874423753 -2.904725565 -2.936065667 -2.458606703 -2.492585366 -1F4 0.904146707 0.423370914 0.045862501 -0.883088368 -1.195856099 -1.202731676 -1.213229438 -1.182321414 -1F6 0.617579688 0.371643551 1.019875677 0.259350864 0.593500001 0.392956970 0.456203789 0.541112941 -1F8 -1.537267471 -1.575799854 -1.143747502 -1.507304384 -1.681141288 -1.830604501 -1.708286323 -1.748792314 -1F10 0.891387230 0.603060293 -0.484072871 -1.297799208 -2.917343600 -2.977985434 -3.090367600 -3.073278088 -1F12 1.680282393 1.481361115 0.711608142 0.525723051 -0.254568833 -0.340215655 -0.243418368 -0.274907601 -1H2 1.735277317 1.538616898 0.753507177 0.773484847 2.503376585 1.733016461 1.347231668 1.335083451 -1H4 1.240248467 1.026108445 -0.077606840 -0.578827317 0.793007377 0.082447971 0.329709077 0.295177804 -1H6 -2.471654186 -2.530421354 -2.478305391 -2.553948097 -2.426370942 -2.305993217 -2.551595240 -2.551595240 -1H8 0.206601198 0.033805753 -0.097856684 -0.455053354 -1.444821755 -1.408318518 -1.694153236 -1.669730142 -1H10 -0.138522723 -0.383082872 -0.775529447 -1.037361516 -1.201130212 -1.203465146 -1.448685411 -1.383101128 -1H12 2.039184091 1.753120687 1.591232748 1.216622505 1.717164196 1.584496921 1.742721229 1.839523090 -1B2 -2.058348132 -2.192317695 -1.775397237 -1.844113738 -1.263052091 -1.212057137 -1.307921315 -1.276108824 -1B4 -1.312814978 -1.325748815 -0.865952742 -0.735969002 -3.283876353 -3.292649808 -3.444107027 -3.459664841 -1B6 1.991298968 1.717851168 2.276020218 1.849667878 1.655324383 1.528863487 1.549345348 1.713453180 -1B8 1.513045291 0.990071797 1.755886966 1.500901396 0.204740179 0.025549736 0.054085141 -0.333089338 -1B10 -0.073481820 -0.215396095 -0.068659774 -0.174779103 -0.334694312 -0.343020815 -0.430262509 -0.340188076 -1B12 -3.381302760 -3.410284489 -2.683024618 -2.692411358 -1.626044266 -1.647767217 -0.711570009 -0.816892950 -3D2 -2.877499498 -2.874569058 -3.044385839 -3.129544363 -2.891298894 -2.866910640 -2.821728696 -2.751010092 -3D4 -0.993413907 -1.075960353 0.409262011 0.050223092 -1.422072009 -1.418618112 -1.293448001 -1.366521620 -3D6 -3.351045154 -3.351045154 -3.241646341 -3.264151239 -2.963338477 -2.931257916 -2.824673000 -2.815431466 -3D8 -3.581178974 -3.620320526 -3.065207783 -3.122360292 -2.273124480 -2.247545462 -2.179104063 -2.143576407 -3D10 -0.429926293 -0.552894909 -0.116549720 -0.182343319 -1.608712431 -1.571524395 -1.528534633 -1.475205674 -3D12 -1.243318693 -1.244751280 -1.263131635 -1.278564747 -2.379289554 -2.390248849 -2.249981275 -2.239623071 -3F2 -2.400124576 -2.430981269 -2.221985537 -2.147623199 -1.766567441 -1.777238753 -1.622709830 -1.515551824 -3F4 -2.555168275 -2.537154332 -2.070477366 -2.071890632 -0.823477766 -0.886483175 -0.708269867 -0.705785602 -3F6 0.734333629 0.625856925 1.017232765 1.182786564 1.525569442 1.568913567 1.872110872 1.850159017 -3F8 -0.848141441 -0.871748627 -0.121476658 0.206877113 -0.714995341 -0.759947073 -0.775466777 -0.807943365 -3F10 0.000000000 0.000000000 0.590662138 0.717485499 0.161940818 -0.197945939 -0.089227554 -0.019546423 -3F12 -3.534544693 -3.516361186 -3.130797437 -3.108349346 0.633335350 0.440994469 0.114710500 0.124402592 -3H2 -2.200405914 -2.142097201 -2.117612792 -2.091348096 -1.787994514 -1.788168453 -1.983418099 -1.963228376 -3H4 1.326456642 1.394816821 1.696435858 1.903563579 1.527576075 1.363993417 1.310938806 1.248777090 -3H6 0.018700833 0.000000000 0.668619227 0.995785779 0.909042223 0.730085782 0.551992019 0.577843861 -3H8 0.542555173 0.437497514 1.082949943 1.222332160 0.572186667 0.602954645 0.498941678 0.478537617 -3H10 -0.331123113 -0.501769152 -0.259679284 -0.346585211 -0.197139755 -0.252800256 -0.115130956 -0.089275067 -3H12 -0.060050424 -0.246226406 0.400638668 -0.109416720 -0.742463170 -0.737819530 -0.751888622 -0.739482360 -3B2 -0.454853505 -0.491675651 -0.069024128 -0.013944475 -1.122130550 -1.097537901 -1.103931709 -1.057941477 -3B4 -1.841794133 -1.863011812 -1.701656577 -1.722295398 0.419849730 0.457626925 0.526438530 0.509524546 -3B6 -0.446225412 -0.488416564 -0.239388486 -0.382271389 -2.162201319 -2.631982768 -2.310271636 -3.199431876 -3B8 -4.415442714 -4.438847829 -4.116088392 -4.094634050 -2.378654345 -2.338951783 -1.954990384 -1.870495893 -3B10 1.309455659 0.940743506 1.903964288 1.816856435 0.936985586 0.935970687 0.940931118 1.220711158 -3B12 -2.260445265 -2.252775848 -2.176668081 -2.081273374 -3.182855739 -3.217234909 -3.116875531 -3.116875531 -5D2 -0.562121867 -0.723211962 -0.495193057 -0.635519848 0.200899448 0.155685269 -0.116117560 -0.072287114 -5D4 -1.081670120 -1.159277511 -0.658377309 -0.706056843 -0.045411819 -0.075120000 -0.160879582 -0.097359171 -5D6 -0.869347400 -0.914554220 -0.770595300 -1.025134934 -1.725482039 -1.713842421 -1.693791909 -1.663079629 -5D8 1.546335457 1.393724682 1.649087036 1.441781867 1.121896798 1.073362029 0.912318240 0.946598052 -5D10 -0.269588123 -0.321684385 -0.655068212 -0.598135497 -0.619937210 -0.601803796 -0.658597318 -0.669396906 -5D12 -3.274547723 -3.226997685 -3.100293270 -3.147951695 -1.875071384 -1.898452422 -1.839523090 -1.874285581 -5F2 -2.377569276 -2.377569276 -2.326535195 -2.220235027 -2.481385393 -2.472852355 -2.412550426 -2.343075209 -5F4 -1.607192868 -1.638863816 -1.570799172 -1.690211693 -1.965734985 -1.938618615 -2.016240010 -2.014773957 -5F6 -1.015415081 -1.093782274 -0.872615501 -0.918548850 -0.997772996 -0.962623648 -1.117269879 -1.080100130 -5F8 0.359239199 0.236227242 0.295765172 0.238246857 -1.318457778 -1.271108361 -1.321603063 -1.233629464 -5F10 -2.125634807 -2.120201867 -1.948663984 -1.828608210 -2.841379736 -2.861138264 -2.907598732 -2.892240641 -5F12 -3.288975676 -3.245688343 -3.530435696 -3.521819357 -3.173769055 -3.106599295 -3.251320887 -3.252390130 -5H2 -1.369250108 -1.385037161 -1.612133486 -1.703063372 -0.610613167 -0.591007669 -0.943208871 -0.877359657 -5H4 0.924890296 0.879241318 0.822793916 1.335765023 0.953026477 1.006994127 0.958781558 0.858489416 -5H6 0.999789395 0.976364683 1.516629543 1.554593936 1.172526424 1.258791902 1.220341198 1.282373177 -5H8 -0.232570525 -0.215750230 0.003276589 -0.092998732 -1.533333604 -1.480469658 -1.602884516 -1.568953064 -5H10 0.091493402 -0.062294700 -1.341567345 -1.259177385 -2.024321742 -1.957095092 -2.203596382 -2.210228440 -5H12 0.593500001 0.474121587 0.688429003 0.480164516 0.407903098 0.510632148 0.315851107 0.397326213 -5B2 -1.014845333 -1.100456481 -0.948480145 -1.095175974 -0.779837864 -0.743469525 -0.838315140 -0.795125056 -5B4 0.554161397 0.385321836 0.791001209 0.563401030 0.495930274 0.465380215 0.437152603 0.515828944 -5B6 1.360830975 1.208113482 1.830285998 1.582926700 1.511496637 1.522420581 1.308829091 1.328408904 -5B8 1.237352215 0.807177652 1.306988783 0.901690174 0.268486256 0.552168253 -0.009769326 -0.105462150 -5B10 -0.963476583 -1.026578503 -0.117328440 -0.324057878 0.507513149 0.562785823 0.885193324 1.029023613 -5B12 0.269480581 0.042267413 1.104785100 0.515502177 0.572365303 0.723640196 1.038738184 1.211023276 -1C2 1.691648432 1.680325858 1.974227568 2.135526655 1.275971203 1.374732867 2.109626325 2.130136404 -1C4 1.924204180 2.047219086 2.710836383 2.651410436 0.852596158 0.882151503 0.885950486 0.588685965 -1C6 1.753901486 1.706207596 2.280262523 2.490592402 1.861952470 2.008138869 1.347178870 1.512551324 -1C8 0.411465220 0.352081590 -0.740029807 -0.533088328 -1.022223851 -0.994862260 -1.742119900 -1.758234063 -1C10 0.479556553 0.576476116 -0.013451558 -0.059839212 -0.127980175 -0.155898697 -0.610632602 -0.621332596 -1C12 0.319475523 0.635158908 -1.846824986 -1.641537967 -0.910139997 -0.734233526 -1.724496031 -1.746886188 -1E2 0.837023622 0.541034018 -0.186736583 -0.142123942 -0.323884818 0.133948264 -0.775722481 -0.935522894 -1E4 1.038265465 1.337191408 0.361053727 0.635466567 0.350770841 0.445240505 -0.124708410 -0.067291685 -1E6 1.281717851 1.265678625 1.165345455 0.694403527 1.067270319 1.078670991 0.735240079 0.746387424 -1E8 -0.874971825 -0.869156541 -0.997717370 -0.829859661 -1.683054775 -1.668958171 -2.305193455 -2.327372117 -1E10 0.675881570 0.645237619 -0.153786319 0.040198668 0.272752904 0.953125889 -0.736561327 -0.507797901 -1E12 0.231967719 0.252197382 -0.123215901 0.051898577 1.192724602 1.398165236 0.353823155 0.425228892 -1G2 3.028754971 2.417815894 1.960224525 2.015823839 1.707798674 2.483088695 0.142802836 0.287348056 -1G4 0.651454997 0.485312576 0.373194074 0.575988431 1.357763344 1.333608183 0.136615186 0.191254590 -1G6 2.128311624 1.734753918 1.772739707 1.793972245 1.718376309 1.646291863 0.160981213 0.303312041 -1G8 -0.642722428 -0.525431337 -1.516645746 -1.528504218 0.127518135 0.108736249 -1.260100236 -1.270247965 -1G10 -0.680425097 -0.581350010 0.967420409 0.785117166 -0.052749883 -0.036458508 0.213059169 0.233904023 -1G12 1.100434687 1.050907757 1.503625541 1.742751663 1.155888657 1.302050974 1.277106606 1.165946494 -1A2 -1.557590253 -1.589121141 -1.985789681 -1.767401657 -0.763620223 -0.702528605 -1.401109867 -1.359673568 -1A4 0.580690006 0.707735602 0.948549660 0.737954636 -0.074799512 0.071092074 -0.866135885 -0.805959811 -1A6 0.050427967 0.028607688 0.599289219 0.735017821 0.022821838 0.076426926 -0.335741005 -0.367879302 -1A8 2.438309285 2.082674148 3.796197416 3.314681887 3.661586526 3.865217148 1.727669588 1.940755514 -1A10 1.806685878 1.643542102 1.539349211 1.649500614 2.688018152 2.738244237 2.315769693 1.928701716 -1A12 1.507014067 1.109595583 2.692979984 1.433457598 0.980799583 1.851210758 -0.017529115 0.227584071 -3C2 1.221883675 1.075080339 1.584682267 2.220687308 0.892942295 1.033288274 1.669102423 1.669058892 -3C4 1.023173585 0.936670993 1.828051533 1.726096870 1.127153758 1.470446561 1.323668608 1.193142163 -3C6 0.551570784 0.659390510 0.681212921 0.697028878 -0.784365061 -0.760831118 -1.126970533 -1.078323627 -3C8 -0.478360516 -0.361683237 0.833535111 0.812502294 0.347647413 0.510581633 -0.124519778 -0.051306397 -3C10 0.967287152 1.021287826 0.516136334 0.779535377 0.844562291 1.032469014 0.594359454 0.657215573 -3C12 0.984281286 1.016015854 1.072682835 1.388024681 -1.492587185 -1.515869087 -2.070167466 -2.092250459 -3E2 1.368269981 1.415392951 1.495571191 1.768154502 -0.049956387 0.030662605 -0.208706583 -0.291651421 -3E4 0.249511058 0.072054030 0.500753407 0.356710441 0.372449607 1.434548805 -0.437900875 -0.170180087 -3E6 1.756461000 1.481885790 1.444776299 1.456860108 -0.496941433 0.077666872 -0.845947009 -0.752397326 -3E8 -0.380069816 -0.417252634 -0.744032100 -0.733717761 -0.107879600 -0.057002676 -0.667143612 -0.635192575 -3E10 1.211697517 1.218010028 1.367127874 1.309052399 0.939289177 1.370398990 0.168171113 0.253637908 -3E12 -0.478461396 -0.468294492 -1.086536673 -1.061461095 -1.241518681 -1.197747327 -1.801917391 -1.817256517 -3G2 0.096975217 0.199605674 0.298744391 0.585414542 0.599749201 0.695628666 -0.017016038 -0.036050530 -3G4 -2.939502318 -2.952117988 -3.291353561 -3.264008928 -2.422955935 -2.322459679 -3.253777826 -3.113208055 -3G6 -0.320280858 -0.358069636 -0.019925819 -0.102393984 0.013590599 0.138325524 -0.548838878 -0.522452581 -3G8 0.440786346 0.407204293 -0.861331715 -0.393103635 0.990037952 1.245375094 0.267313995 0.279829344 -3G10 -0.220293643 -0.257762797 -0.262392368 -0.084375541 0.269697337 0.365517448 0.349510828 0.381732404 -3G12 0.519459720 0.320856068 1.212496663 1.089127434 1.166039930 1.470761119 0.980523966 0.689760533 -3A2 -1.621428590 -1.560479108 -1.754823985 -1.502721219 -1.478435130 -1.492494849 -1.739822674 -1.727191581 -3A4 -1.030598267 -0.995136323 -0.878180444 -0.710518423 -1.523032655 -1.512236249 -1.747084361 -1.758413038 -3A6 0.042400220 0.163085964 0.442887562 0.667890648 0.643003393 0.693243358 0.452383293 0.410782834 -3A8 -1.111060298 -1.083867504 -1.564459424 -1.379959172 -1.229526978 -1.202840842 -1.495030370 -1.514060000 -3A10 0.214026630 0.018861800 -0.088663091 0.111430519 1.996810541 2.325610643 1.751390522 1.522258348 -3A12 1.468805443 1.489134971 1.378184407 1.807446247 1.989279305 2.362664938 0.924963754 1.173579712 -5C2 1.503731675 1.575213471 1.851728100 1.885795666 1.461084272 2.117267324 2.272275513 2.483847943 -5C4 0.157031880 -0.088796444 0.704863004 0.061794042 0.572085844 1.006220552 0.140244648 0.132512692 -5C6 1.163916684 1.065992163 2.883866480 1.738862448 2.164032332 2.786554086 1.218862417 1.461077155 -5C8 0.669251561 0.829520579 1.819406126 1.431511067 -0.657545592 -0.450894911 -1.439795632 -1.428848596 -5C10 0.554063687 0.619866955 1.739834074 1.566643586 1.246951106 1.328365128 0.812120279 0.786710986 -5C12 0.130045029 0.137314433 0.277089387 0.131459281 0.275374045 0.473237590 -0.671591337 -0.586122199 -5E2 1.507253485 1.258898079 1.493531984 1.177265404 1.282748015 1.652168476 1.454284250 1.278057318 -5E4 2.535832503 2.651832611 2.649450271 3.169155648 3.297752567 3.770411513 2.580091565 2.867931301 -5E6 1.622168805 1.787559096 2.971234062 2.809238577 1.337453130 2.302483277 0.551842521 0.610796438 -5E8 1.998139228 1.689216242 2.199793052 2.180407415 0.765906855 1.012025417 -0.014136322 0.177196427 -5E10 0.442370083 0.457707449 1.644530595 1.793986987 -0.045602424 0.115127132 -0.484272193 -0.486212561 -5E12 -0.804252611 -0.726698220 -0.635857363 -0.568759226 -0.389061131 -0.257764186 -0.837721584 -0.840704236 -5G2 0.151632449 0.197668143 -0.349371438 -0.230696173 1.167369406 1.335236348 0.779125589 0.774256389 -5G4 -1.462805566 -1.368431947 -0.992406547 -1.004280644 2.078532108 2.390455782 1.703995223 1.724486539 -5G6 1.616182497 1.729785391 2.716887376 2.782477723 2.580602811 3.266012495 2.305228380 2.463388797 -5G8 0.958070112 1.178610338 0.359273575 0.195511403 1.254697516 1.547565492 -0.534604454 -0.472423379 -5G10 0.516667375 0.422684187 1.030558370 1.200050245 -0.084552589 0.433503606 -0.739029043 -0.598823231 -5G12 -1.463905057 -1.402083724 -0.086693921 -0.442613756 -0.300188526 0.013501827 -0.647660503 -0.683328685 -5A2 1.983041651 1.890805219 4.157921179 2.417663552 0.541765810 1.187883124 -0.119108337 0.189675327 -5A4 1.861560797 1.976577638 4.000809743 3.155137239 3.132499512 3.349184851 1.789802335 1.793008137 -5A6 0.543458066 0.613999094 1.686044152 1.485605426 1.632757669 2.025063604 1.244786790 1.359382849 -5A8 1.177847097 0.868059055 1.700229313 1.376196350 -0.969329515 -0.239935191 -1.803087805 -1.660314342 -5A10 0.592438126 0.687206504 1.111643069 0.177746697 -0.205772783 -0.096446940 -0.721558025 -0.695915039 -5A12 0.521511011 0.346588933 1.915750244 2.056182912 3.425891956 4.078232707 1.527437141 1.951658153 diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/test-data/Preprocess.Project.Data.RData Binary file preprocess_datasets/preprocess_datasets/test-data/Preprocess.Project.Data.RData has changed diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/test-data/Preprocessing.Plots.html --- a/preprocess_datasets/preprocess_datasets/test-data/Preprocessing.Plots.html Sun Dec 03 14:06:08 2023 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,762 +0,0 @@ - - - - - -Preprocessing - - - - - - - - - - - - - - -

- - Preprocessing Plots Before and After - - - -

- -

Preprocessing

- -

-Preprocessing of an extern DataSet, issued from -GenePix_Two_Colors -technology. -

- -

Used methods for each step

- -

Background correction methods

- -
method : auto
- -

Normalization methods

- -
methodNWA : median
- -
methodNBA : quantile
- -

Boxplots

- -

Before BG

- -

-
- -
-

- -

After BG, NWA and NBA

- -

-
- -
-

- -

-
- -
-

- -

-
- -
-

- -

MA plots

- -

-
- -
-

- -

Densities plot

- -

Before BG

- -

-
- -
-

- -

After BG

- -

-
- -
-

- -

-
- -
-

- -

-

- - - - diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/preprocess_datasets/test-data/Read.Project.Data.RData Binary file preprocess_datasets/preprocess_datasets/test-data/Read.Project.Data.RData has changed diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/test-data/Matrix.Data.tsv --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/test-data/Matrix.Data.tsv Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,481 @@ +GSM103772_1 GSM103772_2 GSM103773_1 GSM103773_2 GSM103774_1 GSM103774_2 GSM103775_1 GSM103775_2 +1D1 1.070483387 0.782966364 0.339185222 0.237142755 1.178593368 1.146017852 1.478460492 1.483053632 +1D3 -1.838900971 -1.985528114 -1.724478282 -1.961731079 -0.947095566 -0.950124879 -0.946812055 -0.880750063 +1D5 0.554352301 0.331671074 0.186974297 -0.269399606 1.036665860 0.885424189 -0.098387005 -0.114605947 +1D7 1.668501575 1.460589544 1.793182680 1.211817213 0.722140004 0.673965161 1.272594354 1.369054218 +1D9 -0.281406948 -0.383774769 -0.305013846 -0.437412604 -0.383087034 -0.533569526 -0.094848194 -0.106079303 +1D11 -0.113140313 -0.178561344 0.163712497 -0.070070473 1.061037414 0.766667635 1.554574463 1.776605676 +1F1 1.807916488 1.809425975 1.061610335 0.551347858 1.463763330 1.379750985 2.122051315 2.155120184 +1F3 -2.449859520 -2.520289313 -2.800666926 -2.808549116 -3.653098811 -3.005475382 -3.253703664 -2.794533722 +1F5 -2.463435943 -2.416859988 -2.514264858 -2.762291073 -2.340893184 -2.363873211 -2.104734012 -2.104734012 +1F7 -0.441136818 -0.493000250 -0.735023143 -0.849958459 -1.367878629 -1.379722928 -1.092560434 -1.099855075 +1F9 0.197763379 -0.032820388 0.038456806 -0.446089117 0.374560741 0.320454365 1.157033832 1.336629705 +1F11 1.400029823 1.433562159 0.383174857 0.594630992 1.571901946 1.058929170 2.081615263 2.011792859 +1H1 -0.444815395 -0.414932078 -0.820589347 -1.016009836 -0.348952679 -0.447379514 -0.029798446 -0.115536909 +1H3 2.328006611 2.139424022 1.166661827 0.929091180 2.695808522 2.071832171 2.702733294 3.099575183 +1H5 0.251757900 0.231974993 0.093549683 -0.215606103 1.126337979 0.955564922 1.440065879 1.513044539 +1H7 -0.640143060 -0.581703062 -0.558970380 -0.661478019 1.051399884 0.963643353 0.989153849 1.122288049 +1H9 -0.405157899 -0.409547177 -0.533415341 -0.540710039 -0.495851627 -0.553854279 -0.299865921 -0.287102833 +1H11 -2.084347832 -2.131959338 -1.902273813 -1.974999865 -1.609216346 -1.589203422 -1.393350778 -1.414317248 +1B1 0.120720853 0.098028002 0.248945803 0.176797609 -1.652187135 -1.684454278 -1.394866960 -1.398662625 +1B3 0.935857682 0.900363029 1.539634182 1.305631257 0.630620216 0.681519825 1.313598748 1.378056236 +1B5 -2.401064528 -2.399952809 -2.327206321 -2.398198936 -1.418255905 -1.395556877 -1.079086028 -1.060650186 +1B7 -0.217927843 -0.210438597 -0.279243127 -0.291290255 -0.485290939 -0.452997133 -0.063973810 0.017871377 +1B9 -2.751879314 -2.697880042 -2.969488443 -2.980107435 -2.161560029 -2.053862443 -1.837373736 -1.817762128 +1B11 -0.560065928 -0.539768787 -0.292268353 -0.349484844 -0.698327999 -0.708464981 -0.421317745 -0.475797929 +2E1 -1.690725111 -1.713193127 -1.662054628 -1.745766078 -0.745375529 -0.796157320 -0.578399004 -0.615830576 +2E3 -0.270422234 -0.244488879 -0.078086499 -0.202956335 -0.471070084 -0.551788257 -0.204433119 -0.203018426 +2E5 2.370053110 2.230463089 2.648967948 2.723131219 1.640690257 1.413326116 2.786537945 2.835662135 +2E7 -0.478336029 -0.688558932 -0.127302490 -0.374347769 -0.064182558 -0.088407033 0.751345580 0.804886944 +2E9 1.025377343 1.051984639 1.060923403 0.978160119 1.236259125 1.205484132 1.593812681 1.614206872 +2E11 0.645918290 0.472171995 0.820944844 0.612391510 0.587299900 0.594851890 0.727040838 0.695744111 +2G1 0.074255962 0.044474663 0.529500987 0.413935514 -0.129834763 -0.252117620 0.114433126 0.082921145 +2G3 0.585051355 0.835606013 0.314852533 0.498892903 1.031363579 0.826131378 1.422989011 1.367951915 +2G5 -0.950589597 -1.035732379 -1.642384809 -1.764788551 -1.291758577 -1.308783013 -1.346870685 -1.340040282 +2G7 0.563253235 0.433368070 0.391641667 0.317117528 0.425062693 0.314408850 0.800142667 0.813190959 +2G9 -1.096969338 -1.234217141 -0.881501488 -1.065633879 -0.878203024 -0.911462365 -0.907926513 -0.874773603 +2G11 -1.659687069 -1.639769646 -1.191176629 -1.168448513 -1.027860164 -0.988898564 -0.770456149 -0.803959914 +2A1 -1.431004441 -1.325452941 -1.550179315 -1.516964739 -3.826925120 -4.036002598 -3.587773748 -3.615505860 +2A3 -0.779434169 -0.802686599 -0.955091740 -1.007446960 -0.960008805 -0.966751042 -0.537984155 -0.496469400 +2A5 0.296907008 0.305108215 0.369385576 0.541649175 -0.326425328 -0.412198753 0.131331193 0.148448005 +2A7 1.547548935 1.481913249 1.518629013 1.492038142 1.870680932 1.592318392 2.742395284 2.799795504 +2A9 0.465454413 0.501987477 0.280907205 0.425712260 0.610204442 0.523723132 0.837507993 0.794645792 +2A11 -0.329651141 -0.329651141 -0.448195458 -0.610871559 -1.388559468 -1.423460255 -1.332270138 -1.375002133 +2C1 -0.590112380 -0.606227899 -0.688560167 -0.692151578 -1.213041309 -1.298656430 -0.943294257 -1.025581034 +2C3 -1.635740680 -1.611623354 -0.954522216 -0.777848589 -2.656097150 -2.641398690 -2.372692488 -2.378943051 +2C5 0.762471350 0.696425717 0.926629028 0.815146182 0.803709095 0.716475813 1.112618143 1.105109258 +2C7 0.356259744 0.451293220 0.452062471 0.419481733 0.930704264 0.836679035 1.813576534 1.640391184 +2C9 2.885171324 2.373263241 1.592672887 1.604052593 3.199542177 1.970350268 3.287251167 3.723475459 +2C11 0.386669239 0.574182590 0.478882234 0.760396786 1.320771672 1.289996865 2.027278921 1.847911211 +3D1 0.351405080 0.214583336 -0.076988431 -0.182307900 0.223913776 0.204180319 0.197256732 0.258906153 +3D3 -1.290368262 -1.263225510 -1.440665329 -1.403155435 -2.344129195 -2.298299880 -2.040556239 -2.059951308 +3D5 -0.195702524 -0.223096165 0.529921548 0.334866745 -1.062358993 -1.029225395 -0.955037166 -0.937046815 +3D7 -0.543974583 -0.499803594 0.481529137 0.366744488 -0.089438357 -0.027260244 0.456726223 0.474652585 +3D9 -0.990010747 -0.974502623 -0.713483846 -0.800480086 -0.703786440 -0.691271992 -0.009585639 -0.016864812 +3D11 -0.409559430 -0.412825409 -0.322177344 -0.371550935 0.082136997 0.142493125 0.554223587 0.557690888 +3F1 -2.929134146 -2.914620829 -2.897946379 -2.925669114 -0.836035655 -0.814400041 -0.494231143 -0.511971947 +3F3 -0.585369936 -0.446880442 -0.652390688 -0.578437315 0.793636682 0.769230750 1.397982126 1.388947209 +3F5 0.357728739 0.467504767 0.410413976 0.276124130 0.481988181 0.466556380 0.999221423 1.002767022 +3F7 -1.055686422 -1.010545347 -0.412692916 -0.191533872 -1.853169937 -1.882122943 -1.875686195 -1.933754840 +3F9 -0.136374944 -0.166255977 1.202527918 0.700198343 0.441076018 0.479208320 1.043448828 1.157709273 +3F11 1.698215838 1.711208778 1.376281818 1.077943027 1.803028090 1.853539380 2.512708749 2.534394286 +3H1 -2.271204999 -2.219568076 -2.015668447 -2.057594577 -3.373887553 -3.346510165 -2.916293618 -2.935367333 +3H3 -0.782941758 -0.704539402 -0.474170505 -0.427212741 -0.659628450 -0.672993028 -0.328297591 -0.374975812 +3H5 -0.229275508 -0.127991380 -0.107652716 0.005033837 0.164058943 0.206353512 0.751068045 0.740109955 +3H7 -0.099495603 -0.025737544 -0.173944919 -0.173579945 -1.200693214 -1.188082767 -0.485569924 -0.493342173 +3H9 -0.371972533 -0.525794917 -0.664457029 -0.758980180 -0.364367923 -0.415851990 -0.083362074 -0.019341447 +3H11 -0.147494831 -0.230305561 -0.045747510 -0.023017904 0.159756774 0.222168550 0.393339143 0.442252047 +3B1 -0.669078553 -0.733192992 -0.474512761 -0.616567065 -0.501303918 -0.460781223 -0.335960387 -0.304324461 +3B3 -1.316090714 -1.301116055 -0.985058661 -1.009402254 -0.277314256 -0.274526021 -0.232102727 -0.226369424 +3B5 -2.523478875 -2.521667853 -2.485124426 -2.527360901 -3.006443972 -2.975828628 -2.530602991 -2.530602991 +3B7 -0.080124218 -0.049314931 -0.167748980 -0.175385369 -0.023017962 0.027971576 0.512425441 0.517699230 +3B9 -0.827234278 -0.871623207 -0.705246888 -0.879701575 -1.272594354 -1.271377922 -0.937155775 -0.890080407 +3B11 -1.152774000 -0.939300747 -0.533235783 -0.241589921 0.336036048 0.260330024 1.311531869 1.189765916 +6E1 -3.032060296 -2.944614081 -2.955986861 -2.883368765 -0.209066718 -0.162977650 0.128204243 0.124482574 +6E3 -2.976278088 -2.946944327 -3.241393834 -3.218528513 -0.893204489 -0.947604569 -0.290979260 -0.283030672 +6E5 -0.686410638 -0.715992909 -0.555529109 -0.647801356 -0.913275289 -0.926537859 -0.610253372 -0.667883210 +6E7 1.017897404 1.117976813 1.543807685 1.681276096 0.874046352 0.878090128 1.608659248 1.536116405 +6E9 1.224515827 1.381307849 1.114798467 1.148914919 1.545307446 1.556093164 2.274360998 2.286314611 +6E11 -0.846287257 -0.813979557 -0.205392452 -0.348240044 -0.632627288 -0.651203837 -0.464402715 -0.436725539 +6G1 0.129948422 0.104391488 0.886223924 0.426668416 -0.137802630 -0.148503513 0.134565052 0.140848963 +6G3 -2.948209209 -3.129426737 -2.638174776 -2.760450740 0.703015247 0.826602782 1.828582271 1.791801887 +6G5 0.665288674 0.573804790 0.174183332 0.000000000 0.197439507 0.089428267 0.316281353 0.364003639 +6G7 -1.651328067 -1.557444746 -0.654400404 -0.669323163 -4.039163837 -4.018640690 -3.934219916 -3.926549199 +6G9 0.527085673 0.470577191 0.496511558 0.511318056 0.168483966 0.110242922 0.630482435 0.621979935 +6G11 0.290033975 0.216149550 1.120825312 0.852499684 0.387059101 0.430014794 1.133687651 1.224371675 +6A1 0.995649732 0.822469961 1.448985899 0.963550192 0.331857548 0.386450370 1.163460528 1.179730361 +6A3 -0.389218221 -0.374428850 -0.528865583 -0.484141442 0.212394774 0.208525370 1.090512369 1.134719294 +6A5 -0.266265561 -0.310852959 -0.173299652 -0.153458487 0.309436549 0.264238041 0.727677223 0.713704725 +6A7 -0.631930176 -0.640146418 -0.287670949 -0.457408118 -0.082286394 -0.025378000 0.201430855 0.239800329 +6A9 -1.026900905 -1.030609627 -0.823410775 -0.867214057 -0.503836971 -0.500527095 -0.254241517 -0.264517838 +6A11 -1.654424377 -1.602174157 -0.758754997 -0.709652231 -0.891176749 -0.997249900 -0.547796391 -0.623570829 +6C1 -1.895367835 -1.848094700 -2.149904739 -2.193680487 -1.076733418 -1.068984099 -0.834892492 -0.843307171 +6C3 -1.605818913 -1.589033001 -1.105797753 -1.104409164 -1.388766579 -1.377798152 -1.429516903 -1.414316781 +6C5 -1.108500477 -1.028518496 -0.887658416 -0.668395937 -1.254782988 -1.245118610 -0.993360091 -1.027568014 +6C7 -1.215398363 -1.178286244 -1.181857814 -1.119385036 -0.684557167 -0.748869363 -0.294601592 -0.350103762 +6C9 -0.863578550 -0.829926910 -0.473642019 -0.370457443 0.149297422 0.139131871 0.219623925 0.163806662 +6C11 1.139462130 1.110009309 1.366415126 1.241694725 2.115302919 2.208003790 2.573577924 2.582883964 +5D1 -1.458447218 -1.534923981 -1.691561009 -1.921538908 -2.685902282 -2.589917362 -2.533046912 -2.502818161 +5D3 0.559901328 0.631943905 0.678611735 0.453710652 0.080503042 0.029978483 0.370712359 0.367150334 +5D5 0.544183692 0.528943375 1.266746028 0.937591461 0.463300355 0.505705373 0.308704745 0.345273090 +5D7 0.614865457 0.542192814 0.358402084 0.197414013 0.249069680 0.236646078 0.672612515 0.799520310 +5D9 -1.993601192 -2.039682478 -1.890071521 -1.712642052 -1.291402774 -1.265909575 -0.312811015 -0.371943676 +5D11 -1.557598148 -1.558054078 -1.342087284 -1.370359628 -1.691514923 -1.677124512 -1.198010898 -1.146842458 +5F1 -0.958835659 -0.918689906 -1.011125488 -0.745226031 -0.458794231 -0.396852227 -0.041195391 -0.041195391 +5F3 -1.470649604 -1.416335855 -0.782077229 -0.683367449 -0.730174154 -0.716750447 -0.435124241 -0.486771338 +5F5 -1.931924421 -1.905362823 -2.085665061 -2.082493715 -0.918701883 -0.857815410 -0.975336355 -0.967144871 +5F7 -0.719138665 -0.720189522 0.115012916 0.111417197 -0.085020300 -0.079410949 0.088732064 0.129861791 +5F9 -2.863248201 -2.775795769 -2.684392830 -2.610572459 -2.870390691 -2.883607988 -2.610035987 -2.624104077 +5F11 -0.403271559 0.000000000 -0.409519327 0.037841120 -0.475725194 -0.558355751 0.448163054 0.448163054 +5H1 -0.308195719 -0.276428042 -0.240708744 -0.269896613 0.434026990 0.521608013 0.800019984 0.836323110 +5H3 -1.183783506 -1.138435026 -1.281671590 -1.417349987 -0.906298692 -0.893576484 -0.540658795 -0.535196850 +5H5 -0.008220178 -0.013730370 0.421047713 0.509791792 1.267951292 1.316669696 1.753177078 1.706181187 +5H7 -0.688572273 -0.627413144 -0.234859612 -0.306678024 0.836672359 0.915710632 1.155716868 1.164133062 +5H9 0.799680684 0.584272683 -0.010683900 -0.328882054 0.393857908 0.354408414 0.449068928 0.542954470 +5H11 -1.281441388 -1.316707932 -0.730142227 -0.978667101 -2.657407160 -2.591920924 -2.385783734 -2.343600346 +5B1 -0.629218548 -0.637821573 -0.541789849 -0.635701447 -1.384585827 -1.411088453 -1.259229054 -1.255744111 +5B3 -0.271268524 -0.408810078 -0.151043808 -0.279223293 0.774510943 0.792696936 1.039389573 1.137161519 +5B5 1.243491143 1.110239096 1.617251503 1.386304065 0.290394730 0.428982309 1.192071342 1.263365703 +5B7 0.579901830 0.560065928 1.186527159 1.088862752 0.994170860 1.011518145 1.462749221 1.497351921 +5B9 0.506211478 0.556754646 0.774850192 0.937370320 1.013075775 0.955893736 1.602055549 1.614715898 +5B11 -0.755045834 -0.705121535 -0.498213925 -0.567463550 0.569376671 0.551868920 0.439078639 0.488121560 +2B1 2.422731019 2.890027416 1.455724841 2.207745631 2.816042631 2.654131045 3.276749836 3.043683905 +2B3 3.423979241 3.431580934 2.855633902 3.601964267 3.999512767 3.852125783 3.852125783 4.001151710 +2B5 -2.337226448 -2.325603124 -2.412374947 -2.398654420 -1.415902270 -1.462651439 -1.427547412 -1.454368317 +2B7 0.000000000 0.070443451 0.243140539 0.258656723 0.463938008 0.604259112 0.826567325 0.788310060 +2B9 0.393848193 0.421318350 1.440238701 1.207113469 0.193391241 0.134444911 0.560950635 0.496145270 +2B11 0.240779724 0.264052367 0.587535455 0.823572602 1.072570539 1.139740709 1.077975639 1.028697485 +2D1 -0.994888514 -0.569259195 -1.236221132 -0.912695612 -2.111906322 -2.265441599 -1.698287312 -2.074533929 +2D3 0.039339326 0.154823231 0.060974836 0.271228697 -0.260874484 -0.252899738 -0.631856588 -0.680934407 +2D5 -0.172489495 0.044187235 -1.845816260 -1.971038577 -0.092525286 -0.530021300 -0.621628104 -0.579675120 +2D7 1.109511978 0.889912734 1.258446118 1.231610529 2.062914271 1.995532726 1.510680345 1.545232221 +2D9 0.324206532 0.381959292 0.284661647 0.176776394 0.819226759 0.948401432 0.717498298 0.658482475 +2D11 -1.920212761 -1.924623189 -1.842410528 -1.792338242 -1.378690657 -1.444162185 -1.717831892 -1.724609523 +2F1 -0.219517265 -0.134373139 0.007104451 0.222745031 0.316181366 0.282855421 0.320541531 0.203845649 +2F3 0.961749908 1.099019452 0.954329050 1.099041429 1.212154738 1.117330706 1.147979232 1.096092394 +2F5 4.555065639 4.486024101 3.338334915 4.717101956 4.744018189 3.423395789 4.954248109 4.988515190 +2F7 -2.491746302 -2.471104277 -2.116212237 -2.068454258 -1.858135098 -1.830966863 -1.747093234 -1.834388087 +2F9 1.643785222 2.110152746 1.484895489 1.890646133 0.068841189 -0.279338688 0.515237919 0.289939341 +2F11 0.493769378 0.667143612 0.628012076 0.802286553 0.556284222 0.404976057 0.801297342 0.648911145 +2H1 0.310544494 0.414379433 0.809762488 1.049900068 0.360502986 0.257007178 0.524980379 0.431852592 +2H3 2.973861150 3.315753108 3.274557716 4.285433987 3.148309857 2.310927089 3.700520002 3.057199639 +2H5 0.172652353 0.200352634 -0.089744387 0.185286130 -0.349454146 -0.400854754 0.035509858 -0.005492475 +2H7 0.077183725 0.114701556 0.817904581 0.974467254 -0.252825541 -0.404588605 -0.493443828 -0.590883518 +2H9 -0.861025954 -0.770575022 -1.140255516 -0.964637238 -1.883462733 -1.901144556 -1.800537372 -1.825735845 +2H11 0.174352573 0.174674542 -0.460880463 -0.145348646 -0.016227101 0.040316244 -0.289735900 -0.332277155 +6B1 1.964969073 2.091324479 2.362143814 2.185905832 0.423263711 0.399696582 1.540350417 1.640088395 +6B3 -0.053841196 -0.038362645 -0.123893453 -0.196693871 0.159609080 0.183002286 0.146642530 0.139210892 +6B5 -0.398272181 -0.338763975 -0.106196500 0.831589224 0.842433930 0.762479074 1.245681838 1.301172768 +6B7 1.481715989 1.781078350 1.967020361 2.067981933 1.899919915 1.881774572 3.215702264 2.731251565 +6B9 2.235640438 1.575027343 2.055552516 1.343628263 3.791010537 3.278299307 3.696750917 4.591082750 +6B11 -0.379116110 -0.348610428 -0.166176508 0.034207923 -1.147879053 -1.172625630 -0.906503741 -0.936947636 +6D1 2.346983850 2.789137188 1.418290750 1.487509811 2.680213433 2.111521416 3.721080334 3.099953762 +6D3 -0.122853494 -0.076400996 0.069210237 0.093888627 0.380063992 0.362298571 0.191461756 0.225365280 +6D5 0.419394373 0.447335680 -1.618169197 -1.711429174 -1.412357399 -1.426542006 -1.552185921 -1.543710317 +6D7 1.126293479 1.220880605 1.390353654 1.116678023 1.141588368 1.701032457 1.291743110 1.240767180 +6D9 -1.730251529 -1.649376048 -1.604549604 -1.367596466 0.930281269 0.884098776 0.824225588 0.783680786 +6D11 3.174818914 3.338060767 3.528604788 3.499269427 2.891595354 2.237413165 2.543183052 2.751649225 +6F1 -1.672041100 -1.626008020 -1.617154439 -1.477774200 -1.412017742 -1.444009481 -1.440128824 -1.459713881 +6F3 -1.857546334 -1.831304222 -1.545062081 -1.403181523 -1.387774393 -1.488249086 -1.214653675 -1.269258761 +6F5 -2.031340435 -1.734840392 -1.678315515 -1.150415295 0.777687936 0.637022243 0.890615051 0.745446158 +6F7 -3.571466864 -3.717688654 -3.478148719 -3.458658237 -3.789181474 -3.029824558 -3.724365244 -3.559864561 +6F9 -0.200193835 0.003440863 0.014679412 0.184178606 -0.182127848 -0.183561921 -0.088586924 -0.134821545 +6F11 -0.543596797 -0.558901263 -0.690619210 -0.461548384 -0.335080613 -0.414885328 -0.335659767 -0.403405723 +6H1 -0.648243018 -0.714248948 -0.483709393 -0.432339945 1.038180504 1.171795957 0.831682236 0.785415685 +6H3 2.488630869 2.965829760 2.339570651 2.811092141 2.950004694 2.685933193 3.529299616 3.020961668 +6H5 2.442284239 2.801063647 2.742420577 3.439694868 2.283213063 2.168470099 3.242348138 3.144163067 +6H7 -0.599241783 -0.561930020 -0.442481224 -0.462242825 0.408861505 0.420534572 0.441038729 0.469321584 +6H9 1.749388912 1.956018040 2.085492214 2.089362408 2.006162529 1.839590449 2.774971258 2.219642568 +6H11 2.394840482 2.581195575 2.977302800 3.527164962 0.997367356 1.022392080 2.059421031 2.252180424 +1C1 -0.915893263 -0.853618786 -1.064036958 -1.028041375 -0.597785132 -0.593916157 -0.541281640 -0.558970380 +1C3 0.111517598 0.105511053 0.307470934 0.346625001 0.274220573 0.263186321 0.676205007 0.542378574 +1C5 1.487744739 1.394678174 1.622560222 1.071547116 -0.301386356 -0.341559274 -0.542946609 -0.499334560 +1C7 2.434041269 2.195905886 1.513848886 1.444130820 2.720028097 2.566865155 1.813681747 1.851951402 +1C9 0.630604509 0.712663348 -0.164382362 0.265742659 -0.817302230 -0.899525818 -0.767550950 -0.759398679 +1C11 0.508744684 0.417481610 0.087993135 0.238535952 0.162532819 0.104846821 0.051068421 0.094498448 +1E1 -0.264990809 -0.139527528 -0.281153503 -0.124699779 -0.186269435 -0.129443608 -0.232546044 -0.324697379 +1E3 -0.823348531 -0.760296711 -1.424609720 -1.474210834 -1.484401040 -1.475285417 -1.330519929 -1.251493582 +1E5 1.165152755 0.955429145 -0.178333464 -0.112332177 -0.366361685 -0.517425693 -0.265188672 -0.176937270 +1E7 1.292459724 1.259040952 -0.141489201 -0.047140213 2.049985524 1.984373894 1.666493231 1.707019488 +1E9 -1.393229529 -1.382237285 -2.034566823 -2.021355435 -3.807464730 -4.266086853 -4.021839977 -3.553236903 +1E11 0.151636354 0.959970334 -0.613358721 -0.224245849 1.371417096 1.475799027 1.241263429 1.220595646 +1G1 -2.909064482 -2.861138264 -3.039055249 -3.053988204 -1.331011119 -1.353548844 -1.563396302 -1.608632445 +1G3 -1.421275359 -1.358185889 -1.815548904 -1.611535568 -1.990801941 -2.033866673 -2.011738953 -2.099740145 +1G5 -0.121696960 -0.207380565 -0.911848319 -0.871143543 -0.348013847 -0.263220681 -0.648719994 -0.641752278 +1G7 -0.467416308 -0.946860151 -2.446151523 -2.373189630 -2.352326907 -2.356823955 -2.702851557 -2.712705103 +1G9 1.416123596 1.716766629 1.759302505 2.058426323 1.371046884 1.384961606 1.779116105 1.656707947 +1G11 0.560867297 0.655069077 0.256909976 0.431452519 -0.530918419 -0.524307478 -0.261670711 -0.391073247 +1A1 2.391488555 2.442323349 1.386939857 1.572154785 2.470012917 2.458213926 2.194510275 2.276398309 +1A3 1.448672976 1.344800321 0.128328976 0.305168117 0.249014781 0.399728782 0.092869298 0.100686412 +1A5 0.946002177 1.070614914 0.427615151 0.564693139 1.507298716 1.435272584 1.293960188 1.175920072 +1A7 -0.237568264 -0.307068261 -0.220120574 -0.366690976 1.031786855 0.962211855 1.162925463 1.182653019 +1A9 1.217888747 1.543111415 0.996794038 1.310454408 1.760572661 1.810056003 2.115972134 1.935133844 +1A11 -0.330127491 -0.316150316 -0.403542538 -0.162894400 1.095168210 1.287331168 1.201714868 1.157932779 +3C1 1.176934378 1.524138335 1.056724913 1.210830517 0.831746297 0.837657798 1.016953192 1.026457791 +3C3 0.354758320 0.405456314 0.112515649 0.093649272 -1.358273329 -1.290521542 -0.859383007 -0.901158486 +3C5 1.030030128 0.850485959 0.501302400 0.299378264 -0.654632825 -0.780414225 -0.736752096 -0.785786195 +3C7 1.944158202 1.832806828 1.150200363 1.088897899 2.332661523 2.267955929 2.071692198 2.117940148 +3C9 2.057192220 1.943649548 1.701054422 1.658299755 1.485696976 1.574891517 1.242915276 1.225060532 +3C11 0.750728760 0.700476504 0.838617229 0.800125557 -1.380417839 -1.386657888 -1.659906603 -1.673193327 +3E1 1.634646535 1.814514620 1.930355248 1.960209442 -1.018598560 -0.980486918 -0.824450420 -0.869907297 +3E3 0.510118735 1.000386533 1.017867740 1.221332939 1.116507915 1.288871353 1.317163005 1.460255793 +3E5 -0.164443087 -0.020717156 -0.764404410 -0.621336006 -0.770454001 -0.683891615 -0.832879314 -0.881814263 +3E7 -0.036708027 0.092440149 -0.353843215 -0.126197500 -0.942429071 -0.810121542 -0.834870562 -0.896893724 +3E9 1.564304710 1.928946196 1.234921219 1.342359920 1.147183969 1.308079820 1.194625192 1.196563295 +3E11 -1.042574971 -0.948823195 -1.176753630 -1.043890785 -1.127779301 -1.097141392 -1.309427189 -1.379093621 +3G1 -1.235247911 -1.166184862 -1.491982739 -1.477930011 -2.158541103 -2.072305104 -2.006390579 -2.040072849 +3G3 1.033841598 1.137634971 0.962542411 1.137634971 -2.925389192 -2.876623320 -2.803829804 -2.816444582 +3G5 -0.782712110 -0.727012274 -1.090781715 -1.023980399 0.660071303 0.741120787 0.274289228 0.264004035 +3G7 -0.546415531 -0.501830788 -1.767744676 -1.767744676 0.343610302 0.424854158 -1.076223730 -1.057311437 +3G9 -2.035939746 -1.855634508 -1.973782899 -1.910337926 -0.010290735 0.007804278 0.198707844 0.181939484 +3G11 -0.133407445 -0.097174931 -0.666372619 -0.586122199 -1.383710134 -1.375145168 -1.325985649 -1.370030511 +3A1 0.376182165 0.413267743 -0.483827316 -0.352334820 -1.052091493 -1.060421168 -0.911861110 -0.841547118 +3A3 -1.068512061 -1.030554614 -1.427323638 -1.549182220 -1.074877368 -1.049119817 -1.359290924 -1.350228553 +3A5 2.731829487 2.994476376 2.296666612 2.385670161 2.603071592 2.516152705 2.181731302 2.160891618 +3A7 1.035682746 1.017773300 0.184492851 0.140239344 2.013740969 1.965661416 2.086935571 2.144138440 +3A9 1.122653893 1.115458132 1.114371059 1.628626171 1.836956422 1.757438753 1.587716836 1.671292434 +3A11 0.544453401 0.763289626 1.199171499 1.446404529 0.860599821 0.909359562 0.992001277 0.982815649 +5C1 -0.066569231 -0.013960908 0.308001763 0.121109414 0.345159118 0.485917780 0.267960155 0.288453919 +5C3 -0.824836736 -0.722922249 -1.311192804 -1.177198281 -1.703868782 -1.676376346 -1.740701777 -1.774377044 +5C5 1.695590474 1.737032290 1.263369419 1.484107592 2.072004848 2.089188715 2.061249314 2.090325625 +5C7 0.437890874 0.743502743 0.183393456 0.688118167 -0.326286060 -0.101012236 -0.287704820 -0.412158131 +5C9 1.317071113 1.457829750 1.983239651 2.291000643 1.678103393 1.705269211 2.193452276 2.118755387 +5C11 1.409183404 1.434957424 1.777548893 2.165679348 1.858821867 1.995770821 1.961724560 1.903077115 +5E1 2.115414825 2.541570186 1.871040487 2.295212096 0.624940035 0.636516743 0.643848364 0.462001602 +5E3 -0.140379906 0.402186847 -0.891396232 -0.870940061 1.684917302 1.953364866 1.253751784 1.426166026 +5E5 2.208222040 2.333559929 1.990844072 1.929123951 0.738049281 0.810319976 0.386898803 0.332293950 +5E7 0.975239488 1.199517119 0.210329021 0.473413873 1.059270436 1.217981730 0.982134631 0.968506150 +5E9 2.137047328 2.273958389 1.827593517 1.800523676 1.153935197 1.279120663 1.343248489 1.411281495 +5E11 1.074279104 1.136176387 0.618239289 0.990484189 0.109397785 0.146717998 -0.150459250 -0.170052795 +5G1 1.131686157 1.254775446 1.464381654 1.650832347 0.319475144 0.493000250 0.384749512 0.399913987 +5G3 1.874481050 1.928715061 1.111507672 1.367415828 1.086582238 1.389910593 1.250628211 1.246190682 +5G5 0.551874120 0.682996850 -0.226056633 -0.316472337 -1.369968126 -1.299683434 -1.456281466 -1.427659210 +5G7 -0.809816731 -0.783936325 -1.198293662 -1.254516425 0.963292640 1.016918311 -0.739455850 -0.803056469 +5G9 -0.084947455 -0.044617694 0.080697884 0.104618151 -1.901268729 -1.807768974 -1.993412677 -2.001577776 +5G11 0.390698611 0.611554710 -0.089503070 0.251459737 -0.483639812 -0.463027206 -0.534955412 -0.745284433 +5A1 -0.307868335 -0.170502023 0.109902283 0.502053514 -1.572114936 -1.598463522 -1.391532111 -1.391532111 +5A3 -1.602380658 -1.549428435 -1.539084321 -1.392318505 -1.997874319 -1.988974454 -2.027894415 -2.077199685 +5A5 1.253193964 0.902795489 0.698374019 0.622907494 0.853300290 1.013563157 0.587600670 0.609249434 +5A7 1.011657852 0.663961526 0.035489243 0.238896673 1.593495340 1.710463426 1.275235784 1.237438279 +5A9 0.584660982 0.651735516 0.269106818 0.320640271 0.153992571 0.193538602 0.004942693 -0.071887934 +5A11 -0.820678889 -0.804991243 -1.231071435 -1.191896515 1.574406916 1.479338311 1.590221462 1.575940103 +2E4 -0.836187427 -0.851709936 -1.128868718 -1.138435026 -1.815267171 -1.857686195 -1.785556621 -1.789584408 +2E6 0.301062199 0.259011213 -0.065010968 -0.160324423 -0.194212902 -0.203837519 -0.338483628 -0.343938904 +2E8 2.506498867 2.053329647 1.948187785 1.436929978 1.143049197 1.065933359 1.043653629 1.247223929 +2E10 -1.058394679 -1.121076775 -1.033060963 -1.156105332 -0.419134937 -0.367929271 -0.168159580 -0.194830488 +2E12 -0.649549129 -0.623788489 -0.780553560 -0.920228423 -1.676230891 -1.671353727 -1.390990827 -1.389715176 +2E2 -0.812437776 -0.783293718 -0.209209927 0.064920279 0.562726578 0.538170200 0.766397488 0.725332306 +2G4 0.152668681 0.177126037 0.006428116 0.031473150 -0.290173441 -0.266305081 0.111770979 0.093499755 +2G6 0.134768868 0.159605020 -0.195812067 -0.062732894 0.561883660 0.448096429 0.507774393 0.486171963 +2G8 -0.715936196 -0.649313840 -2.007421641 -1.770110691 -1.604457618 -1.639082594 -1.603600422 -1.580114249 +2G10 0.255874161 0.210766228 0.495653344 0.141072180 0.607418082 0.679019493 0.502332043 0.564822635 +2G12 0.219562863 0.063591028 -0.028452555 -0.123113166 0.547699300 0.590293423 0.488204577 0.557461040 +2G2 -0.718212295 -0.750695996 -0.718286982 -0.685972864 -1.629435556 -1.629435556 -1.610623137 -1.613975232 +2A4 1.361095028 1.204969447 1.370956462 1.222053008 0.706819028 0.656080960 0.773909428 0.934344055 +2A6 -3.101498337 -3.160421850 -3.065123740 -3.100689034 -1.932888638 -1.955576339 -1.606365967 -1.588546189 +2A8 -0.944584311 -0.957120013 -0.718585582 -0.816315822 -1.182723809 -1.195889057 -0.949298959 -0.931523257 +2A10 1.381665437 1.304808424 0.939037046 0.480142246 1.362739033 1.137370063 1.781004419 1.993079881 +2A12 -1.217165048 -1.228233231 -1.654023100 -1.666483757 0.518891794 0.492053650 0.317349977 0.218776492 +2A2 0.078193640 0.011267480 0.768169208 0.686440725 0.572369262 0.517484317 0.639111269 0.691458630 +2C4 0.672467145 0.712140245 0.497297822 -0.218396598 -2.885873567 -2.896569227 -2.882234692 -2.889777781 +2C6 0.604770871 0.523093830 0.590601375 0.845642586 0.097547890 -0.247389239 0.092704860 0.065763940 +2C8 -1.121632643 -1.168452117 -0.958722716 -0.880160225 -0.935180451 -0.993710916 -0.695055645 -0.732310674 +2C10 2.554176468 2.191834497 2.974870405 2.318948620 2.561067679 2.376534591 2.462150398 2.490476022 +2C12 -1.782586648 -1.789788166 -1.826001240 -1.765965799 -0.400604855 -0.512081897 -0.737454135 -0.785912371 +2C2 2.549912102 2.562999819 2.220319689 2.448746702 1.745657415 1.595397295 2.068587260 2.133498722 +6E4 0.806543097 0.850264553 0.806543097 0.870719221 0.242786123 0.171923618 0.829590490 0.626999230 +6E6 -1.380676621 -1.381872682 -1.193810636 -1.263844086 1.061369812 1.201939910 1.854799134 1.884146809 +6E8 1.807435254 1.754920895 0.563351296 0.272037690 1.863450166 1.957682592 2.129618059 2.167640237 +6E10 0.219143210 0.275918646 0.476387032 0.687806872 -0.821471031 -0.826577260 -0.980737597 -0.964578634 +6E12 1.490852854 1.492776008 1.105558484 0.751653807 1.484518818 1.513060453 1.647906925 1.559532458 +6E2 0.088404813 0.020676486 0.254255119 0.204942224 0.745629978 0.815105953 0.548899394 0.570209817 +6G4 1.562088910 1.509478385 1.091088067 0.972615551 1.767890799 1.747326154 2.134669045 2.089466630 +6G6 0.555144905 0.602366367 0.186933684 0.377784551 1.754960875 2.121570188 1.579646751 1.631158896 +6G8 -1.558488793 -1.573728831 -1.981168607 -2.135638552 -1.635019114 -1.498342684 -1.654481159 -1.615080476 +6G10 -3.274098782 -3.365225642 -2.962078115 -2.929174053 -5.075358621 -5.556662460 -5.051241061 -4.990380709 +6G12 1.414733306 1.294752085 1.011918437 0.508696155 1.405892630 1.607821892 1.047608861 1.188050634 +6G2 -1.965723858 -1.834033894 -2.595804355 -2.433374700 -2.130886683 -2.127471701 -1.989341018 -2.035730270 +6A4 1.080745903 1.025718122 0.627010495 0.737697136 -0.734799628 -0.623907223 -0.739475881 -0.717995085 +6A6 -0.106700711 -0.154777762 -0.085673416 -0.362684013 -0.356781831 -0.208107336 -0.351694616 -0.391697911 +6A8 0.241397171 0.036782710 0.545416961 0.493306502 -0.391879614 -0.363295695 -0.341905095 -0.287939397 +6A10 -1.965929391 -2.010534752 -1.922067669 -2.061471078 -1.957438349 -1.836033079 -1.950758565 -1.906274974 +6A12 0.832350396 0.897475113 0.634458867 -0.056047913 0.422040125 0.480607373 0.538521866 0.540605578 +6A2 1.159615768 1.148113915 0.852595923 0.652728356 -1.411467861 -1.388253945 -1.493533137 -1.470720239 +6C4 -0.537927822 -0.710744993 -0.476126801 -0.640132590 -1.607907415 -1.538917870 -1.581816248 -1.520768421 +6C6 1.651372713 1.715416685 0.805011435 1.065745708 2.150662211 1.859871383 1.507671071 1.515116102 +6C8 -1.357066994 -1.316331335 -1.186119805 -1.181118904 -0.751192891 -0.760130568 -0.534903239 -0.522377110 +6C10 -0.528615924 -0.687544095 -0.247606009 -0.460645803 0.345260385 0.492898532 0.424047796 0.549907860 +6C12 1.624784425 1.600958338 1.170057858 1.113865750 1.717995585 1.701790262 1.498908373 1.499696572 +6C2 1.342276259 1.332169304 0.833853807 1.173372645 -1.070778731 -1.111291401 -1.200605107 -1.204965622 +2B4 -1.234827987 -1.167568903 -1.572341776 -1.406229200 0.004310543 -0.087003782 -0.655472256 -0.723765703 +2B6 -1.088751696 -0.966892263 -1.038915868 -0.856162148 2.043736851 1.961951436 1.744279390 1.702340528 +2B8 2.013198220 2.496066559 2.165289625 2.875212586 2.148117243 1.841131473 2.118584975 1.970535853 +2B10 1.240260161 1.279479566 -0.669142377 -0.626203233 1.795879840 1.309215602 1.772104999 1.688661937 +2B12 1.270474023 1.168742262 1.165365322 1.077922409 1.291661646 1.219088074 1.077922409 1.113979373 +2B2 0.414960198 0.388647240 0.665174958 0.741816123 -0.771586767 -0.824399154 -1.023405173 -1.012698192 +2D4 1.254433895 1.121840660 1.052164812 1.134679641 1.127996973 1.072221471 0.440189686 0.300448607 +2D6 2.503871213 2.599185088 2.437203333 2.665776974 2.137919395 1.862632429 1.835530122 1.275971203 +2D8 -0.305414819 -0.272620103 -0.841479814 -0.880214684 0.205068527 0.022291222 -0.231768204 -0.270240585 +2D10 0.381863707 0.200910591 0.292660327 0.047083341 0.195113668 0.026605135 -0.292262548 -0.211062685 +2D12 -0.506439021 -0.516168404 -0.266986229 -0.226639370 1.221664216 1.115133049 0.698418176 0.642049683 +2D2 1.056483366 1.044698381 1.125293970 0.918784498 0.542404564 0.544711399 -0.020138714 -0.016399997 +2F4 0.996651762 0.635867241 1.017121865 0.782335359 2.867426609 2.100617047 1.204881699 1.325642533 +2F6 3.486938117 3.336716209 2.715343674 2.970414173 2.925726435 2.593328063 2.285692666 2.303067840 +2F8 1.010353058 1.019419938 0.937573585 0.872963191 0.172914562 0.096505415 -0.093657982 -0.092469517 +2F10 1.231306676 1.195659891 0.699618637 0.701175933 -2.714883316 -2.698386414 -3.055307658 -2.961704171 +2F12 -0.058468780 0.115007957 -0.322239458 0.174022934 -0.207592315 -0.477766531 -0.966244981 -1.011652085 +2F2 -1.165061187 -1.161227551 -0.101997627 0.056571962 -1.531295712 -1.556705005 -1.989825441 -2.056911612 +2H4 1.957069512 2.372211356 1.763561821 2.130507711 3.504584222 3.059335725 2.599680317 2.454332251 +2H6 -1.800164700 -1.763446343 -1.067238910 -0.935075858 -2.243607310 -2.317100953 -2.197570558 -2.296075138 +2H8 2.071914096 2.438640768 1.864209695 2.413299909 -0.435462063 -0.759859505 -0.712918523 -0.858483217 +2H10 1.330119563 1.402084437 1.689330553 2.117428492 -2.090464892 -2.209701076 -2.343126533 -2.434937299 +2H12 1.417265940 1.633767176 1.855527634 2.049657072 1.933765146 1.974626192 1.592504441 1.554193105 +2H2 0.883813996 0.883813996 0.839811716 0.895553871 1.527822508 0.937651582 0.771944492 0.679323820 +6B4 -0.469723412 -0.465612940 -0.276027366 -0.191053148 -0.329899178 -0.329498281 -0.505824873 -0.472113397 +6B6 1.393337025 1.308190693 1.379348742 1.192656475 2.622947186 2.564976730 1.907208409 2.080972360 +6B8 -0.036539001 0.008720144 -0.110900929 -0.069525010 0.666620081 0.646203030 0.196702291 0.221690333 +6B10 -2.684138122 -2.726079167 -2.388121955 -2.224688774 -1.940369877 -1.989353666 -1.917936758 -2.105442773 +6B12 -1.410355851 -1.435836729 -1.402244701 -1.295567443 -1.584939720 -1.650368674 -1.823486501 -1.852516425 +6B2 -0.844177312 -0.804261082 0.017238452 0.313728329 1.050930586 0.571321230 1.366046628 1.357399766 +6D4 0.661601654 0.684976036 1.131760298 1.237578989 -1.429346736 -1.401093076 -1.700482768 -1.705530532 +6D6 0.631169785 0.412840180 0.551566894 0.523751001 0.069298580 0.301980057 0.147530037 -0.148875264 +6D8 0.947325242 0.825967498 -2.994424872 -2.897999876 -0.071610121 -0.660319422 -0.574736893 -0.525144443 +6D10 1.560605531 1.413359091 1.501740084 1.137575006 -1.109861060 -1.245175543 -1.418016231 -1.400893144 +6D12 -0.798466865 -0.721436991 -0.806904465 -0.752971144 -1.376970416 -1.441730992 -1.689854121 -1.706763547 +6D2 1.195844056 0.988222671 0.896330505 0.916900757 0.657230624 0.173637719 0.609684984 0.707498034 +6F4 1.040568526 1.094567345 1.378667115 1.433740949 2.083209282 2.057924133 1.677347523 1.689888112 +6F6 -0.696693349 -0.682865665 -0.766974321 -0.753784570 -1.517294865 -1.507205076 -1.780899884 -1.768510453 +6F8 -0.430537244 -0.380477239 0.044751737 0.184862836 0.553005314 0.661387101 0.285120991 0.244118106 +6F10 0.856032916 0.881593908 0.384920045 0.483709317 2.245529908 2.369430488 1.589377881 1.679306940 +6F12 -4.214105868 -4.214105868 -4.427445769 -4.376354941 -4.132663412 -4.251720711 -4.518885402 -4.631456443 +6F2 -0.509474805 -0.430904690 -0.214852198 -0.137323455 -0.419564442 -0.393739985 -0.801191064 -0.781449308 +6H4 -0.947872339 -0.960448389 -0.867656515 -0.638007042 -0.998420801 -1.036816724 -1.292505604 -1.320734524 +6H6 2.029713137 2.158168226 1.560830227 1.724001388 2.160973629 2.232855789 2.415360500 2.443524984 +6H8 -0.062605410 0.122886805 1.026867521 1.108595066 0.507510769 0.468291213 0.306720354 0.255497620 +6H10 0.411056029 0.500261867 0.682736817 0.914026653 -0.011054877 -0.002986187 -0.175405325 -0.175573810 +6H12 0.266623703 0.245624510 0.277710431 0.322869240 0.446310010 0.502530773 0.232805712 0.254289763 +6H2 -1.147695330 -1.061195826 -1.052395560 -0.779189329 -1.564288155 -1.571349053 -1.976660524 -1.989684732 +1D2 -2.431555046 -2.510558158 -3.056140595 -2.849860411 -3.198091197 -3.109686384 -3.230803664 -3.237200431 +1D4 0.083586200 -0.123669861 0.493558325 0.155820714 -0.062606699 0.024980146 -0.187564018 -0.135431890 +1D6 -3.887105314 -3.893128930 -3.449027766 -3.407015893 -1.524915999 -1.690204182 -1.665973080 -1.698793505 +1D8 -1.163582879 -1.280735364 -0.730097424 -1.105177429 -0.827128754 -1.002127776 -0.976216610 -0.974263116 +1D10 -0.091492984 -0.246833449 -0.263576338 -0.628183368 -0.262628597 -0.532336693 -0.403191040 -0.368486854 +1D12 0.240678737 0.115106008 0.445356253 -0.156490524 -0.264889233 -0.269904133 -0.088047741 -0.025774020 +1F2 -3.212463041 -3.233778105 -2.910424477 -2.874423753 -2.904725565 -2.936065667 -2.458606703 -2.492585366 +1F4 0.904146707 0.423370914 0.045862501 -0.883088368 -1.195856099 -1.202731676 -1.213229438 -1.182321414 +1F6 0.617579688 0.371643551 1.019875677 0.259350864 0.593500001 0.392956970 0.456203789 0.541112941 +1F8 -1.537267471 -1.575799854 -1.143747502 -1.507304384 -1.681141288 -1.830604501 -1.708286323 -1.748792314 +1F10 0.891387230 0.603060293 -0.484072871 -1.297799208 -2.917343600 -2.977985434 -3.090367600 -3.073278088 +1F12 1.680282393 1.481361115 0.711608142 0.525723051 -0.254568833 -0.340215655 -0.243418368 -0.274907601 +1H2 1.735277317 1.538616898 0.753507177 0.773484847 2.503376585 1.733016461 1.347231668 1.335083451 +1H4 1.240248467 1.026108445 -0.077606840 -0.578827317 0.793007377 0.082447971 0.329709077 0.295177804 +1H6 -2.471654186 -2.530421354 -2.478305391 -2.553948097 -2.426370942 -2.305993217 -2.551595240 -2.551595240 +1H8 0.206601198 0.033805753 -0.097856684 -0.455053354 -1.444821755 -1.408318518 -1.694153236 -1.669730142 +1H10 -0.138522723 -0.383082872 -0.775529447 -1.037361516 -1.201130212 -1.203465146 -1.448685411 -1.383101128 +1H12 2.039184091 1.753120687 1.591232748 1.216622505 1.717164196 1.584496921 1.742721229 1.839523090 +1B2 -2.058348132 -2.192317695 -1.775397237 -1.844113738 -1.263052091 -1.212057137 -1.307921315 -1.276108824 +1B4 -1.312814978 -1.325748815 -0.865952742 -0.735969002 -3.283876353 -3.292649808 -3.444107027 -3.459664841 +1B6 1.991298968 1.717851168 2.276020218 1.849667878 1.655324383 1.528863487 1.549345348 1.713453180 +1B8 1.513045291 0.990071797 1.755886966 1.500901396 0.204740179 0.025549736 0.054085141 -0.333089338 +1B10 -0.073481820 -0.215396095 -0.068659774 -0.174779103 -0.334694312 -0.343020815 -0.430262509 -0.340188076 +1B12 -3.381302760 -3.410284489 -2.683024618 -2.692411358 -1.626044266 -1.647767217 -0.711570009 -0.816892950 +3D2 -2.877499498 -2.874569058 -3.044385839 -3.129544363 -2.891298894 -2.866910640 -2.821728696 -2.751010092 +3D4 -0.993413907 -1.075960353 0.409262011 0.050223092 -1.422072009 -1.418618112 -1.293448001 -1.366521620 +3D6 -3.351045154 -3.351045154 -3.241646341 -3.264151239 -2.963338477 -2.931257916 -2.824673000 -2.815431466 +3D8 -3.581178974 -3.620320526 -3.065207783 -3.122360292 -2.273124480 -2.247545462 -2.179104063 -2.143576407 +3D10 -0.429926293 -0.552894909 -0.116549720 -0.182343319 -1.608712431 -1.571524395 -1.528534633 -1.475205674 +3D12 -1.243318693 -1.244751280 -1.263131635 -1.278564747 -2.379289554 -2.390248849 -2.249981275 -2.239623071 +3F2 -2.400124576 -2.430981269 -2.221985537 -2.147623199 -1.766567441 -1.777238753 -1.622709830 -1.515551824 +3F4 -2.555168275 -2.537154332 -2.070477366 -2.071890632 -0.823477766 -0.886483175 -0.708269867 -0.705785602 +3F6 0.734333629 0.625856925 1.017232765 1.182786564 1.525569442 1.568913567 1.872110872 1.850159017 +3F8 -0.848141441 -0.871748627 -0.121476658 0.206877113 -0.714995341 -0.759947073 -0.775466777 -0.807943365 +3F10 0.000000000 0.000000000 0.590662138 0.717485499 0.161940818 -0.197945939 -0.089227554 -0.019546423 +3F12 -3.534544693 -3.516361186 -3.130797437 -3.108349346 0.633335350 0.440994469 0.114710500 0.124402592 +3H2 -2.200405914 -2.142097201 -2.117612792 -2.091348096 -1.787994514 -1.788168453 -1.983418099 -1.963228376 +3H4 1.326456642 1.394816821 1.696435858 1.903563579 1.527576075 1.363993417 1.310938806 1.248777090 +3H6 0.018700833 0.000000000 0.668619227 0.995785779 0.909042223 0.730085782 0.551992019 0.577843861 +3H8 0.542555173 0.437497514 1.082949943 1.222332160 0.572186667 0.602954645 0.498941678 0.478537617 +3H10 -0.331123113 -0.501769152 -0.259679284 -0.346585211 -0.197139755 -0.252800256 -0.115130956 -0.089275067 +3H12 -0.060050424 -0.246226406 0.400638668 -0.109416720 -0.742463170 -0.737819530 -0.751888622 -0.739482360 +3B2 -0.454853505 -0.491675651 -0.069024128 -0.013944475 -1.122130550 -1.097537901 -1.103931709 -1.057941477 +3B4 -1.841794133 -1.863011812 -1.701656577 -1.722295398 0.419849730 0.457626925 0.526438530 0.509524546 +3B6 -0.446225412 -0.488416564 -0.239388486 -0.382271389 -2.162201319 -2.631982768 -2.310271636 -3.199431876 +3B8 -4.415442714 -4.438847829 -4.116088392 -4.094634050 -2.378654345 -2.338951783 -1.954990384 -1.870495893 +3B10 1.309455659 0.940743506 1.903964288 1.816856435 0.936985586 0.935970687 0.940931118 1.220711158 +3B12 -2.260445265 -2.252775848 -2.176668081 -2.081273374 -3.182855739 -3.217234909 -3.116875531 -3.116875531 +5D2 -0.562121867 -0.723211962 -0.495193057 -0.635519848 0.200899448 0.155685269 -0.116117560 -0.072287114 +5D4 -1.081670120 -1.159277511 -0.658377309 -0.706056843 -0.045411819 -0.075120000 -0.160879582 -0.097359171 +5D6 -0.869347400 -0.914554220 -0.770595300 -1.025134934 -1.725482039 -1.713842421 -1.693791909 -1.663079629 +5D8 1.546335457 1.393724682 1.649087036 1.441781867 1.121896798 1.073362029 0.912318240 0.946598052 +5D10 -0.269588123 -0.321684385 -0.655068212 -0.598135497 -0.619937210 -0.601803796 -0.658597318 -0.669396906 +5D12 -3.274547723 -3.226997685 -3.100293270 -3.147951695 -1.875071384 -1.898452422 -1.839523090 -1.874285581 +5F2 -2.377569276 -2.377569276 -2.326535195 -2.220235027 -2.481385393 -2.472852355 -2.412550426 -2.343075209 +5F4 -1.607192868 -1.638863816 -1.570799172 -1.690211693 -1.965734985 -1.938618615 -2.016240010 -2.014773957 +5F6 -1.015415081 -1.093782274 -0.872615501 -0.918548850 -0.997772996 -0.962623648 -1.117269879 -1.080100130 +5F8 0.359239199 0.236227242 0.295765172 0.238246857 -1.318457778 -1.271108361 -1.321603063 -1.233629464 +5F10 -2.125634807 -2.120201867 -1.948663984 -1.828608210 -2.841379736 -2.861138264 -2.907598732 -2.892240641 +5F12 -3.288975676 -3.245688343 -3.530435696 -3.521819357 -3.173769055 -3.106599295 -3.251320887 -3.252390130 +5H2 -1.369250108 -1.385037161 -1.612133486 -1.703063372 -0.610613167 -0.591007669 -0.943208871 -0.877359657 +5H4 0.924890296 0.879241318 0.822793916 1.335765023 0.953026477 1.006994127 0.958781558 0.858489416 +5H6 0.999789395 0.976364683 1.516629543 1.554593936 1.172526424 1.258791902 1.220341198 1.282373177 +5H8 -0.232570525 -0.215750230 0.003276589 -0.092998732 -1.533333604 -1.480469658 -1.602884516 -1.568953064 +5H10 0.091493402 -0.062294700 -1.341567345 -1.259177385 -2.024321742 -1.957095092 -2.203596382 -2.210228440 +5H12 0.593500001 0.474121587 0.688429003 0.480164516 0.407903098 0.510632148 0.315851107 0.397326213 +5B2 -1.014845333 -1.100456481 -0.948480145 -1.095175974 -0.779837864 -0.743469525 -0.838315140 -0.795125056 +5B4 0.554161397 0.385321836 0.791001209 0.563401030 0.495930274 0.465380215 0.437152603 0.515828944 +5B6 1.360830975 1.208113482 1.830285998 1.582926700 1.511496637 1.522420581 1.308829091 1.328408904 +5B8 1.237352215 0.807177652 1.306988783 0.901690174 0.268486256 0.552168253 -0.009769326 -0.105462150 +5B10 -0.963476583 -1.026578503 -0.117328440 -0.324057878 0.507513149 0.562785823 0.885193324 1.029023613 +5B12 0.269480581 0.042267413 1.104785100 0.515502177 0.572365303 0.723640196 1.038738184 1.211023276 +1C2 1.691648432 1.680325858 1.974227568 2.135526655 1.275971203 1.374732867 2.109626325 2.130136404 +1C4 1.924204180 2.047219086 2.710836383 2.651410436 0.852596158 0.882151503 0.885950486 0.588685965 +1C6 1.753901486 1.706207596 2.280262523 2.490592402 1.861952470 2.008138869 1.347178870 1.512551324 +1C8 0.411465220 0.352081590 -0.740029807 -0.533088328 -1.022223851 -0.994862260 -1.742119900 -1.758234063 +1C10 0.479556553 0.576476116 -0.013451558 -0.059839212 -0.127980175 -0.155898697 -0.610632602 -0.621332596 +1C12 0.319475523 0.635158908 -1.846824986 -1.641537967 -0.910139997 -0.734233526 -1.724496031 -1.746886188 +1E2 0.837023622 0.541034018 -0.186736583 -0.142123942 -0.323884818 0.133948264 -0.775722481 -0.935522894 +1E4 1.038265465 1.337191408 0.361053727 0.635466567 0.350770841 0.445240505 -0.124708410 -0.067291685 +1E6 1.281717851 1.265678625 1.165345455 0.694403527 1.067270319 1.078670991 0.735240079 0.746387424 +1E8 -0.874971825 -0.869156541 -0.997717370 -0.829859661 -1.683054775 -1.668958171 -2.305193455 -2.327372117 +1E10 0.675881570 0.645237619 -0.153786319 0.040198668 0.272752904 0.953125889 -0.736561327 -0.507797901 +1E12 0.231967719 0.252197382 -0.123215901 0.051898577 1.192724602 1.398165236 0.353823155 0.425228892 +1G2 3.028754971 2.417815894 1.960224525 2.015823839 1.707798674 2.483088695 0.142802836 0.287348056 +1G4 0.651454997 0.485312576 0.373194074 0.575988431 1.357763344 1.333608183 0.136615186 0.191254590 +1G6 2.128311624 1.734753918 1.772739707 1.793972245 1.718376309 1.646291863 0.160981213 0.303312041 +1G8 -0.642722428 -0.525431337 -1.516645746 -1.528504218 0.127518135 0.108736249 -1.260100236 -1.270247965 +1G10 -0.680425097 -0.581350010 0.967420409 0.785117166 -0.052749883 -0.036458508 0.213059169 0.233904023 +1G12 1.100434687 1.050907757 1.503625541 1.742751663 1.155888657 1.302050974 1.277106606 1.165946494 +1A2 -1.557590253 -1.589121141 -1.985789681 -1.767401657 -0.763620223 -0.702528605 -1.401109867 -1.359673568 +1A4 0.580690006 0.707735602 0.948549660 0.737954636 -0.074799512 0.071092074 -0.866135885 -0.805959811 +1A6 0.050427967 0.028607688 0.599289219 0.735017821 0.022821838 0.076426926 -0.335741005 -0.367879302 +1A8 2.438309285 2.082674148 3.796197416 3.314681887 3.661586526 3.865217148 1.727669588 1.940755514 +1A10 1.806685878 1.643542102 1.539349211 1.649500614 2.688018152 2.738244237 2.315769693 1.928701716 +1A12 1.507014067 1.109595583 2.692979984 1.433457598 0.980799583 1.851210758 -0.017529115 0.227584071 +3C2 1.221883675 1.075080339 1.584682267 2.220687308 0.892942295 1.033288274 1.669102423 1.669058892 +3C4 1.023173585 0.936670993 1.828051533 1.726096870 1.127153758 1.470446561 1.323668608 1.193142163 +3C6 0.551570784 0.659390510 0.681212921 0.697028878 -0.784365061 -0.760831118 -1.126970533 -1.078323627 +3C8 -0.478360516 -0.361683237 0.833535111 0.812502294 0.347647413 0.510581633 -0.124519778 -0.051306397 +3C10 0.967287152 1.021287826 0.516136334 0.779535377 0.844562291 1.032469014 0.594359454 0.657215573 +3C12 0.984281286 1.016015854 1.072682835 1.388024681 -1.492587185 -1.515869087 -2.070167466 -2.092250459 +3E2 1.368269981 1.415392951 1.495571191 1.768154502 -0.049956387 0.030662605 -0.208706583 -0.291651421 +3E4 0.249511058 0.072054030 0.500753407 0.356710441 0.372449607 1.434548805 -0.437900875 -0.170180087 +3E6 1.756461000 1.481885790 1.444776299 1.456860108 -0.496941433 0.077666872 -0.845947009 -0.752397326 +3E8 -0.380069816 -0.417252634 -0.744032100 -0.733717761 -0.107879600 -0.057002676 -0.667143612 -0.635192575 +3E10 1.211697517 1.218010028 1.367127874 1.309052399 0.939289177 1.370398990 0.168171113 0.253637908 +3E12 -0.478461396 -0.468294492 -1.086536673 -1.061461095 -1.241518681 -1.197747327 -1.801917391 -1.817256517 +3G2 0.096975217 0.199605674 0.298744391 0.585414542 0.599749201 0.695628666 -0.017016038 -0.036050530 +3G4 -2.939502318 -2.952117988 -3.291353561 -3.264008928 -2.422955935 -2.322459679 -3.253777826 -3.113208055 +3G6 -0.320280858 -0.358069636 -0.019925819 -0.102393984 0.013590599 0.138325524 -0.548838878 -0.522452581 +3G8 0.440786346 0.407204293 -0.861331715 -0.393103635 0.990037952 1.245375094 0.267313995 0.279829344 +3G10 -0.220293643 -0.257762797 -0.262392368 -0.084375541 0.269697337 0.365517448 0.349510828 0.381732404 +3G12 0.519459720 0.320856068 1.212496663 1.089127434 1.166039930 1.470761119 0.980523966 0.689760533 +3A2 -1.621428590 -1.560479108 -1.754823985 -1.502721219 -1.478435130 -1.492494849 -1.739822674 -1.727191581 +3A4 -1.030598267 -0.995136323 -0.878180444 -0.710518423 -1.523032655 -1.512236249 -1.747084361 -1.758413038 +3A6 0.042400220 0.163085964 0.442887562 0.667890648 0.643003393 0.693243358 0.452383293 0.410782834 +3A8 -1.111060298 -1.083867504 -1.564459424 -1.379959172 -1.229526978 -1.202840842 -1.495030370 -1.514060000 +3A10 0.214026630 0.018861800 -0.088663091 0.111430519 1.996810541 2.325610643 1.751390522 1.522258348 +3A12 1.468805443 1.489134971 1.378184407 1.807446247 1.989279305 2.362664938 0.924963754 1.173579712 +5C2 1.503731675 1.575213471 1.851728100 1.885795666 1.461084272 2.117267324 2.272275513 2.483847943 +5C4 0.157031880 -0.088796444 0.704863004 0.061794042 0.572085844 1.006220552 0.140244648 0.132512692 +5C6 1.163916684 1.065992163 2.883866480 1.738862448 2.164032332 2.786554086 1.218862417 1.461077155 +5C8 0.669251561 0.829520579 1.819406126 1.431511067 -0.657545592 -0.450894911 -1.439795632 -1.428848596 +5C10 0.554063687 0.619866955 1.739834074 1.566643586 1.246951106 1.328365128 0.812120279 0.786710986 +5C12 0.130045029 0.137314433 0.277089387 0.131459281 0.275374045 0.473237590 -0.671591337 -0.586122199 +5E2 1.507253485 1.258898079 1.493531984 1.177265404 1.282748015 1.652168476 1.454284250 1.278057318 +5E4 2.535832503 2.651832611 2.649450271 3.169155648 3.297752567 3.770411513 2.580091565 2.867931301 +5E6 1.622168805 1.787559096 2.971234062 2.809238577 1.337453130 2.302483277 0.551842521 0.610796438 +5E8 1.998139228 1.689216242 2.199793052 2.180407415 0.765906855 1.012025417 -0.014136322 0.177196427 +5E10 0.442370083 0.457707449 1.644530595 1.793986987 -0.045602424 0.115127132 -0.484272193 -0.486212561 +5E12 -0.804252611 -0.726698220 -0.635857363 -0.568759226 -0.389061131 -0.257764186 -0.837721584 -0.840704236 +5G2 0.151632449 0.197668143 -0.349371438 -0.230696173 1.167369406 1.335236348 0.779125589 0.774256389 +5G4 -1.462805566 -1.368431947 -0.992406547 -1.004280644 2.078532108 2.390455782 1.703995223 1.724486539 +5G6 1.616182497 1.729785391 2.716887376 2.782477723 2.580602811 3.266012495 2.305228380 2.463388797 +5G8 0.958070112 1.178610338 0.359273575 0.195511403 1.254697516 1.547565492 -0.534604454 -0.472423379 +5G10 0.516667375 0.422684187 1.030558370 1.200050245 -0.084552589 0.433503606 -0.739029043 -0.598823231 +5G12 -1.463905057 -1.402083724 -0.086693921 -0.442613756 -0.300188526 0.013501827 -0.647660503 -0.683328685 +5A2 1.983041651 1.890805219 4.157921179 2.417663552 0.541765810 1.187883124 -0.119108337 0.189675327 +5A4 1.861560797 1.976577638 4.000809743 3.155137239 3.132499512 3.349184851 1.789802335 1.793008137 +5A6 0.543458066 0.613999094 1.686044152 1.485605426 1.632757669 2.025063604 1.244786790 1.359382849 +5A8 1.177847097 0.868059055 1.700229313 1.376196350 -0.969329515 -0.239935191 -1.803087805 -1.660314342 +5A10 0.592438126 0.687206504 1.111643069 0.177746697 -0.205772783 -0.096446940 -0.721558025 -0.695915039 +5A12 0.521511011 0.346588933 1.915750244 2.056182912 3.425891956 4.078232707 1.527437141 1.951658153 diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/test-data/Preprocess.Project.Data.RData Binary file preprocess_datasets/test-data/Preprocess.Project.Data.RData has changed diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/test-data/Preprocessing.Plots.html --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocess_datasets/test-data/Preprocessing.Plots.html Sun Dec 03 14:07:23 2023 +0000 @@ -0,0 +1,762 @@ + + + + + +Preprocessing + + + + + + + + + + + + + + +

+ + Preprocessing Plots Before and After + + + +

+ +

Preprocessing

+ +

+Preprocessing of an extern DataSet, issued from +GenePix_Two_Colors +technology. +

+ +

Used methods for each step

+ +

Background correction methods

+ +
method : auto
+ +

Normalization methods

+ +
methodNWA : median
+ +
methodNBA : quantile
+ +

Boxplots

+ +

Before BG

+ +

+
+ +
+

+ +

After BG, NWA and NBA

+ +

+
+ +
+

+ +

+
+ +
+

+ +

+
+ +
+

+ +

MA plots

+ +

+
+ +
+

+ +

Densities plot

+ +

Before BG

+ +

+
+ +
+

+ +

After BG

+ +

+
+ +
+

+ +

+
+ +
+

+ +

+

+ + + + diff -r 09a8947f1031 -r bdc430a41508 preprocess_datasets/test-data/Read.Project.Data.RData Binary file preprocess_datasets/test-data/Read.Project.Data.RData has changed