Mercurial > repos > recetox > ipapy2_gibbs_sampler_add
comparison ipapy2_gibbs_sampler_add.xml @ 0:428abc41a101 draft default tip
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ipapy2 commit 64b61ff2823b4f54868c0ab7a4c0dc49eaf2979a
| author | recetox |
|---|---|
| date | Fri, 16 May 2025 08:01:46 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:428abc41a101 |
|---|---|
| 1 <tool id="ipapy2_gibbs_sampler_add" name="ipaPy2 gibbs sampler additive" version="@TOOL_VERSION@+galaxy0" profile="@PROFILE@"> | |
| 2 <macros> | |
| 3 <import>macros.xml</import> | |
| 4 </macros> | |
| 5 | |
| 6 <expand macro="requirements"/> | |
| 7 | |
| 8 <command detect_errors="exit_code"><![CDATA[ | |
| 9 python3 '${__tool_directory__}/ipapy2_gibbs_sampler_add.py' | |
| 10 --input_dataset_mapped_isotope_patterns '${mapped_isotope_patterns}' '${mapped_isotope_patterns.ext}' | |
| 11 --input_dataset_annotations '${annotations}' '${annotations.ext}' | |
| 12 --noits '${noits}' | |
| 13 --burn '${burn}' | |
| 14 --delta_add '${delta_add}' | |
| 15 --all_out '${all_out}' | |
| 16 #if $zs: | |
| 17 --zs '${zs}' '${zs.ext}' | |
| 18 #else: | |
| 19 --zs '' '' | |
| 20 #end if | |
| 21 #if $zs_out: | |
| 22 --zs_out '${zs_out}' '${zs_out.ext}' | |
| 23 #else: | |
| 24 --zs_out '' '' | |
| 25 #end if | |
| 26 --output_dataset '${annotations_out}' '${annotations_out.ext}' | |
| 27 ]]></command> | |
| 28 | |
| 29 <inputs> | |
| 30 <expand macro="gibbs"/> | |
| 31 <param name="delta_add" type="float" value="1" min="0" label="adducts weight" help="parameter used when computing the conditional priors. The parameter must be positive. The smaller the parameter the more weight the adducts connections have on the posterior probabilities. Default 1." /> | |
| 32 </inputs> | |
| 33 | |
| 34 <outputs> | |
| 35 <data label="${tool.name} annotations on ${on_string}" name="annotations_out" format_source="mapped_isotope_patterns"/> | |
| 36 <data label="${tool.name} zs on ${on_string}" name="zs_out" format="txt"> | |
| 37 <filter>options['all_out']</filter> | |
| 38 </data> | |
| 39 </outputs> | |
| 40 | |
| 41 <tests> | |
| 42 <test expect_num_outputs="2"> | |
| 43 <param name="mapped_isotope_patterns" value="mapped_isotope_patterns.csv"/> | |
| 44 <param name="annotations" value="clean_annotations.csv"/> | |
| 45 <param name="noits" value="1000"/> | |
| 46 <param name="delta_add" value="0.1"/> | |
| 47 <!-- Not the best way to test, but the results are stochastic hence difficult to test--> | |
| 48 <output name="annotations_out"> | |
| 49 <assert_contents> | |
| 50 <has_n_columns n="15" sep=","/> | |
| 51 <has_n_lines n="15" delta="5" /> | |
| 52 <has_line line="id,name,formula,adduct,m/z,charge,RT range,ppm,isotope pattern score,fragmentation pattern score,prior,post,post Gibbs,chi-square pval,peak_id" /> | |
| 53 </assert_contents> | |
| 54 </output> | |
| 55 </test> | |
| 56 </tests> | |
| 57 | |
| 58 <help><![CDATA[ | |
| 59 | |
| 60 .. _ipapy2_gibbs_sampler_add: | |
| 61 | |
| 62 ======================================= | |
| 63 ipaPy2 Gibbs Sampler Additive Tool | |
| 64 ======================================= | |
| 65 | |
| 66 **Tool Description** | |
| 67 | |
| 68 This tool implements a Gibbs sampler for the IPA (Integrated Probabilistic Annotation) model, focusing on additive (adducts-based) connections between features. It refines metabolite annotation probabilities by iteratively sampling from the posterior distribution, considering relationships between features that can be explained by known adduct transformations. | |
| 69 | |
| 70 How it works | |
| 71 ------------ | |
| 72 | |
| 73 - The Gibbs sampler updates annotation probabilities by considering **adducts connections**: relationships between features that can be explained by known adduct transformations. | |
| 74 - The influence of adducts connections is controlled by the ``adducts weight`` (`delta_add`) parameter: smaller values increase the influence of adducts connections on the posterior probabilities. | |
| 75 - The process is stochastic, so results may vary between runs. | |
| 76 - Optionally, the sampler can output the sampled states (`zs_out`) for further analysis. | |
| 77 | |
| 78 Inputs | |
| 79 ------ | |
| 80 | |
| 81 1. **Mapped isotope patterns** | |
| 82 Dataset containing mapped isotope patterns (e.g., output from the ipaPy2 map isotope patterns tool). | |
| 83 | |
| 84 2. **Annotations** | |
| 85 Initial annotation table to be refined by the Gibbs sampler. | |
| 86 | |
| 87 3. **Number of iterations (`noits`)** | |
| 88 Number of Gibbs sampler iterations to perform. | |
| 89 | |
| 90 4. **Burn-in (`burn`)** | |
| 91 Number of initial iterations to discard (burn-in period). | |
| 92 | |
| 93 5. **Adducts weight (`delta_add`)** | |
| 94 Parameter used when computing the conditional priors. Must be positive. The smaller the value, the more weight adducts connections have on the posterior probabilities (default: 1). | |
| 95 | |
| 96 6. **All out (`all_out`)** | |
| 97 If enabled, outputs all intermediate results including sampled states. | |
| 98 | |
| 99 7. **zs** | |
| 100 (Optional) Input file for initial state of the sampler. | |
| 101 | |
| 102 Outputs | |
| 103 ------- | |
| 104 | |
| 105 - **annotations_out** | |
| 106 Refined annotation table with updated posterior probabilities. | |
| 107 | |
| 108 - **zs_out** | |
| 109 (Optional) File containing sampled states from the Gibbs sampler (if `all_out` is enabled). | |
| 110 | |
| 111 Example | |
| 112 ------- | |
| 113 | |
| 114 Suppose you have mapped isotope patterns and an initial annotation table. You can run the Gibbs sampler as follows: | |
| 115 | |
| 116 .. code-block:: | |
| 117 | |
| 118 mapped_isotope_patterns.csv | |
| 119 clean_annotations.csv | |
| 120 | |
| 121 Set the number of iterations (e.g., ``noits = 1000``) and the adducts weight (e.g., ``delta_add = 0.1``), then run the tool. The output will be a refined annotation table and, optionally, a file with sampled states. | |
| 122 | |
| 123 Notes | |
| 124 ----- | |
| 125 | |
| 126 - The results are stochastic; repeated runs may yield slightly different outputs. | |
| 127 - For best results, ensure all input files are correctly formatted and contain the required columns. | |
| 128 - The tool supports multiple file formats (CSV, TSV, Parquet, Tabular) for flexibility. | |
| 129 | |
| 130 References | |
| 131 ---------- | |
| 132 | |
| 133 - For more details on the Gibbs sampling algorithm and its application in metabolomics, refer to the ipaPy2 documentation or associated publications. | |
| 134 | |
| 135 ]]></help> | |
| 136 | |
| 137 <expand macro="citations"/> | |
| 138 </tool> |
