Mercurial > repos > rreumerman > snptools
view trams.py @ 4:bd5692103d5b draft
Uploaded
author | rreumerman |
---|---|
date | Fri, 05 Apr 2013 05:00:40 -0400 |
parents | |
children | 8de0ffc2166f |
line wrap: on
line source
################# transl_table = 11 intro_message = ''' +------------------------------------------------------------------+ | Tool for Rapid Annotation of Microbial SNPs (TRAMS): a simple | | program for rapid annotation of genomic variation in prokaryotes | | | | Developed by: Richard A. Reumerman, Paul R. Herron, | | Paul A. Hoskisson and Vartul Sangal | +------------------------------------------------------------------+\n''' ################# import sys import time start = time.clock() # Command line files: SNP REF REF-TYPE ANNOT OVERL SUM; if len(sys.argv) < 7: exit("\nNot enough arguments given.\nUsage: TRAMS_Galaxy.py [SNP.] [REF.] [ANNOT.] [OVERL.] [SUM.]") try: file_snps = open(sys.argv[1], "rU") except IOError as e: exit("Error trying to open '"+sys.argv[1]+"': {1}".format(e.errno, e.strerror)) try: file_ref = open(sys.argv[2], "rU") except IOError as e: exit("Error trying to open '"+sys.argv[2]+"': {1}".format(e.errno, e.strerror)) filetype_reference = sys.argv[3] try: file_out = open(sys.argv[4], "w") except IOError as e: exit("Error trying to open '"+sys.argv[4]+"': {1}".format(e.errno, e.strerror)) try: file_overlap = open(sys.argv[5], "w") except IOError as e: exit("Error trying to open '"+sys.argv[5]+"': {1}".format(e.errno, e.strerror)) try: file_summary = open(sys.argv[6], "w") except IOError as e: exit("Error trying to open '"+sys.argv[6]+"': {1}".format(e.errno, e.strerror)) import Bio from Bio import SeqIO, SeqFeature from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio.Alphabet import generic_dna, IUPAC from Bio.Data import CodonTable modules_loaded = time.clock() def non_coding_calc(gene, pos = 0): '''This function takes a pseudogene and returns the number of bases located in between the sub-features before 'pos'. Returns 0 if 'pseudo' = False. Input: {start, subfeats, pseudo}, pos (default = 0)''' if not gene['pseudo']: return 0 non_coding_bases = 0 prev_subfeat_end = gene['start'] if gene['strand'] == -1: for subfeature in gene['subfeats']: if subfeature.location._start.position < pos: prev_subfeat_end = subfeature.location._end.position continue non_coding_bases += (subfeature.location._start.position - prev_subfeat_end) prev_subfeat_end = subfeature.location._end.position else: for subfeature in gene['subfeats']: non_coding_bases += (subfeature.location._start.position - prev_subfeat_end) prev_subfeat_end = subfeature.location._end.position if prev_subfeat_end >= pos and pos != 0: break return non_coding_bases def region_calc(bounds,length): regions = [] lastend=i=0 while i < len(bounds): if bounds[i]['start'] > lastend:# Intergenic region present; regions.append([lastend,bounds[i]['start'],-1]) lastend = bounds[i]['start'] else: regions.append([bounds[i]['start'],bounds[i]['end'],i]) if bounds[i]['end'] > lastend: lastend = bounds[i]['end'] i += 1 if regions[-1][1] < length:# Final tail of genome; regions.append([lastend,length,-1]) return regions def overlap_calc(bounds): '''This function takes an array of feature starts and ends and returns an array of starts and ends of all overlapping regions. Input: [{start,end}]''' i = 0 overlaps = [] while i < len(bounds) - 1: for downstr in bounds[i+1:]: if downstr[0] < bounds[i][1]:# Features overlap; if downstr[1] < bounds[i][1]:# Complete overlap; overlaps.append([downstr[0],downstr[1],bounds[i][2],downstr[2],[0,0]]) else:# Partial overlap; overlaps.append([downstr[0],bounds[i][1],bounds[i][2],downstr[2],[0,0]]) else:# No use looking further; break i += 1 return overlaps def match_feature(bounds,pos,prev=0): '''This function checks if a position is located inside a feature and returns the feature's number if found or -1 if none is found. Input: {start,end},pos,prev_feat (default = 0)''' for i in range(prev, len(bounds)): if (pos >= bounds[i]['start']) and (pos < bounds[i]['end']): return i elif pos < bounds[i]['start']:# No use looking further return -1 return -1 def write_output(line,target=file_out): '''This function takes the 2 dimensional array containing all the SNP data. It contains an array of information on the feature and an array for each strain for which SNPs are given. Input: [[pos],[ref],[cells],[cells],etc]''' target.write('\n'+str(line[0][0])) for cell in line[1]: target.write('\t'+str(cell)) for strain in line[2:]: target.write('\t') for cell in strain: target.write('\t'+str(cell)) target.flush() def new_codon_calc(ref_codon, new_base, pos_in_cod): return str(ref_codon[0:pos_in_cod-1]+new_base+ref_codon[pos_in_cod:len(ref_codon)]) def mut_type_check(ref_res, ref_codon, pos_in_gene, new_base, new_codon): if str(new_codon).lower() == str(ref_codon).lower(): return ['','','',''] new_residue = Seq(new_codon).translate(table=transl_table) if str(new_residue) == str(ref_res): mut_type = 'synonymous' elif (pos_in_gene / 3) < 1 and str(ref_codon).upper() in CodonTable.unambiguous_dna_by_id[transl_table].start_codons:# position 0,1 or 2 and SNP is in start codon; if str(new_codon).upper() in CodonTable.unambiguous_dna_by_id[transl_table].start_codons: mut_type = 'nonsynonymous' else: mut_type = 'nonstart' elif str(new_residue) == '*': mut_type = 'nonsense' elif str(ref_res) == '*': mut_type = 'nonstop' else: mut_type = 'nonsynonymous' return [mut_type,new_base,new_codon,new_residue] def codon_process(codon): '''This function processes a codon. It loops through it 3 times, once to determine which is the highest position mutated, once to fill in the cells for the output file and once to output all lines. Input: [empty,start_pos,[line1],[line2],[line3],strand] It also uses global variable strain_nr''' lastposition = [-1]*(strain_nr-1) new_codons = ['']*(strain_nr-1) if codon[-1] == -1:# Change codon position order for -1 features; temp = codon [1:-1] temp.reverse() codon[1:-1] = temp for i,line in enumerate(codon[1:-1],1): if line == '': continue for j,strain in enumerate(line[2:]): if strain[1] in ['a','g','c','t']: lastposition[j] = i new_codons[j] = codon[i][1][8] for i,line in enumerate(codon[1:-1],1): if codon[-1] == -1: pos_in_cod = 4-i else: pos_in_cod = i if line == '': continue for j,strain in enumerate(line[2:]): if i == lastposition[j]: # Check for synonymous etc.; new_codons[j] = new_codon_calc(new_codons[j],strain[1],pos_in_cod) codon[i][j+2] = mut_type_check(line[1][9],line[1][8],codon[0],strain[1],new_codons[j]) straininfo[j][codon[i][j+2][0]] += 1# Counting; elif strain[1] in ['a','g','c','t']: codon[i][j+2] = ['MNP',strain[1],'',''] straininfo[j]['mnps'] += 1 new_codons[j] = new_codon_calc(new_codons[j],strain[1],pos_in_cod) elif strain[0] == 'Allele missing': codon[i][j+2] = strain else: codon[i][j+2] = ['']*4 for line in codon[1:-1]: if line != '': write_output(line) def feature_props(feature): properties = {'type':feature.type,'strand':feature.location._strand, 'sequence':feature.extract(seq_record.seq),'pseudo': False, 'locus_tag':'','gene_name':'','product':'', 'start':int(feature.location._start.position), 'end':int(feature.location._end.position)} if 'pseudo' in feature.qualifiers: properties['pseudo'] = True properties['type'] = 'pseudogene' properties['pure_seq'] = properties['sequence'] if properties['strand'] == -1: properties['sequence'] = seq_record.seq[feature.location._start.position:feature.location._end.position].reverse_complement() else: properties['sequence'] = seq_record.seq[feature.location._start.position:feature.location._end.position] if feature.sub_features: properties['subfeats'] = feature.sub_features if 'locus_tag' in feature.qualifiers: properties['locus_tag'] = feature.qualifiers['locus_tag'][0] if 'gene' in feature.qualifiers: properties['gene_name']= feature.qualifiers['gene'][0] if feature.type in ['tRNA','rRNA','CDS']: properties['product'] = feature.qualifiers['product'][0] return properties # Read embl/genbank file for information on sequence features; try: seq_record = SeqIO.parse(file_ref, filetype_reference).next() except: file_ref.close() quit("Error reading "+sys.argv[2]+", please check file for errors.") file_ref.close() # Loop through genome features and save relevant properties; feats = []# Dictionary of properties; feature_types = {'intergenic':0,'gene':0,'pseudogene':0} feat_temp_store = '' for feature in seq_record.features: # Check if gene is defined as other feature (e.g. CDS). Else, save info from 'gene'; if feat_temp_store != '': if (feature.location._start.position == feat_temp_store.location._start.position and feature.location._end.position == feat_temp_store.location._end.position):# Gene also defined as other feature; feat_temp_store = '' else:# Gene not also defined as CDS; feats.append(feature_props(feat_temp_store)) feat_temp_store = '' elif feature.type == 'gene': feat_temp_store = feature if not feature.type in ['source','gene','misc_feature']: if not feature.type in feature_types and feature.type != 'CDS': feature_types[feature.type] = 0 feats.append(feature_props(feature)) feat_props = sorted(feats, key=lambda cells:int(cells['start'])) feat_boundaries = [{'start':item['start'],'end':item['end']} for item in feat_props] regions = region_calc(feat_boundaries,len(seq_record.seq)) feat_overlap = overlap_calc(regions) reference_loaded = time.clock() # Create array of SNPs from input file for processing; lines = [line.split('\t') for line in file_snps if line.strip()] file_snps.close() # First line contains headers, extract number of strains etc; headers = lines[0] snp_table = sorted(lines[1:], key=lambda cells:int(cells[0])) snps_loaded = time.clock() # Print output file headers; headers[-1] = headers[-1].rstrip()# Remove newline character; strain_nr = len(headers)-1 strains_found = 'Found '+str(strain_nr)+' strains: '+headers[1]+' (reference)' first_line = '\t'+headers[1]+'\t'*9 second_line = 'Position\tFeature\tLocus tag\tGene\tProduct\tStart\tEnd\tStrand\tRef. base\tRef. codon\tRef. res.' straininfo = [0]*(len(headers[2:])) for i,strain in enumerate(headers[2:]): straininfo[i] = {'snps':0,'mnps':0,'synonymous':0,'nonsynonymous':0,'nonstart':0,'nonstop':0,'nonsense':0} straininfo[i].update(feature_types) strains_found += ', '+strain first_line += '\t\t'+strain+'\t'*3 second_line += '\t\tSNP type\tNew base\tNew codon\tNew res.' file_out.write(first_line+'\n'+second_line) file_out.flush() # Loop through SNPs from array and process them; props = {}# Properties of a feature; prev_snp = ''# Position of previous SNP; to_write = []# Information of current SNP; compl_bases = {'a':'t','t':'a','g':'c','c':'g'} firstsnp = True# First snp of region, or of codon in cases of 3 positions in codon mutated; prev_start=j=k=0 overlap_snps = [] codon = ['']*5# Array of codon positions. First item is position of first base of codon in the gene; for region in regions: firstsnp = True i = prev_start while i < len(snp_table):# Loop through SNPs snp_entry = snp_table[i] if not str(snp_entry[0]).isdigit():# Not a valid line, skip; i += 1 continue pos = int(snp_entry[0])-1 if pos < region[0]:# Not inside region yet; i += 1 continue elif firstsnp and pos < region[1]: prev_start = i elif pos >= region[1]:# End of region, process and next; if not firstsnp and codon != ['','','','','']: codon_process(codon) break # Documentation of SNPs in feature overlaps; while j < len(feat_overlap)-1 and pos > feat_overlap[j][1]: j += 1 k = j while k < len(feat_overlap) and pos >= feat_overlap[k][0]: if pos < feat_overlap[k][1]: if feat_overlap[k][4][0] == 0: feat_overlap[k][4][0] = pos feat_overlap[k][4][1] = pos k += 1 snp_entry[-1] = snp_entry[-1].rstrip()# Remove newline character at end of line; # Prevent crash upon encounter nonstandard base character; if snp_entry[1] not in ['a','g','c','t']:# Ref base i += 1 continue for m,base in enumerate(snp_entry[2:],2): if base.lower() not in ['a','g','c','t']: snp_entry[m] = '' # Crash prevented mnp=in_feat=False snp_feat = region[2] ref_base = snp_entry[1] to_write = [[pos+1]] # Output feature properties and reference situation; if snp_feat == -1: codon = ['']*5 to_write.append(['intergenic','','','','','','',ref_base.upper(),'','']) elif feat_props[snp_feat]['type'] not in ['CDS','gene','pseudogene']:# In feature, but non-coding; codon = ['']*5 props = feat_props[snp_feat] if props['strand'] == -1: ref_base = (compl_bases[snp_entry[1].lower()]) else: ref_base = snp_entry[1] to_write.append([props['type'],props['locus_tag'],props['gene_name'], props['product'],props['start']+1,props['end'], '',ref_base.upper(),'','']) else:# in CDS/gene feature, check codon etc; props = feat_props[snp_feat] sequence = props['sequence'] if props['strand'] == -1: pos_in_gene = props['end'] - pos - 1# Python counting ref_base = (compl_bases[snp_entry[1].lower()]) else: pos_in_gene = pos - props['start']# Python counting ref_base = snp_entry[1] in_feat = True if props['pseudo'] and 'subfeats' in props:# Pseudogene that needs special attention; in_feat = False subfeat_boundaries = [{'start':item.location._start.position,'end':item.location._end.position} for item in props['subfeats']] snp_subfeat = match_feature(subfeat_boundaries,pos) if snp_subfeat != -1: in_feat = True pos_in_gene -= non_coding_calc({'start':props['start'],'subfeats':props['subfeats'], 'pseudo':True,'strand':props['strand']},pos) sequence = props['pure_seq'] if not in_feat:# In pseudogene non-coding region; codon = ['']*5 to_write.append(['non coding',props['locus_tag'],props['gene_name'],props['product'], props['start']+1,props['end'],props['strand'],ref_base.upper(), '','']) else:# In coding region; pos_in_cod = (pos_in_gene+1)%3 if pos_in_cod == 0: pos_in_cod = 3# Remainder of division 0 means 3rd place in codon; old_codon = sequence[pos_in_gene-pos_in_cod+1:pos_in_gene-pos_in_cod+4].upper() old_residue = old_codon.translate(table=transl_table) to_write.append([props['type'],props['locus_tag'],props['gene_name'],props['product'], props['start']+1,props['end'],props['strand'],ref_base.upper(), old_codon,old_residue]) if in_feat and not firstsnp and (pos >= prev_snp):# Check if snp is in same codon as previous snp. Position check for overlapping features; if props['strand'] == 1 and (pos - prev_snp + 1) < pos_in_cod:# Same codon (Positive strand); mnp = True elif props['strand'] == -1 and (pos - prev_snp + 1) <= (3 - pos_in_cod):# Same codon (negative strand); mnp = True # Process previous codon if not MNP; if in_feat and not mnp: if not firstsnp: codon_process(codon) codon = [pos_in_gene-pos_in_cod+1,'','','',props['strand']] for l, snp in enumerate(snp_entry[2:]):# Loop through SNPs/strains; snp = snp.lower() if snp == '':# Empty cell; to_write.append(['','','','']) continue if snp == '-': # Feature not present in this strain; to_write.append(['Allele missing','','','']) continue if snp_feat == -1:# Intergenic; if snp == ref_base.lower(): to_write.append(['']*4) else: to_write.append(['',snp,'','']) straininfo[l]['intergenic'] += 1 straininfo[l]['snps'] += 1 continue if props['strand'] == -1: snp = compl_bases[snp] if snp == ref_base.lower(): to_write.append(['']*4) else: to_write.append(['',snp,'','']) straininfo[l]['snps'] += 1 if props['type'] != 'CDS': straininfo[l][props['type']] += 1 if props['type'] in ['CDS','gene','pseudogene'] and in_feat: codon[pos_in_cod] = to_write else: write_output(to_write) if firstsnp: firstsnp = False prev_snp = pos+1 i += 1 if codon != ['','','','','']: codon_process(codon) file_out.close() end = time.clock() file_summary.write("\n") file_summary.write(intro_message) file_summary.write('\n'+strains_found+'.\n') file_summary.write("\nFinished annotation. Total time: %s s\n\n" % round(end-start,1)) file_overlap.write('SNP start\tSNP end\tFeature 1\tLocus tag\tProduct\t\tFeature 2\tLocus tag\tProduct') for overlap in feat_overlap: if overlap[4] != [0,0]: overlap[4][0]+=1 overlap[4][1]+=1 if overlap[4][0] == overlap[4][1]: overlap[4][1] = '' write_output([[str(overlap[4][0])],[str(overlap[4][1]),feat_props[overlap[2]]['type'],feat_props[overlap[2]]['locus_tag'],feat_props[overlap[2]]['product']], [feat_props[overlap[3]]['type'],feat_props[overlap[3]]['locus_tag'],feat_props[overlap[3]]['product']]], file_overlap) for i,strain in enumerate(headers[2:]): file_summary.write("\n") info = straininfo[i] file_summary.write("+ Strain %s:\n" % strain) file_summary.write(" %s SNPs found\n" % info['snps']) file_summary.write(" Number of SNPs found CDS features: %s\n" % (info['mnps']+info['nonstart']+info['nonstop']+info['nonsense']+ info['synonymous']+info['nonsynonymous'])) file_summary.write(" (of which in pseudogenes: %s)\n" % info['pseudogene']) file_summary.write(" - MNPs: %s\n" % info['mnps']) file_summary.write(" - Synonymous: %s\n" % info['synonymous']) file_summary.write(" - Nonsynonymous: %s\n" % info['nonsynonymous']) file_summary.write(" - Nonsense: %s\n" % info['nonsense']) file_summary.write(" - Nonstart: %s\n" % info['nonstart']) file_summary.write(" - Nonstop: %s\n" % info['nonstop']) file_summary.write(" Intergenic: %s\n" % info['intergenic']) for typ in feature_types: if typ not in ['intergenic','pseudogene'] and info[typ] != 0: file_summary.write(" %s: %s\n" % (typ,info[typ])) file_summary.flush() file_overlap.close() file_summary.close()