Mercurial > repos > rnateam > viennarna_kinfold
view kinfold.xml @ 5:c7195f4ede04 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/rna_tools/vienna_rna commit e3c20fec5dafc424d55a4de77304e79e3c88b76b-dirty
author | rnateam |
---|---|
date | Fri, 22 Sep 2017 15:57:51 -0400 |
parents | 4d663689cd7f |
children |
line wrap: on
line source
<tool id="viennarna_kinfold" name="@EXECUTABLE@" version="1.3.0.0"> <description>Simulates the stochastic folding kinetics of RNA sequences into secondary structures.</description> <macros> <token name="@EXECUTABLE@">Kinfold</token> <import>macros.xml</import> </macros> <expand macro="requirements" /> <expand macro="stdio" /> <expand macro="version_command" /> <command> <![CDATA[ Kinfold < '$input' -T$Temp --dangle=$dangle $logML $move_set_options.noShift $move_set_options.noLP --num=$simulation_options.num --time=$simulation_options.time --grow=$simulation_options.grow --glen=$simulation_options.glen $simulation_options.fpt $simulation_options.met $output_options.lmin --cut=$output_options.cut > '$output' && cat *.log > '$log' ]]> </command> <inputs> <param format="txt" name="input" type="data" label="Fasta file"/> <param argument="--Temp" type="float" value="37.0" label="temperature [°C]"/> <param argument="--dangle" type="select" label="how to treat dangling end energies"> <option value="0">0: none</option> <option value="2" selected="true">2: double</option> <option value="1">1: normal</option> </param> <param argument="--logML" type="boolean" truevalue="--logML" falsevalue="" checked="false" label="Logarithmic energy functions for multi-loops"/> <section name="move_set_options" title="Move set options"> <param argument="--noShift" type="boolean" truevalue="" falsevalue="--noShift" checked="true" label="Turn on shift moves."/> <param argument="--noLP" type="boolean" truevalue="" falsevalue="--noLP" checked="true" label="Allow structures containing isolated base-pairs"/> </section> <section name="simulation_options" title="Simulation options" > <param argument="--num" type="integer" value="1" label="Number of trajectories to compute" help="" optional="true"/> <param argument="--time" type="float" value="500.0" label="Set maximum length of folding trajectory" help="The default (500) is very short and meant for testing purposes only." optional="true"/> <param argument="--grow" type="float" value="0" label="Simulate folding during transcription with a chain growth event taking place every rate timesteps." help="" optional="true"/> <param argument="--glen" type="integer" value="15" label="Start a folding during transcription simulation with an inital chain length of len." help="" optional="true" /> <param argument="--fpt" type="boolean" truevalue="--fpt" falsevalue="" checked="true" label="compute first passage time" help="stop when a stop-structure is reached"/> <param argument="--met" type="boolean" truevalue="--met" falsevalue="" checked="false" label="Use the Metropolis rule for rate between two neighboring conformations" help="Use the Metropolis rule for rate between two neighboring conformations, i.e. k=min{1,exp(−dE/RT)}. By default Kinfold uses the symmetric Kawasaki rule k=exp(−dE/2RT)."/> </section> <section name="output_options" title="Output Options"> <param argument="--lmin" type="boolean" truevalue="--lmin" falsevalue="" checked="false" label="Don’t print complete trajectory, but only local minimas encountered" help=""/> <param argument="--cut" type="float" value="20.0" label="Cutoff energy" help="Print only those parts of the trajectory that stays below energy." optional="true"/> </section> </inputs> <outputs> <data format="txt" name="output"/> <data format="log" name="log"/> </outputs> <tests> <test> <param name="input" value="kinfold_input.txt"/> <output name="output"> <assert_contents> <has_text text="..............." /> </assert_contents> </output> </test> </tests> <help> <![CDATA[ **Kinfold** The program Kinfold simulates the stochastic folding kinetics of RNA sequences into secondary structures. Folding trajectories are simulated using a Monte Carlo procedure using the formation, and dissociation of individual base pairs, and (optionally) the shifting of individual base pairs. Note that all times are given in internal units that can be translated into real time only by copmparison with experiment. Very roughly one time step corresponds to about 1e−7 seconds. ----- **Input format** Input consists of an RNA sequence, optionally followed by the initial structure and one or more stop structures in dot−bracket notation. ------ **Outputs** - Trajecotires: The trajectory lists stucture, energy, and time for each simulation step. The X1 signifies that the trajectory terminated in the first stop structure - A log file containing summary information for each trajectory: The logfile would contain information needed to reproduce the simulation results such as options and random seeds used. ]]> </help> <expand macro="citations" /> </tool>