Mercurial > repos > rakesh4osdd > clsi_profile
diff asist_dynamic.py @ 9:b3c01b790314 draft
"planemo upload for repository https://github.com/rakesh4osdd/asist/tree/master commit f590c3b1d71a9b8f2030909fa488b4ac0c3caed8"
author | rakesh4osdd |
---|---|
date | Wed, 30 Jun 2021 06:37:12 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/asist_dynamic.py Wed Jun 30 06:37:12 2021 +0000 @@ -0,0 +1,217 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[1309]: + + +#ASIST program for phenotype based on Antibiotics profile +# create a profile based on selected antibiotics only +# rakesh4osdd@gmail.com, 14-June-2021 + + +# In[1]: + + +import pandas as pd +import sys +import os +from collections import Counter + + +# In[176]: + + +input_file=sys.argv[1] +output_file=sys.argv[2] +#input_file='test-data/asist_input.csv' +#output_file='test-data/asist_output.csv' + + +# In[177]: + + +# strain_profile to phenotype condition +def s_phen(sus,res,intm,na,pb_sus): + if (sus>0 and res==0 and na>=0): + #print('Possible Susceptible') + phen='Possible Susceptible' + elif (sus>=0 and 3<=res<7 and na>=0 and pb_sus==0): + #print('Possible MDR') + phen='Possible MDR' + elif (sus>=0 and 7<=res<9 and na>=0 and pb_sus==0): + #print('Possible XDR') + phen='Possible XDR' + #special cases + elif (sus>=1 and res>0 and na>=0 and pb_sus==1): + #print('Possible XDR') + phen='Possible XDR' + #special cases + elif (sus>0 and res==9 and na>=0): + #print('Possible XDR') + phen='Possible XDR' + elif (sus==0 and res==9 and na>=0): + #print('Possible TDR') + phen='Possible TDR' + else: + #print('Strain could not be classified') + phen='Strain could not be classified ('+ str(intm)+' | ' + str(na) +')' + return(phen) + +#print(s_phen(1,9,0,0)) + + +# In[178]: + + +# define Antibiotic groups as per antibiotic of CLSI breakpoints MIC +#Aminoglycoside +cat1=['Amikacin','Tobramycin','Gentamycin','Netilmicin'] +#Beta-lactams- Carbapenems +cat2=['Imipenem','Meropenam','Doripenem'] +#Fluoroquinolone +cat3=['Ciprofloxacin','Levofloxacin'] +#Beta-lactam inhibitor +cat4=['Piperacillin/tazobactam','Ticarcillin/clavulanicacid'] +#Cephalosporin +cat5=['Cefotaxime','Ceftriaxone','Ceftazidime','Cefepime'] +#Sulfonamides +cat6=['Trimethoprim/sulfamethoxazole'] +#Penicillins/beta-lactamase +cat7=['Ampicillin/sulbactam'] +#Polymyxins +cat8=['Colistin','Polymyxinb'] +#Tetracycline +cat9=['Tetracycline','Doxicycline','Minocycline'] + +def s_profiler(pd_series): + #print(type(pd_series),'\n', pd_series) + #create a dictionary of dataframe series + cats={'s1':cat1,'s2':cat2,'s3':cat3,'s4':cat4,'s5':cat5,'s6':cat6,'s7':cat7,'s8':cat8,'s9':cat9} + # find the antibiotics name in input series + for cat in cats: + #print(cats[cat]) + cats[cat]=pd_series.filter(cats[cat]) + #print(cats[cat]) + #define res,sus,intm,na,pb_sus + res=0 + sus=0 + intm=0 + na=0 + pb_sus=0 + # special case of 'Polymyxin b' for its value + if 'Polymyxinb' in pd_series: + ctp=cats['s8']['Polymyxinb'].strip().lower() + if ctp == 'susceptible': + pb_sus=1 + #print((ctp,p_sus)) + # check all categories + for cat in cats: + #ctp=cats['s8'].iloc[i:i+1].stack().value_counts().to_dict() + #print(ctp) + # Pandas series + ct=cats[cat].value_counts().to_dict() + #print(ct) + # remove whitespace and convert to lowercase words + ct = {k.strip().lower(): v for k, v in ct.items()} + #print(ct) + k=Counter(ct) + #j=Counter(ct)+Counter(j) + #print(j) + # category wise marking + if k['resistant']>=1: + res=res+1 + if k['susceptible']>=1: + sus=sus+1 + if k['intermediate']>=1: + intm=intm+1 + if k['na']>=1: + na=na+1 + #print(sus,res,intm,na,pb_sus) + #print(s_phen(sus,res,intm,na,pb_sus)) + return(s_phen(sus,res,intm,na,pb_sus)) + + +# In[179]: + + +#input_file='input2.csv_table.csv' +#output_file=input_file+'_output.txt' +strain_profile=pd.read_csv(input_file, sep=',',na_filter=False,skipinitialspace = True) + + +# In[180]: + + +old_strain_name=strain_profile.columns[0] +new_strain_name=old_strain_name.capitalize().strip().replace(' ', '') + + +# In[181]: + + +# make header capitalization, remove leading,lagging, and multiple whitespace for comparision +strain_profile.columns=strain_profile.columns.str.capitalize().str.strip().str.replace('\s+', '', regex=True) +#print(strain_profile.columns) +#strain_profile.head() +#strain_profile.columns + + +# In[182]: + + +# add new column in dataframe on second position +strain_profile.insert(1, 'Strain phenotype','') +#strain_profile.head() + + +# In[183]: + + +strain_profile['Strain phenotype'] = strain_profile.apply(lambda x: (s_profiler(x)), axis=1) + + +# In[184]: + + +#strain_profile.head() + + +# In[185]: + + +#rename headers for old name +strain_profile=strain_profile.rename(columns = {new_strain_name:old_strain_name, 'Ticarcillin/clavulanicacid':'Ticarcillin/ clavulanic acid','Piperacillin/tazobactam':'Piperacillin/ tazobactam','Trimethoprim/sulfamethoxazole': 'Trimethoprim/ sulfamethoxazole','Ampicillin/sulbactam':'Ampicillin/ sulbactam', 'Polymyxinb': 'Polymyxin B'} ) + + +# In[186]: + + +#strain_profile.columns + + +# In[187]: + + +#strain_profile + + +# In[188]: + + +strain_profile.to_csv(output_file,na_rep='NA',index=False) + + +# In[189]: + + +# Open a file with access mode 'a' +with open(output_file, "a") as file_object: + # Append 'hello' at the end of file + file_object.write("Note: \n1. 'MDR': Multidrug-resistant, 'XDR': Extensively drug-resistant, 'TDR':totally drug resistant, NA': Data Not Available.\n2. 'Strain could not be classified' numbers follow the format as ('Number of antibiotics categories count as Intermediate' | 'Number of antibiotics categories count as NA')") + + +# In[ ]: + + + +