Mercurial > repos > q2d2 > qiime2__diversity__pcoa
view qiime2__diversity__pcoa.xml @ 0:28eb7af57948 draft
planemo upload for repository https://github.com/qiime2/galaxy-tools/tree/main/tools/suite_qiime2__diversity commit 9023cfd83495a517fbcbb6f91d5b01a6f1afcda1
author | q2d2 |
---|---|
date | Mon, 29 Aug 2022 19:37:04 +0000 |
parents | |
children | 0b004354dcd2 |
line wrap: on
line source
<?xml version='1.0' encoding='utf-8'?> <!-- Copyright (c) 2022, QIIME 2 development team. Distributed under the terms of the Modified BSD License. (SPDX: BSD-3-Clause) --> <!-- This tool was automatically generated by: q2galaxy (version: 2022.8.1) for: qiime2 (version: 2022.8.1) --> <tool name="qiime2 diversity pcoa" id="qiime2__diversity__pcoa" version="2022.8.0+q2galaxy.2022.8.1.2" profile="22.05" license="BSD-3-Clause"> <description>Principal Coordinate Analysis</description> <requirements> <container type="docker">quay.io/qiime2/core:2022.8</container> </requirements> <version_command>q2galaxy version diversity</version_command> <command detect_errors="aggressive">q2galaxy run diversity pcoa '$inputs'</command> <configfiles> <inputs name="inputs" data_style="paths"/> </configfiles> <inputs> <param name="distance_matrix" type="data" format="qza" label="distance_matrix: DistanceMatrix" help="[required] The distance matrix on which PCoA should be computed."> <options options_filter_attribute="metadata.semantic_type"> <filter type="add_value" value="DistanceMatrix"/> </options> <validator type="expression" message="Incompatible type">hasattr(value.metadata, "semantic_type") and value.metadata.semantic_type in ['DistanceMatrix']</validator> </param> <section name="__q2galaxy__GUI__section__extra_opts__" title="Click here for additional options"> <param name="number_of_dimensions" type="integer" min="1" optional="true" label="number_of_dimensions: Int % Range(1, None)" help="[optional] Dimensions to reduce the distance matrix to. This number determines how many eigenvectors and eigenvalues are returned,and influences the choice of algorithm used to compute them. By default, uses the default eigendecomposition method, SciPy's eigh, which computes all eigenvectors and eigenvalues in an exact manner. For very large matrices, this is expected to be slow. If a value is specified for this parameter, then the fast, heuristic eigendecomposition algorithm fsvd is used, which only computes and returns the number of dimensions specified, but suffers some degree of accuracy loss, the magnitude of which varies across different datasets."/> </section> </inputs> <outputs> <data name="pcoa" format="qza" label="${tool.name} on ${on_string}: pcoa.qza" from_work_dir="pcoa.qza"/> </outputs> <tests/> <help> QIIME 2: diversity pcoa ======================= Principal Coordinate Analysis Outputs: -------- :pcoa.qza: The resulting PCoA matrix. | Description: ------------ Apply principal coordinate analysis. | </help> <citations> <citation type="bibtex">@inbook{cite1, author = {Pierre Legendre and Louis Legendre}, edition = {Third}, isbn = {0444-89249}, pages = {499}, publisher = {Elsevier}, title = {Numerical Ecology}, year = {2012} } </citation> <citation type="doi">10.1137/100804139</citation> <citation type="doi">10.1038/s41587-019-0209-9</citation> </citations> </tool>