Mercurial > repos > rnateam > graphclust_nspdk
view NSPDK_sparseVect.xml @ 7:25fd145b498a draft
planemo upload for repository https://github.com/eteriSokhoyan/galaxytools/tree/branchForIterations/tools/GraphClust/NSPDK commit 6767a5ffb02052c844e9d862c79912f998f39d8e
author | rnateam |
---|---|
date | Mon, 20 Nov 2017 04:51:56 -0500 |
parents | 2aaf391798a3 |
children | 90da74fd1c5c |
line wrap: on
line source
<tool id="nspdk_sparse" name="NSPDK_sparseVect" version="9.2.2" > <requirements> <requirement type="package" version="0.5.2">graphclust-wrappers</requirement> <requirement type="package" version="9.2" >nspdk</requirement> </requirements> <stdio> <exit_code range="1:" /> </stdio> <command> <![CDATA[ NSPDK_sparseVect.pl '$data_fasta' '$gspan_file' $max_rad $max_dist_relations ]]> </command> <inputs> <param type="data" name="gspan_file" format="txt" label="gspan file"/> <param type="data" name="data_fasta" format="fasta" /> <param name="max_rad" type="integer" value="3" label="maximum radius " help="-R"/> <param name="max_dist_relations" type="integer" value="3" label="maximum distance relations" help="-D"/> </inputs> <outputs> <data name="data_svector" format="zip" from_work_dir="SVECTOR/data.svector" label="data_svector"/> </outputs> <tests> <test> <param name="data_fasta" value="data.fasta"/> <param name="gspan_file" value="1.group.gspan.bz2" ftype="searchgui_archive"/> <param name="max_rad" value="3"/> <param name="max_dist_relations" value="3"/> <output name="data_svector" file="SVECTOR/data.svector" ftype="zip" /> </test> </tests> <help> <![CDATA[ **What it does** Produces an explicit sparse feature encoding. Integer code for the invariant graph encoding is used as a feature indicator. In this way, the integer associated to each feature (i.e. each pair or neighborhood subgraphs of radius r whose roots are at distance d) can be interpreted as the feature key and the (normalized) count of occurrences as its value. This allows to obtain an explicit feature encoding for a given graph G as a sparse vector in ℝ^m (with a very high dimension m). **Parameters** + **-R** <max radius> (default: 1) + **-D** <max distance relations> (default: 4) ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/bts224</citation> <citation type="bibtex">@inproceedings{costa2010fast, title={Fast neighborhood subgraph pairwise distance kernel}, author={Costa, Fabrizio and De Grave, Kurt}, booktitle={Proceedings of the 26th International Conference on Machine Learning}, pages={255--262}, year={2010}, organization={Omnipress} } </citation> </citations> </tool>