Mercurial > repos > rakesh4osdd > clsi_profile
view clsi_profile.py @ 9:b3c01b790314 draft
"planemo upload for repository https://github.com/rakesh4osdd/asist/tree/master commit f590c3b1d71a9b8f2030909fa488b4ac0c3caed8"
author | rakesh4osdd |
---|---|
date | Wed, 30 Jun 2021 06:37:12 +0000 |
parents | 3c27e5c2a8e9 |
children |
line wrap: on
line source
#!/usr/bin/env python # coding: utf-8 # In[7]: # ASIST module2 | map AST result to the CLSI breakporints with combination antibiotics # By rakesh4osdd@gmail.com, 06-Jun-2021 import pandas as pd import re import sys # In[8]: #print(pd.__version__, re.__version__) # In[9]: # compare two MIC value strings def check_mic(mic1,mic2,mic_type): #print(mic1,mic2,mic_type) try: if '/' in mic1: m1a = mic1.split('/')[0] m1b = mic1.split('/')[1] if float(m1a)==0 or float(m1b)==0: strain_type='Strain could not be classified' return(strain_type) elif '/' in mic2: m1a = mic1 if float(m1a)==0: strain_type='Strain could not be classified' return(strain_type) m1b = '1' elif float(mic1)==0: strain_type='Strain could not be classified' return(strain_type) else: m1a = mic1 if '-' in mic2: m2a = mic2.split('-')[0] m2b = mic2.split('-')[1] except ValueError: strain_type='Strain could not be classified' return(strain_type) try: if '-' in mic2 and mic_type == 'i': # for intermediate only if '/' in mic2: m2a = mic2.split('-')[0].split('/')[0] m2b = mic2.split('-')[0].split('/')[1] m2aa = mic2.split('-')[1].split('/')[0] m2bb = mic2.split('-')[1].split('/')[1] if (float(m2aa)>=float(m1a)>=float(m2a) and float(m2bb)>=float(m1b)>=float(m2b)): #print('intermediate') m_type='Intermediate' else: #print('not define') m_type='Strain could not be classified' else: m2a = mic2.split('-')[0] m2b = mic2.split('-')[1] if (float(m2b)>=float(m1a)>=float(m2a)): #print('intermediate') m_type='Intermediate' else: #print('not define') m_type='Strain could not be classified' #print (m1a,m1b,m2a,m2b,m2aa,m2bb) elif '/' in mic2: m2a = mic2.split('/')[0] m2b = mic2.split('/')[1] #print(m1a,m1b,m2a,m2b,mic_type) if (mic_type=='s' and (float(m1a)<=float(m2a) and float(m1b)<=float(m2b))): m_type='Susceptible' elif (mic_type=='r' and (float(m1a)>=float(m2a) and float(m1b)>=float(m2b))): m_type='Resistant' elif (mic_type=='i' and (float(m1a)==float(m2a) and float(m1b)==float(m2b))): m_type='Intermediate' else: m_type='Strain could not be classified' elif '-' in mic2: m_type='Strain could not be classified' else: m2a=mic2 if (mic_type=='s' and (float(m1a)<=float(m2a))): m_type='Susceptible' elif (mic_type=='r' and (float(m1a)>=float(m2a))): m_type='Resistant' elif (mic_type=='i' and (float(m1a)==float(m2a))): m_type='Intermediate' else: m_type='Strain could not be classified' except IndexError: strain_type='Strain could not be classified' return(strain_type) return(m_type) #check_mic('65','32-64','i') # In[10]: # compare MIC value in pandas list def sus_res_int(mic): #print(mic) o_mic = mic[0].replace(' ', '') s_mic = mic[1].replace(' ', '') r_mic = mic[2].replace(' ', '') i_mic = mic[3].replace(' ', '') try: if check_mic(o_mic,s_mic,'s')=='Susceptible': strain_type='Susceptible' elif check_mic(o_mic,r_mic,'r')=='Resistant': strain_type='Resistant' elif check_mic(o_mic,i_mic,'i')=='Intermediate': strain_type='Intermediate' else: strain_type='Strain could not be classified' except ValueError: strain_type='Strain could not be classified' return(strain_type) #mic=['128','16/4','128/4','32/4-64/4'] #sus_res_int(mic) # In[11]: # for input argument input_user = sys.argv[1] input_clsi = sys.argv[2] output_table = sys.argv[3] # In[49]: """input_user='~/Jupyterlab_notebook/ASIST_module/strain_profiles_16k.csv.csv' #input_user='test-data/input2.csv' input_clsi='test-data/clsi.csv' output_profile='test-data/input2_profile.csv' #output_table='test-data/input2_table.csv' output_table='/home/rakesh/Jupyterlab_notebook/ASIST_module/strain_profiles_16k_table.csv'""" # In[60]: # read user AST data with selected 3 columns strain_mic=pd.read_csv(input_user, sep=',', usecols =['Strain name', 'Antibiotics', 'MIC'],na_filter=False) #strain_mic # In[61]: clsi_bp=pd.read_csv(input_clsi,sep=',') #clsi_bp[clsi_bp[['Antibiotics', 'Susceptible']].duplicated()].shape # In[62]: #clsi_bp #strain_mic # In[64]: # warn user for duplicate files input_dups=strain_mic[strain_mic[['Strain name','Antibiotics']].duplicated()] if (input_dups.shape[0] == 0): #print( "No duplicates") pass else: with open(output_table, "w") as file_object: # Append 'hello' at the end of file file_object.write('S.No.,Strain name,Antibiotics,MIC\nInput File Error: Please remove duplicate/mutiple MIC values for same combination of Strain name and Antibiotics from input file\n') input_dups.to_csv(output_table,na_rep='NA', mode='a') exit() # In[17]: # convert MIC to numbers sMIC, rMIC clsi_bp['s_mic'] =clsi_bp[['Susceptible']].applymap(lambda x: (re.sub(r'[^0-9.\/-]', '', x))) clsi_bp['r_mic'] =clsi_bp[['Resistant']].applymap(lambda x: (re.sub(r'[^0-9.\/-]', '', x))) clsi_bp['i_mic'] = clsi_bp[['Intermediate']].applymap(lambda x: (re.sub(r'[^0-9.\/-]', '', x))) # In[18]: #clsi_bp['i_mic'] = clsi_bp[['Intermediate']].applymap(lambda x: (re.sub(r'[^0-9.\/-]', '', x))) # In[19]: # Read only numbers in MIC values #try: strain_mic['o_mic']=strain_mic[['MIC']].applymap(lambda x: (re.sub(r'[^0-9.\/]','', x))) #except TypeError: # print('Waring: Error in MIC value') # In[20]: #strain_mic # In[21]: # capitalize each Antibiotic Name for comparision with removing whitespace strain_mic['Strain name']=strain_mic['Strain name'].str.capitalize().str.replace(" ","") strain_mic['Antibiotics']=strain_mic['Antibiotics'].str.capitalize().str.replace(" ","") clsi_bp['Antibiotics']=clsi_bp['Antibiotics'].str.capitalize().str.replace(" ","") # In[22]: #find duplicate values in input files dups=strain_mic[strain_mic[['Strain name', 'Antibiotics']].duplicated(keep=False)] if dups.shape[0] != 0: print ('Please provide a single MIC value in input file for given duplicates combination of \'Strain name and Antibiotics\' to use the tool:-\n',dups) #exit() else: #compare CLSI Antibiotics only #result=pd.merge(strain_mic, clsi_bp, on='Antibiotics',how='inner', indicator=True)[['Strain name','Antibiotics', 'MIC', 'o_mic', 's_mic', 'r_mic','_merge']] try: result=pd.merge(strain_mic, clsi_bp, on='Antibiotics',how='inner')[['Strain name','Antibiotics', 'MIC', 'o_mic', 's_mic', 'r_mic','i_mic']] except KeyError: print('Waring: Error in input Values') # In[23]: dups.head() # In[132]: #compare MIC values and assign Susceptible and Resistant to Strain #try: result[['CLSI_profile']] = result[['o_mic','s_mic','r_mic','i_mic']].apply(sus_res_int,axis = 1) #except ValueError: # print('Waring: Error in input MIC value') # In[133]: #result # In[134]: #result[['Strain name', 'Antibiotics', 'MIC','s_mic','r_mic','CLSI_profile']].to_csv(output_profile,sep=',', index=False, encoding='utf-8-sig') # In[135]: #create a pivot table for ASIST table=result[['Strain name', 'Antibiotics','CLSI_profile']].drop_duplicates() result_table=pd.pivot_table(table, values ='CLSI_profile', index =['Strain name'],columns =['Antibiotics'], aggfunc = lambda x: ' '.join(x)) # In[136]: #result_table # In[137]: #result_table.to_csv(output_table,na_rep='NA') # In[138]: # reorder the Antibiotics for ASIST clsi_ab=['Amikacin','Tobramycin','Gentamycin','Netilmicin','Imipenem','Meropenem','Doripenem','Ciprofloxacin','Levofloxacin', 'Piperacillin/tazobactam','Ticarcillin/clavulanicacid','Cefotaxime','Ceftriaxone','Ceftazidime','Cefepime', 'Trimethoprim/sulfamethoxazole','Ampicillin/sulbactam','Colistin','Polymyxinb','Tetracycline','Doxicycline ', 'Minocycline'] result_selected=result_table.filter(clsi_ab) # In[139]: #print(result_selected.shape, result_table.shape) # In[140]: #result_selected.insert(0,'Resistance_phenotype','') # In[141]: #rename headers result_selected=result_selected.rename(columns = {'Ticarcillin/clavulanicacid':'Ticarcillin/clavulanic acid','Piperacillin/tazobactam':'Piperacillin/ tazobactam','Trimethoprim/sulfamethoxazole': 'Trimethoprim/ sulfamethoxazole','Ampicillin/sulbactam':'Ampicillin/ sulbactam', 'Polymyxinb': 'Polymyxin B'} ) # In[142]: #result_selected # In[144]: result_selected.to_csv(output_table,na_rep='NA')