Mercurial > repos > recetox > ramclustr
view ramclustr_wrapper.R @ 5:2410de08b55a draft
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ramclustr commit 4a1bc7cba9745fd26e039b1629d4c9d9588ff5c0
author | recetox |
---|---|
date | Thu, 22 Jun 2023 11:45:18 +0000 |
parents | 050cfef6ba65 |
children | 09cabbc3d12d |
line wrap: on
line source
store_output <- function(ramclustr_obj, output_merge_msp, output_spec_abundance, msp_file) { RAMClustR::write.msp(ramclustr_obj, one.file = output_merge_msp) write.csv(ramclustr_obj$SpecAbund, file = output_spec_abundance, row.names = TRUE, quote = FALSE ) if (!is.null(msp_file)) { exp_name <- ramclustr_obj$ExpDes[[1]][which( row.names(ramclustr_obj$ExpDes[[1]]) == "Experiment" ), 1] filename <- paste("spectra/", exp_name, ".msp", sep = "") file.copy(from = filename, to = msp_file, overwrite = TRUE) } } load_experiment_definition <- function(filename) { experiment <- RAMClustR::defineExperiment(csv = filename) return(experiment) } read_metadata <- function(filename) { data <- read.csv(filename, header = TRUE, stringsAsFactors = FALSE) if (!"qc" %in% colnames(data)) { if ("sampleType" %in% colnames(data)) { data$qc <- ifelse(data$sampleType == "qc", TRUE, FALSE) } } if (!"order" %in% colnames(data)) { if ("injectionOrder" %in% colnames(data)) { names(data)[names(data) == "injectionOrder"] <- "order" } } return(data) } read_ramclustr_aplcms <- function(ms1_featuredefinitions = NULL, ms1_featurevalues = NULL, df_phenodata = NULL, phenodata_ext = NULL, exp_des = NULL, st = NULL, ensure_no_na = TRUE) { ms1_featuredefinitions <- arrow::read_parquet(ms1_featuredefinitions) ms1_featurevalues <- arrow::read_parquet(ms1_featurevalues) if (!is.null(df_phenodata)) { if (phenodata_ext == "csv") { df_phenodata <- read.csv( file = df_phenodata, header = TRUE, check.names = FALSE ) } else { df_phenodata <- read.csv( file = df_phenodata, header = TRUE, check.names = FALSE, sep = "\t" ) } } if (!is.null(exp_des)) { exp_des <- load_experiment_definition(exp_des) } feature_values <- ms1_featurevalues[-1] feature_values <- t(feature_values) colnames(feature_values) <- ms1_featurevalues[[1]] feature_definitions <- data.frame(ms1_featuredefinitions) ramclustr_obj <- RAMClustR::rc.get.df.data( ms1_featureDefinitions = feature_definitions, ms1_featureValues = feature_values, phenoData = df_phenodata, ExpDes = exp_des, st = st, ensure.no.na = ensure_no_na ) return(ramclustr_obj) } apply_normalisation <- function(ramclustr_obj = NULL, normalize_method, metadata_file = NULL, qc_inj_range, p_cut, rsq_cut, p_adjust) { batch <- NULL order <- NULL qc <- NULL if (normalize_method == "TIC") { ramclustr_obj <- RAMClustR::rc.feature.normalize.tic( ramclustObj = ramclustr_obj ) } else if (normalize_method == "quantile") { ramclustr_obj <- RAMClustR::rc.feature.normalize.quantile(ramclustr_obj) } else if (normalize_method == "batch.qc") { if (!(is.null(metadata_file) || metadata_file == "None")) { metadata <- read_metadata(metadata_file) batch <- metadata$batch order <- metadata$order qc <- metadata$qc } ramclustr_obj <- RAMClustR::rc.feature.normalize.batch.qc( order = order, batch = batch, qc = qc, ramclustObj = ramclustr_obj, qc.inj.range = qc_inj_range ) } else { if (!(is.null(metadata_file) || metadata_file == "None")) { metadata <- read_metadata(metadata_file) batch <- metadata$batch order <- metadata$order qc <- metadata$qc } ramclustr_obj <- RAMClustR::rc.feature.normalize.qc( order = order, batch = batch, qc = qc, ramclustObj = ramclustr_obj, p.cut = p_cut, rsq.cut = rsq_cut, p.adjust = p_adjust ) } return(ramclustr_obj) }