Mercurial > repos > rakesh4osdd > asist
view asist_dynamic.py @ 0:c1a77856070c draft
"planemo upload for repository https://github.com/rakesh4osdd/asist/tree/master commit f5b374bef15145c893ffdd3a7d2f2978d8052184-dirty"
author | rakesh4osdd |
---|---|
date | Sat, 26 Jun 2021 07:27:53 +0000 |
parents | |
children | 734777d3c253 |
line wrap: on
line source
#!/usr/bin/env python # coding: utf-8 # In[1309]: #ASIST program for phenotype based on Antibiotics profile # create a profile based on selected antibiotics only # rakesh4osdd@gmail.com, 14-June-2021 # In[1403]: import pandas as pd import sys import os from collections import Counter # In[ ]: input_file=sys.argv[1] output_file=sys.argv[2] # In[1362]: # strain_profile to phenotype condition def s_phen(sus,res,na,pb_sus): if (sus>0 and res==0 and na>=0): #print('Possible Susceptible') phen='Possible Susceptible' elif (sus>=0 and 3<=res<7 and na>=0 and pb_sus==0): #print('Possible MDR') phen='Possible MDR' elif (sus>=0 and 7<=res<9 and na>=0 and pb_sus==0): #print('Possible XDR') phen='Possible XDR' #special cases elif (sus>=1 and res>0 and na>=0 and pb_sus==1): #print('Possible XDR') phen='Possible XDR' #special cases elif (sus>0 and res==9 and na>=0): #print('Possible XDR') phen='Possible XDR' elif (sus==0 and res==9 and na>=0): #print('Possible TDR') phen='Possible TDR' else: #print('Strain could not be classified') phen='Strain could not be classified' return(phen) #print(s_phen(1,9,0,0)) # In[1363]: # define Antibiotic groups as per antibiotic of CLSI breakpoints MIC #Aminoglycoside cat1=['Amikacin','Tobramycin','Gentamycin','Netilmicin'] #Beta-lactams- Carbapenems cat2=['Imipenem','Meropenam','Doripenem'] #Fluoroquinolone cat3=['Ciprofloxacin','Levofloxacin'] #Beta-lactam inhibitor cat4=['Piperacillin/tazobactam','Ticarcillin/clavulanicacid'] #Cephalosporin cat5=['Cefotaxime','Ceftriaxone','Ceftazidime','Cefepime'] #Sulfonamides cat6=['Trimethoprim/sulfamethoxazole'] #Penicillins/beta-lactamase cat7=['Ampicillin/sulbactam'] #Polymyxins cat8=['Colistin','Polymyxinb'] #Tetracycline cat9=['Tetracycline','Doxicycline','Minocycline'] def s_profiler(pd_series): #print(type(pd_series),'\n', pd_series) #create a dictionary of dataframe series cats={'s1':cat1,'s2':cat2,'s3':cat3,'s4':cat4,'s5':cat5,'s6':cat6,'s7':cat7,'s8':cat8,'s9':cat9} # find the antibiotics name in input series for cat in cats: #print(cats[cat]) cats[cat]=pd_series.filter(cats[cat]) #print(cats[cat]) #define res,sus,na,pb_sus res=0 sus=0 na=0 pb_sus=0 # special case of 'Polymyxin b' for its value if 'Polymyxinb' in pd_series: ctp=cats['s8']['Polymyxinb'].strip().lower() if ctp == 'susceptible': pb_sus=1 #print((ctp,p_sus)) # check all categories for cat in cats: #ctp=cats['s8'].iloc[i:i+1].stack().value_counts().to_dict() #print(ctp) # Pandas series ct=cats[cat].value_counts().to_dict() #print(ct) # remove whitespace and convert to lowercase words ct = {k.strip().lower(): v for k, v in ct.items()} #print(ct) k=Counter(ct) #j=Counter(ct)+Counter(j) #print(j) # category wise marking if k['resistant']>=1: res=res+1 if k['susceptible']>=1: sus=sus+1 if k['na']>=1: na=na+1 #print(s_phen(sus,res,na,pb_sus)) return(s_phen(sus,res,na,pb_sus)) # In[1397]: #input_file='input2.csv_table.csv' #output_file=input_file+'_output.txt' strain_profile=pd.read_csv(input_file, sep=',',na_filter=False,skipinitialspace = True) # In[1387]: old_strain_name=strain_profile.columns[0] new_strain_name=old_strain_name.capitalize().strip().replace(' ', '') # In[1388]: # make header capitalization, remove leading,lagging, and multiple whitespace for comparision strain_profile.columns=strain_profile.columns.str.capitalize().str.strip().str.replace('\s+', '', regex=True) #print(strain_profile.columns) #strain_profile.head() #strain_profile.columns # In[1389]: # add new column in dataframe on second position strain_profile.insert(1, 'Strain phenotype','') #strain_profile.head() # In[1390]: strain_profile['Strain phenotype'] = strain_profile.apply(lambda x: (s_profiler(x)), axis=1) # In[1391]: #strain_profile.head() # In[1392]: #rename headers for old name strain_profile=strain_profile.rename(columns = {new_strain_name:old_strain_name, 'Ticarcillin/clavulanicacid':'Ticarcillin/ clavulanic acid','Piperacillin/tazobactam':'Piperacillin/ tazobactam','Trimethoprim/sulfamethoxazole': 'Trimethoprim/ sulfamethoxazole','Ampicillin/sulbactam':'Ampicillin/ sulbactam', 'Polymyxinb': 'Polymyxin B'} ) # In[1404]: #strain_profile # In[1394]: strain_profile.to_csv(output_file,na_rep='NA',index=False)