Mercurial > repos > proteore > proteore_clusterprofiler
view GO-enrich.R @ 5:8a91f58782df draft
planemo upload commit c5f2b4b085a9911d1e4cc8d11367dd0363e626ab-dirty
author | proteore |
---|---|
date | Fri, 23 Mar 2018 10:01:41 -0400 |
parents | 710414ebb6db |
children | 5e16cec55146 |
line wrap: on
line source
library(clusterProfiler) #library(org.Sc.sgd.db) library(org.Hs.eg.db) library(org.Mm.eg.db) # Read file and return file content as data.frame readfile = function(filename, header) { if (header == "true") { # Read only first line of the file as header: headers <- read.table(filename, nrows = 1, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") #Read the data of the files (skipping the first row) file <- read.table(filename, skip = 1, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") # Remove empty rows file <- file[!apply(is.na(file) | file == "", 1, all), , drop=FALSE] #And assign the header to the data names(file) <- headers } else { file <- read.table(filename, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") # Remove empty rows file <- file[!apply(is.na(file) | file == "", 1, all), , drop=FALSE] } return(file) } repartition.GO <- function(geneid, orgdb, ontology, level=3, readable=TRUE) { ggo<-groupGO(gene=geneid, OrgDb = orgdb, ont=ontology, level=level, readable=TRUE) name <- paste("GGO.", ontology, ".png", sep = "") png(name) p <- barplot(ggo, showCategory=10) print(p) dev.off() return(ggo) } # GO over-representation test enrich.GO <- function(geneid, orgdb, ontology, pval_cutoff, qval_cutoff) { ego<-enrichGO(gene=geneid, OrgDb=orgdb, keytype="ENTREZID", ont=ontology, pAdjustMethod="BH", pvalueCutoff=pval_cutoff, qvalueCutoff=qval_cutoff, readable=TRUE) bar_name <- paste("EGO.", ontology, ".bar.png", sep = "") png(bar_name) p <- barplot(ego) print(p) dev.off() dot_name <- paste("EGO.", ontology, ".dot.png", sep = "") png(dot_name) p <- dotplot(ego, showCategory=10) print(p) dev.off() return(ego) } clusterProfiler = function() { args <- commandArgs(TRUE) if(length(args)<1) { args <- c("--help") } # Help section if("--help" %in% args) { cat("clusterProfiler Enrichment Analysis Arguments: --input_type: type of input (list of id or filename) --input: input --ncol: the column number which you would like to apply... --header: true/false if your file contains a header --id_type: the type of input IDs (UniProt/EntrezID) --species --onto_opt: ontology options --go_function: groupGO/enrichGO --level: 1-3 --pval_cutoff --qval_cutoff --text_output: text output filename \n") q(save="no") } # Parse arguments parseArgs <- function(x) strsplit(sub("^--", "", x), "=") argsDF <- as.data.frame(do.call("rbind", parseArgs(args))) args <- as.list(as.character(argsDF$V2)) names(args) <- argsDF$V1 input_type = args$input_type if (input_type == "text") { input = strsplit(args$input, "[ \t\n]+")[[1]] } else if (input_type == "file") { filename = args$input ncol = args$ncol # Check ncol if (! as.numeric(gsub("c", "", ncol)) %% 1 == 0) { stop("Please enter an integer for level") } else { ncol = as.numeric(gsub("c", "", ncol)) } header = args$header # Get file content file = readfile(filename, header) # Extract Protein IDs list input = c() for (row in as.character(file[,ncol])) { input = c(input, strsplit(row, ";")[[1]][1]) } } id_type = args$id_type #ID format Conversion #This case : from UNIPROT (protein id) to ENTREZ (gene id) #bitr = conversion function from clusterProfiler if (args$species=="human") { orgdb<-org.Hs.eg.db } else if (args$species=="mouse") { orgdb<-org.Mm.eg.db } else if (args$species=="rat") { orgdb<-org.Rn.eg.db } ##to initialize if (id_type=="Uniprot") { idFrom<-"UNIPROT" idTo<-"ENTREZID" gene<-bitr(input, fromType=idFrom, toType=idTo, OrgDb=orgdb) } else if (id_type=="Entrez") { gene<-input } ontology <- strsplit(args$onto_opt, ",")[[1]] if (args$go_represent == "true") { go_represent <- args$go_represent level <- as.numeric(args$level) } if (args$go_enrich == "true") { go_enrich <- args$go_enrich pval_cutoff <- as.numeric(args$pval_cutoff) qval_cutoff <- as.numeric(args$qval_cutoff) } ##enrichGO : GO over-representation test for (onto in ontology) { if (args$go_represent == "true") { ggo<-repartition.GO(gene$ENTREZID, orgdb, onto, level, readable=TRUE) write.table(ggo, args$text_output, append = TRUE, sep="\t", row.names = FALSE, quote=FALSE) } if (args$go_enrich == "true") { ego<-enrich.GO(gene$ENTREZID, orgdb, onto, pval_cutoff, qval_cutoff) write.table(ego, args$text_output, append = TRUE, sep="\t", row.names = FALSE, quote=FALSE) } } } clusterProfiler()