diff GO_prof_comp.R @ 0:fe80e3b6b5c2 draft default tip

planemo upload commit b8671ffe2e12dc6612b971a3e6e1dc71496aefd0-dirty
author proteore
date Fri, 24 Jan 2020 10:34:33 -0500
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/GO_prof_comp.R	Fri Jan 24 10:34:33 2020 -0500
@@ -0,0 +1,304 @@
+options(warn=-1)  #TURN OFF WARNINGS !!!!!!
+suppressMessages(library(clusterProfiler,quietly = TRUE))
+suppressMessages(library(plyr, quietly = TRUE))
+suppressMessages(library(ggplot2, quietly = TRUE))
+suppressMessages(library(DOSE, quietly = TRUE))
+
+#return the number of character from the longest description found (from the 10 first)
+max_str_length_10_first <- function(vector){
+  vector <- as.vector(vector)
+  nb_description = length(vector)
+  if (nb_description >= 10){nb_description=10}
+  return(max(nchar(vector[1:nb_description])))
+}
+
+str2bool <- function(x){
+  if (any(is.element(c("t","true"),tolower(x)))){
+    return (TRUE)
+  }else if (any(is.element(c("f","false"),tolower(x)))){
+    return (FALSE)
+  }else{
+    return(NULL)
+  }
+}
+
+get_args <- function(){
+  
+  ## Collect arguments
+  args <- commandArgs(TRUE)
+  
+  ## Default setting when no arguments passed
+  if(length(args) < 1) {
+    args <- c("--help")
+  }
+  
+  ## Help section
+  if("--help" %in% args) {
+    cat("Selection and Annotation HPA
+      Arguments:
+      --inputtype1: type of input (list of id or filename)
+      --inputtype2: type of input (list of id or filename)
+      --input1: input1
+      --input2: input2
+      --column1: the column number which you would like to apply...
+      --column2: the column number which you would like to apply...
+      --header1: true/false if your file contains a header
+      --header2: true/false if your file contains a header
+      --ont: ontology to use
+      --lev: ontology level
+      --org: organism db package
+      --list_name1: name of the first list
+      --list_name2: name of the second list \n")
+        
+    q(save="no")
+  }
+  
+  parseArgs <- function(x) strsplit(sub("^--", "", x), "=")
+  argsDF <- as.data.frame(do.call("rbind", parseArgs(args)))
+  args <- as.list(as.character(argsDF$V2))
+  names(args) <- argsDF$V1
+  
+  return(args)
+}
+
+get_ids=function(inputtype, input, ncol, header) {
+
+    if (inputtype == "text") {
+      ids = strsplit(input, "[ \t\n]+")[[1]]
+    } else if (inputtype == "file") {
+      header=str2bool(header)
+      ncol=get_cols(ncol)
+      csv = read.csv(input,header=header, sep="\t", as.is=T)
+      ids=csv[,ncol]
+    }
+
+    ids = unlist(strsplit(as.character(ids),";"))
+    ids = ids[which(!is.na(ids))]
+
+    return(ids)
+}
+
+str2bool <- function(x){
+  if (any(is.element(c("t","true"),tolower(x)))){
+    return (TRUE)
+  }else if (any(is.element(c("f","false"),tolower(x)))){
+    return (FALSE)
+  }else{
+    return(NULL)
+  }
+}
+
+check_ids <- function(vector,type) {
+  uniprot_pattern = "^([OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2})$"
+  entrez_id = "^([0-9]+|[A-Z]{1,2}_[0-9]+|[A-Z]{1,2}_[A-Z]{1,4}[0-9]+)$"
+  if (type == "entrez")
+    return(grepl(entrez_id,vector))
+  else if (type == "uniprot") {
+    return(grepl(uniprot_pattern,vector))
+  }
+}
+
+#res.cmp@compareClusterResult$Description <- sapply(as.vector(res.cmp@compareClusterResult$Description), function(x) {ifelse(nchar(x)>50, substr(x,1,50),x)},USE.NAMES = FALSE)
+fortify.compareClusterResult <- function(res.cmp, showCategory=30, by="geneRatio", split=NULL, includeAll=TRUE) {
+  clProf.df <- as.data.frame(res.cmp)
+  .split <- split
+  ## get top 5 (default) categories of each gene cluster.
+  if (is.null(showCategory)) {
+    result <- clProf.df
+  } else {
+    Cluster <- NULL # to satisfy codetools
+    topN <- function(res, showCategory) {
+      ddply(.data = res, .variables = .(Cluster), .fun = function(df, N) {
+              if (length(df$Count) > N) {
+                if (any(colnames(df) == "pvalue")) {
+                  idx <- order(df$pvalue, decreasing=FALSE)[1:N]
+                } else {
+                  ## for groupGO
+                  idx <- order(df$Count, decreasing=T)[1:N]
+                }
+                return(df[idx,])
+              } else {
+                return(df)
+              }
+            },
+            N=showCategory
+      )
+    }
+    if (!is.null(.split) && .split %in% colnames(clProf.df)) {
+      lres <- split(clProf.df, as.character(clProf.df[, .split]))
+      lres <- lapply(lres, topN, showCategory = showCategory)
+      result <- do.call('rbind', lres)
+    } else {
+      result <- topN(clProf.df, showCategory)
+    }    
+  }
+  ID <- NULL
+  if (includeAll == TRUE) {
+    result = subset(clProf.df, ID %in% result$ID)
+  }
+  ## remove zero count
+  result$Description <- as.character(result$Description) ## un-factor
+  GOlevel <- result[,c("ID", "Description")] ## GO ID and Term
+  GOlevel <- unique(GOlevel)
+  result <- result[result$Count != 0, ]
+  result$Description <- factor(result$Description,levels=rev(GOlevel[,2]))
+  if (by=="rowPercentage") {
+    Description <- Count <- NULL # to satisfy codetools
+    result <- ddply(result,.(Description),transform,Percentage = Count/sum(Count),Total = sum(Count))
+    ## label GO Description with gene counts.
+    x <- mdply(result[, c("Description", "Total")], paste, sep=" (")
+    y <- sapply(x[,3], paste, ")", sep="")
+    result$Description <- y
+    
+    ## restore the original order of GO Description
+    xx <- result[,c(2,3)]
+    xx <- unique(xx)
+    rownames(xx) <- xx[,1]
+    Termlevel <- xx[as.character(GOlevel[,1]),2]
+    
+    ##drop the *Total* column
+    result <- result[, colnames(result) != "Total"]
+    result$Description <- factor(result$Description, levels=rev(Termlevel))
+    
+  } else if (by == "count") {
+    ## nothing
+  } else if (by == "geneRatio") { ##default
+    gsize <- as.numeric(sub("/\\d+$", "", as.character(result$GeneRatio)))
+    gcsize <- as.numeric(sub("^\\d+/", "", as.character(result$GeneRatio)))
+    result$GeneRatio = gsize/gcsize
+    cluster <- paste(as.character(result$Cluster),"\n", "(", gcsize, ")", sep="")
+    lv <- unique(cluster)[order(as.numeric(unique(result$Cluster)))]
+    result$Cluster <- factor(cluster, levels = lv)
+  } else {
+    ## nothing
+  }
+  return(result)
+}
+
+##function plotting.clusteProfile from clusterProfiler pkg
+plotting.clusterProfile <- function(clProf.reshape.df,x = ~Cluster,type = "dot", colorBy = "p.adjust",by = "geneRatio",title="",font.size=12) {
+  
+  Description <- Percentage <- Count <- Cluster <- GeneRatio <- p.adjust <- pvalue <- NULL # to
+  if (type == "dot") {
+    if (by == "rowPercentage") {
+      p <- ggplot(clProf.reshape.df,
+                  aes_(x = x, y = ~Description, size = ~Percentage))
+    } else if (by == "count") {
+      p <- ggplot(clProf.reshape.df,
+                  aes_(x = x, y = ~Description, size = ~Count))
+    } else if (by == "geneRatio") { ##DEFAULT
+      p <- ggplot(clProf.reshape.df,
+                  aes_(x = x, y = ~Description, size = ~GeneRatio))
+    } else {
+      ## nothing here
+    }
+    if (any(colnames(clProf.reshape.df) == colorBy)) {
+      p <- p +
+        geom_point() +
+        aes_string(color=colorBy) +
+        scale_color_continuous(low="red", high="blue", guide=guide_colorbar(reverse=TRUE))
+      ## scale_color_gradientn(guide=guide_colorbar(reverse=TRUE), colors = enrichplot:::sig_palette)
+    } else {
+      p <- p + geom_point(colour="steelblue")
+    }
+  }
+  
+  p <- p + xlab("") + ylab("") + ggtitle(title) +
+    theme_dose(font.size)
+  
+  ## theme(axis.text.x = element_text(colour="black", size=font.size, vjust = 1)) +
+  ##     theme(axis.text.y = element_text(colour="black",
+  ##           size=font.size, hjust = 1)) +
+  ##               ggtitle(title)+theme_bw()
+  ## p <- p + theme(axis.text.x = element_text(angle=angle.axis.x,
+  ##                    hjust=hjust.axis.x,
+  ##                    vjust=vjust.axis.x))
+  
+  return(p)
+}
+
+make_dotplot<-function(res.cmp,ontology) {
+
+  dfok<-fortify.compareClusterResult(res.cmp)
+  dfok$Description <- sapply(as.vector(dfok$Description), function(x) {ifelse(nchar(x)>50, substr(x,1,50),x)},USE.NAMES = FALSE)
+  p<-plotting.clusterProfile(dfok, title="")
+
+  #plot(p, type="dot") #
+  output_path= paste("GO_profiles_comp_",ontology,".png",sep="")
+  png(output_path,height = 720, width = 600)
+  pl <- plot(p, type="dot")
+  print(pl)
+  dev.off()
+}
+
+get_cols <-function(input_cols) {
+  input_cols <- gsub("c","",gsub("C","",gsub(" ","",input_cols)))
+  if (grepl(":",input_cols)) {
+    first_col=unlist(strsplit(input_cols,":"))[1]
+    last_col=unlist(strsplit(input_cols,":"))[2]
+    cols=first_col:last_col
+  } else {
+    cols = as.integer(unlist(strsplit(input_cols,",")))
+  }
+  return(cols)
+}
+
+#to check
+cmp.GO <- function(l,fun="groupGO",orgdb, ontology, level=3, readable=TRUE) {
+  cmpGO<-compareCluster(geneClusters = l,
+                        fun=fun, 
+                        OrgDb = orgdb, 
+                        ont=ontology, 
+                        level=level, 
+                        readable=TRUE)
+  
+  return(cmpGO)
+}
+
+check_ids <- function(vector,type) {
+  uniprot_pattern = "^([OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2})$"
+  entrez_id = "^([0-9]+|[A-Z]{1,2}_[0-9]+|[A-Z]{1,2}_[A-Z]{1,4}[0-9]+)$"
+  if (type == "entrez")
+    return(grepl(entrez_id,vector))
+  else if (type == "uniprot") {
+    return(grepl(uniprot_pattern,vector))
+  }
+}
+
+main = function() {
+  
+  #to get the args of the command line
+  args=get_args()  
+  
+   
+  ids1<-get_ids(args$inputtype1, args$input1, args$column1, args$header1) 
+  ids2<-get_ids(args$inputtype2, args$input2, args$column2, args$header2)
+  ont = strsplit(args$ont, ",")[[1]] 
+  lev=as.integer(args$lev)
+  org=args$org
+  
+  #load annot package 
+  suppressMessages(library(args$org, character.only = TRUE, quietly = TRUE))
+  
+  # Extract OrgDb
+  if (args$org=="org.Hs.eg.db") {
+    orgdb<-org.Hs.eg.db
+  } else if (args$org=="org.Mm.eg.db") {
+    orgdb<-org.Mm.eg.db
+  } else if (args$org=="org.Rn.eg.db") {
+    orgdb<-org.Rn.eg.db
+  }
+
+  for(ontology in ont) {
+    liste = list("l1"=ids1,"l2"=ids2)
+    names(liste) = c(args$list_name1,args$list_name2)
+    res.cmp<-cmp.GO(l=liste,fun="groupGO",orgdb, ontology, level=lev, readable=TRUE)
+    make_dotplot(res.cmp,ontology)  
+    output_path = paste("GO_profiles_comp_",ontology,".tsv",sep="")
+    write.table(res.cmp@compareClusterResult, output_path, sep="\t", row.names=F, quote=F)
+  }
+  
+} #end main 
+
+main()
+