Mercurial > repos > recetox > matchms_formatter
comparison formatter.py @ 0:60f34912b3de draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/matchms commit 4d2ac914c951166e386a94d8ebb8cb1becfac122"
| author | recetox |
|---|---|
| date | Tue, 22 Mar 2022 16:08:45 +0000 |
| parents | |
| children | 574c6331e9db |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:60f34912b3de |
|---|---|
| 1 import click | |
| 2 from pandas import DataFrame, read_csv | |
| 3 | |
| 4 | |
| 5 def create_long_table(data: DataFrame, value_id: str) -> DataFrame: | |
| 6 """Convert the table from compact into long format. | |
| 7 See DataFrame.melt(...). | |
| 8 | |
| 9 Args: | |
| 10 data (DataFrame): The data table to convert. | |
| 11 value_id (str): The name to assign to the added column through conversion to long format. | |
| 12 | |
| 13 Returns: | |
| 14 DataFrame: Table in long format. | |
| 15 """ | |
| 16 return data.transpose().melt(ignore_index=False, var_name='compound', value_name=value_id) | |
| 17 | |
| 18 | |
| 19 def join_df(x: DataFrame, y: DataFrame, on=[], how="inner") -> DataFrame: | |
| 20 """Shortcut functions to join to dataframes on columns and index | |
| 21 | |
| 22 Args: | |
| 23 x (DataFrame): Table X | |
| 24 y (DataFrame): Table Y | |
| 25 on (list, optional): Columns on which to join. Defaults to []. | |
| 26 how (str, optional): Join method, see DataFrame.join(...). Defaults to "inner". | |
| 27 | |
| 28 Returns: | |
| 29 DataFrame: Joined dataframe. | |
| 30 """ | |
| 31 df_x = x.set_index([x.index] + on) | |
| 32 df_y = y.set_index([y.index] + on) | |
| 33 combined = df_x.join(df_y, how=how) | |
| 34 return combined | |
| 35 | |
| 36 | |
| 37 def get_top_k_matches(data: DataFrame, k: int) -> DataFrame: | |
| 38 """Function to get top k matches from dataframe with scores. | |
| 39 | |
| 40 Args: | |
| 41 data (DataFrame): A table with score column. | |
| 42 k (int): Number of top scores to retrieve. | |
| 43 | |
| 44 Returns: | |
| 45 DataFrame: Table containing only the top k best matches for each compound. | |
| 46 """ | |
| 47 return data.groupby(level=0, group_keys=False).apply(DataFrame.nlargest, n=k, columns=['score']) | |
| 48 | |
| 49 | |
| 50 def filter_thresholds(data: DataFrame, t_score: float, t_matches: float) -> DataFrame: | |
| 51 """Filter a dataframe with scores and matches to only contain values above specified thresholds. | |
| 52 | |
| 53 Args: | |
| 54 data (DataFrame): Table to filter. | |
| 55 t_score (float): Score threshold. | |
| 56 t_matches (float): Matches threshold. | |
| 57 | |
| 58 Returns: | |
| 59 DataFrame: Filtered dataframe. | |
| 60 """ | |
| 61 filtered = data[data['score'] > t_score] | |
| 62 filtered = filtered[filtered['matches'] > t_matches] | |
| 63 return filtered | |
| 64 | |
| 65 | |
| 66 def load_data(scores_filename: str, matches_filename: str) -> DataFrame: | |
| 67 """Load data from filenames and join on compound id. | |
| 68 | |
| 69 Args: | |
| 70 scores_filename (str): Path to scores table. | |
| 71 matches_filename (str): Path to matches table. | |
| 72 | |
| 73 Returns: | |
| 74 DataFrame: Joined dataframe on compounds containing scores an matches in long format. | |
| 75 """ | |
| 76 matches = read_csv(matches_filename, sep=None, index_col=0) | |
| 77 scores = read_csv(scores_filename, sep=None, index_col=0) | |
| 78 | |
| 79 scores_long = create_long_table(scores, 'score') | |
| 80 matches_long = create_long_table(matches, 'matches') | |
| 81 | |
| 82 combined = join_df(matches_long, scores_long, on=['compound'], how='inner') | |
| 83 return combined | |
| 84 | |
| 85 | |
| 86 @click.group() | |
| 87 @click.option('--sf', 'scores_filename', type=click.Path(exists=True), required=True) | |
| 88 @click.option('--mf', 'matches_filename', type=click.Path(exists=True), required=True) | |
| 89 @click.option('--o', 'output_filename', type=click.Path(writable=True), required=True) | |
| 90 @click.pass_context | |
| 91 def cli(ctx, scores_filename, matches_filename, output_filename): | |
| 92 ctx.ensure_object(dict) | |
| 93 ctx.obj['data'] = load_data(scores_filename, matches_filename) | |
| 94 pass | |
| 95 | |
| 96 | |
| 97 @cli.command() | |
| 98 @click.option('--st', 'scores_threshold', type=float, required=True) | |
| 99 @click.option('--mt', 'matches_threshold', type=float, required=True) | |
| 100 @click.pass_context | |
| 101 def get_thresholded_data(ctx, scores_threshold, matches_threshold): | |
| 102 result = filter_thresholds(ctx.obj['data'], scores_threshold, matches_threshold) | |
| 103 return result | |
| 104 | |
| 105 | |
| 106 @cli.command() | |
| 107 @click.option('--k', 'k', type=int, required=True) | |
| 108 @click.pass_context | |
| 109 def get_top_k_data(ctx, k): | |
| 110 result = get_top_k_matches(ctx.obj['data'], k) | |
| 111 return result | |
| 112 | |
| 113 | |
| 114 @cli.resultcallback() | |
| 115 def write_output(result: DataFrame, scores_filename, matches_filename, output_filename): | |
| 116 input_file = read_csv(scores_filename, sep=None, iterator=True) | |
| 117 sep = input_file._engine.data.dialect.delimiter | |
| 118 | |
| 119 result = result.reset_index().rename(columns={'level_0': 'query', 'compound': 'reference'}) | |
| 120 result.to_csv(output_filename, sep=sep, index=False) | |
| 121 | |
| 122 | |
| 123 if __name__ == '__main__': | |
| 124 cli(obj={}) |
