Mercurial > repos > rakesh4osdd > clsi_profile
comparison asist_dynamic.py @ 3:683299422575 draft
"planemo upload for repository https://github.com/rakesh4osdd/asist/tree/master commit f085b88bf75f7b45ac3b0c4e1c39214c0ac0b67d"
author | rakesh4osdd |
---|---|
date | Tue, 29 Jun 2021 05:20:41 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:306236ec0511 | 3:683299422575 |
---|---|
1 #!/usr/bin/env python | |
2 # coding: utf-8 | |
3 | |
4 # In[1309]: | |
5 | |
6 | |
7 #ASIST program for phenotype based on Antibiotics profile | |
8 # create a profile based on selected antibiotics only | |
9 # rakesh4osdd@gmail.com, 14-June-2021 | |
10 | |
11 | |
12 # In[1403]: | |
13 | |
14 | |
15 import pandas as pd | |
16 import sys | |
17 import os | |
18 from collections import Counter | |
19 | |
20 | |
21 # In[ ]: | |
22 | |
23 | |
24 input_file=sys.argv[1] | |
25 output_file=sys.argv[2] | |
26 | |
27 | |
28 # In[1362]: | |
29 | |
30 | |
31 # strain_profile to phenotype condition | |
32 def s_phen(sus,res,na,pb_sus): | |
33 if (sus>0 and res==0 and na>=0): | |
34 #print('Possible Susceptible') | |
35 phen='Possible Susceptible' | |
36 elif (sus>=0 and 3<=res<7 and na>=0 and pb_sus==0): | |
37 #print('Possible MDR') | |
38 phen='Possible MDR' | |
39 elif (sus>=0 and 7<=res<9 and na>=0 and pb_sus==0): | |
40 #print('Possible XDR') | |
41 phen='Possible XDR' | |
42 #special cases | |
43 elif (sus>=1 and res>0 and na>=0 and pb_sus==1): | |
44 #print('Possible XDR') | |
45 phen='Possible XDR' | |
46 #special cases | |
47 elif (sus>0 and res==9 and na>=0): | |
48 #print('Possible XDR') | |
49 phen='Possible XDR' | |
50 elif (sus==0 and res==9 and na>=0): | |
51 #print('Possible TDR') | |
52 phen='Possible TDR' | |
53 else: | |
54 #print('Strain could not be classified') | |
55 phen='Strain could not be classified' | |
56 return(phen) | |
57 | |
58 #print(s_phen(1,9,0,0)) | |
59 | |
60 | |
61 # In[1363]: | |
62 | |
63 | |
64 # define Antibiotic groups as per antibiotic of CLSI breakpoints MIC | |
65 #Aminoglycoside | |
66 cat1=['Amikacin','Tobramycin','Gentamycin','Netilmicin'] | |
67 #Beta-lactams- Carbapenems | |
68 cat2=['Imipenem','Meropenam','Doripenem'] | |
69 #Fluoroquinolone | |
70 cat3=['Ciprofloxacin','Levofloxacin'] | |
71 #Beta-lactam inhibitor | |
72 cat4=['Piperacillin/tazobactam','Ticarcillin/clavulanicacid'] | |
73 #Cephalosporin | |
74 cat5=['Cefotaxime','Ceftriaxone','Ceftazidime','Cefepime'] | |
75 #Sulfonamides | |
76 cat6=['Trimethoprim/sulfamethoxazole'] | |
77 #Penicillins/beta-lactamase | |
78 cat7=['Ampicillin/sulbactam'] | |
79 #Polymyxins | |
80 cat8=['Colistin','Polymyxinb'] | |
81 #Tetracycline | |
82 cat9=['Tetracycline','Doxicycline','Minocycline'] | |
83 | |
84 def s_profiler(pd_series): | |
85 #print(type(pd_series),'\n', pd_series) | |
86 #create a dictionary of dataframe series | |
87 cats={'s1':cat1,'s2':cat2,'s3':cat3,'s4':cat4,'s5':cat5,'s6':cat6,'s7':cat7,'s8':cat8,'s9':cat9} | |
88 # find the antibiotics name in input series | |
89 for cat in cats: | |
90 #print(cats[cat]) | |
91 cats[cat]=pd_series.filter(cats[cat]) | |
92 #print(cats[cat]) | |
93 #define res,sus,na,pb_sus | |
94 res=0 | |
95 sus=0 | |
96 na=0 | |
97 pb_sus=0 | |
98 # special case of 'Polymyxin b' for its value | |
99 if 'Polymyxinb' in pd_series: | |
100 ctp=cats['s8']['Polymyxinb'].strip().lower() | |
101 if ctp == 'susceptible': | |
102 pb_sus=1 | |
103 #print((ctp,p_sus)) | |
104 # check all categories | |
105 for cat in cats: | |
106 #ctp=cats['s8'].iloc[i:i+1].stack().value_counts().to_dict() | |
107 #print(ctp) | |
108 # Pandas series | |
109 ct=cats[cat].value_counts().to_dict() | |
110 #print(ct) | |
111 # remove whitespace and convert to lowercase words | |
112 ct = {k.strip().lower(): v for k, v in ct.items()} | |
113 #print(ct) | |
114 k=Counter(ct) | |
115 #j=Counter(ct)+Counter(j) | |
116 #print(j) | |
117 # category wise marking | |
118 if k['resistant']>=1: | |
119 res=res+1 | |
120 if k['susceptible']>=1: | |
121 sus=sus+1 | |
122 if k['na']>=1: | |
123 na=na+1 | |
124 #print(s_phen(sus,res,na,pb_sus)) | |
125 return(s_phen(sus,res,na,pb_sus)) | |
126 | |
127 | |
128 # In[1397]: | |
129 | |
130 | |
131 #input_file='input2.csv_table.csv' | |
132 #output_file=input_file+'_output.txt' | |
133 strain_profile=pd.read_csv(input_file, sep=',',na_filter=False,skipinitialspace = True) | |
134 | |
135 | |
136 # In[1387]: | |
137 | |
138 | |
139 old_strain_name=strain_profile.columns[0] | |
140 new_strain_name=old_strain_name.capitalize().strip().replace(' ', '') | |
141 | |
142 | |
143 # In[1388]: | |
144 | |
145 | |
146 # make header capitalization, remove leading,lagging, and multiple whitespace for comparision | |
147 strain_profile.columns=strain_profile.columns.str.capitalize().str.strip().str.replace('\s+', '', regex=True) | |
148 #print(strain_profile.columns) | |
149 #strain_profile.head() | |
150 #strain_profile.columns | |
151 | |
152 | |
153 # In[1389]: | |
154 | |
155 | |
156 # add new column in dataframe on second position | |
157 strain_profile.insert(1, 'Strain phenotype','') | |
158 #strain_profile.head() | |
159 | |
160 | |
161 # In[1390]: | |
162 | |
163 | |
164 strain_profile['Strain phenotype'] = strain_profile.apply(lambda x: (s_profiler(x)), axis=1) | |
165 | |
166 | |
167 # In[1391]: | |
168 | |
169 | |
170 #strain_profile.head() | |
171 | |
172 | |
173 # In[1392]: | |
174 | |
175 | |
176 #rename headers for old name | |
177 strain_profile=strain_profile.rename(columns = {new_strain_name:old_strain_name, 'Ticarcillin/clavulanicacid':'Ticarcillin/ clavulanic acid','Piperacillin/tazobactam':'Piperacillin/ tazobactam','Trimethoprim/sulfamethoxazole': 'Trimethoprim/ sulfamethoxazole','Ampicillin/sulbactam':'Ampicillin/ sulbactam', 'Polymyxinb': 'Polymyxin B'} ) | |
178 | |
179 | |
180 # In[1404]: | |
181 | |
182 | |
183 #strain_profile | |
184 | |
185 | |
186 # In[1394]: | |
187 | |
188 | |
189 strain_profile.to_csv(output_file,na_rep='NA',index=False) | |
190 |