# HG changeset patch # User proteomisc # Date 1706520853 0 # Node ID 31f89047724fbdc70613899c63950a2aa6c9c2b6 # Parent a738f5824d0be4c6c937ef76765f4c3851e7a511 Uploaded diff -r a738f5824d0b -r 31f89047724f preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R --- a/preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R Sat Dec 16 15:58:09 2023 +0000 +++ b/preprocess_datasets/GenePix_Two_Colors_Preprocessing_Functions.R Mon Jan 29 09:34:13 2024 +0000 @@ -6,11 +6,14 @@ MA<-MA[rm.na(rownames(MA$M)),] RG.pq <<- RG.MA(MA) MAb <<-suppressWarnings(suppressMessages(normalizeBetweenArrays(MA, method=methodNBA))) - data_mt<-NaRV.omit(as.data.frame(MAb$M)) - MAb$M=(data_mt) - MAb$A=NaRV.omit(as.data.frame(MAb$A)) - MAb$genes=(MAb$genes[(MAb$genes$ID %in% c(rownames(MAb$A),rownames(MAb$M))),]) - MA.avg <-suppressWarnings(suppressMessages(avereps(MAb))) + data_mt <-NaRV.omit(as.data.frame(MAb$M)) + MAb$M <- data_mt + MAb$A <- NaRV.omit(as.data.frame(MAb$A)) + genesids <- Reduce(intersect, list(rownames(MAb$M),rownames(MAb$A),MAb$genes$ID)) + MAb$genes <- MAb$genes[MAb$genes$ID %in% genesids,] + MAb$M <- MAb$M[rownames(MAb$M) %in% genesids,] + MAb$A <- MAb$A[rownames(MAb$A) %in% genesids,] + MA.avg <-suppressWarnings(suppressMessages(avereps(MAb, ID=genesids))) data_matrix=NaRV.omit(MA.avg$M) colnames(data_matrix)<-designo$sample write.table(format(data_matrix, justify="right"),sep="\t", quote=FALSE,