Mercurial > repos > sagun98 > micropita
view galaxy_micropita/src/breadcrumbs/scripts/scriptManipulateTable.py @ 3:8fb4630ab314 draft default tip
Uploaded
author | sagun98 |
---|---|
date | Thu, 03 Jun 2021 17:07:36 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python """ Author: Timothy Tickle Description: Performs common manipulations on tables """ __author__ = "Timothy Tickle" __copyright__ = "Copyright 2012" __credits__ = ["Timothy Tickle"] __license__ = "" __version__ = "" __maintainer__ = "Timothy Tickle" __email__ = "ttickle@sph.harvard.edu" __status__ = "Development" import argparse import csv import sys import re import os import numpy as np from src.AbundanceTable import AbundanceTable #from src.PCA import PCA from src.ValidateData import ValidateData #Set up arguments reader argp = argparse.ArgumentParser( prog = "scriptManipulateTable.py", description = """Performs common manipulations on tables.\nExample: python scriptManipulateTable.py -i TID -l STSite Test.pcl""" ) #Arguments #Describe table argp.add_argument("-i","--id", dest="sIDName", default="ID", help="Abundance Table ID") argp.add_argument("-l","--meta", dest="sLastMetadataName", help="Last metadata name") argp.add_argument("-d","--fileDelim", dest= "cFileDelimiter", action= "store", default="\t", help="File delimiter, default tab") argp.add_argument("-f","--featureDelim", dest= "cFeatureDelimiter", action= "store", default="|", help="Feature (eg. bug or function) delimiter, default '|'") #Checked x 2 argp.add_argument("-n","--doNorm", dest="fNormalize", action="store_true", default=False, help="Flag to turn on normalization") argp.add_argument("-s","--doSum", dest="fSum", action="store_true", default=False, help="Flag to turn on summation") #Unsupervised filtering argp.add_argument("-A","--doFilterAbundance", dest="strFilterAbundance", action="store", default=None, help="Turns on filtering by abundance (remove features that do not have a minimum abundance in a minimum number of samples); Should be a real number and an integer in the form 'minAbundance,minSamples', (should be performed on a normalized file).") argp.add_argument("-P","--doFilterPercentile", dest="strFilterPercentile", action="store", default=None, help="Turns on filtering by percentile Should be two numbers between 0 and 1 in the form 'percentile,percentage'. (should be performed on a normalized file).") argp.add_argument("-O","--doFilterOccurrence", dest="strFilterOccurence", action="store", default=None, help="Turns on filtering by occurrence. Should be two integers in the form 'minSequence,minSample' (should NOT be performed on a normalized file).") #argp.add_argument("-D","--doFilterDeviation", dest="dCuttOff", action="store", type=float, default=None, help="Flag to turn on filtering by standard deviation (should NOT be performed on a normalized file).") #Change bug membership argp.add_argument("-t","--makeTerminal", dest="fMakeTerminal", action="store_true", default=False, help="Works reduces the file to teminal features in the original file.") argp.add_argument("-u","--reduceOTUs", dest="fRemoveOTUs", action="store_true", default=False, help="Remove otu entries from file.") argp.add_argument("-c","--reduceToClade", dest="iClade", action="store", type=int, default=None, help="Specify a level of clade to reduce to [].") argp.add_argument("-b","--reduceToFeatures", dest="strFeatures", action="store", default=None, help="Reduce measurements to certain features (bugs or functions). This can be a comma delimited string (of atleast 2 bugs) or a file.") #Manipulate based on metadata #Checked argp.add_argument("-y","--stratifyBy", dest="strStratifyBy", action="store", default=None, help="Metadata to stratify tables by.") argp.add_argument("-r","--removeMetadata", dest="strRemoveMetadata", action="store", default=None, help="Remove samples of this metadata and value (format comma delimited string with metadata id first and the values to remove after 'id,lvalue1,value2').") #Manipulate lineage #Checked argp.add_argument("-x","--doPrefixClades", dest="fPrefixClades", action="store_true", default=False, help="Flag to turn on adding prefixes to clades to better identify them, for example s__ will be placed infront of each species.") #Combine tables #argp.add_argument("-m","--combineIntersect", dest="fCombineIntersect", action="store_true", default=False, help="Combine two tables including only common features/metadata (intersection).") #argp.add_argument("-e","--combineUnion", dest="fCombineUnion", action="store_true", default=False, help="Combine two tables (union).") #Dimensionality Reduction #argp.add_argument("-p","--doPCA", dest="fDoPCA",action="store_true", default=False, help="Flag to turn on adding metabugs and metametadata by performing PCA on each of bug relative abundance and continuous metadata and add the resulting components") #Checked argp.add_argument("-o","--output", dest="strOutFile", action="store", default=None, help="Indicate output pcl file.") argp.add_argument("strFileAbund", help ="Input data file") args = argp.parse_args( ) # Creat output file if needed. if not args.strOutFile: args.strOutFile = os.path.splitext(args.strFileAbund)[0]+"-mod.pcl" lsPieces = os.path.splitext(args.strOutFile) #List of abundance tables lsTables = [] #Read in abundance table abndTable = AbundanceTable.funcMakeFromFile(xInputFile=args.strFileAbund, cDelimiter = args.cFileDelimiter, sMetadataID = args.sIDName, sLastMetadata = args.sLastMetadataName, lOccurenceFilter = None, cFeatureNameDelimiter=args.cFeatureDelimiter, xOutputFile = args.strOutFile) #TODO Check filtering, can not have some filtering together # Make feature list lsFeatures = [] if args.strFeatures: print "Get features not completed" # if "," in args.strFeatures: # lsFeatures = args.strFeatures.split(",") # print "ManipulateTable::Reading in feature list "+str(len(lsFeatures))+"." # else: # csvr = csv.reader(open(args.strFeatures, "rU")) # print "ManipulateTable::Reading in feature file "+args.strFeatures+"." # for lsLine in csvr: # lsFeatures.extend(lsLine) lsTables.append(abndTable) # Do summing #Sum if need if args.fSum: for abndTable in lsTables: print "ManipulateTable::"+abndTable.funcGetName()+" had "+str(len(abndTable.funcGetFeatureNames()))+" features before summing." fResult = abndTable.funcSumClades() if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" was summed." print "ManipulateTable::"+abndTable.funcGetName()+" has "+str(len(abndTable.funcGetFeatureNames()))+" features after summing." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" was NOT summed." # Filter on counts if args.strFilterOccurence: iMinimumSequence,iMinimumSample = args.strFilterOccurence.split(",") for abndTable in lsTables: if abndTable.funcIsNormalized(): print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" is normalized and can not be filtered by occurence. This filter needs counts." else: fResult = abndTable.funcFilterAbundanceBySequenceOccurence(iMinSequence = int(iMinimumSequence), iMinSamples = int(iMinimumSample)) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" was filtered by occurence and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" was NOT filtered by occurence." # Change bug membership if args.fMakeTerminal: lsTerminalTables = [] for abndTable in lsTables: print "ManipulateTable::"+abndTable.funcGetName()+" had "+str(len(abndTable.funcGetFeatureNames()))+" features before making terminal." abndTable = abndTable.funcGetFeatureAbundanceTable(abndTable.funcGetTerminalNodes()) if abndTable: print "ManipulateTable::"+abndTable.funcGetName()+" has "+str(len(abndTable.funcGetFeatureNames()))+" terminal features." lsTerminalTables.append(abndTable) else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" was not made terminal." lsTables = lsTerminalTables if args.fRemoveOTUs: lsNotOTUs = [] for abndTable in lsTables: print "ManipulateTable::"+abndTable.funcGetName()+" had "+str(len(abndTable.funcGetFeatureNames()))+" features before removing OTUs." abndTable = abndTable.funcGetWithoutOTUs() if abndTable: print "ManipulateTable::"+abndTable.funcGetName()+" had OTUs removed and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." lsNotOTUs.append(abndTable) else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" OTUs were not removed." lsTables = lsNotOTUs if args.iClade: for abndTable in lsTables: fResult = abndTable.funcReduceFeaturesToCladeLevel(args.iClade) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" was reduced to clade level "+str(args.iClade)+"." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" was NOT reduced in clade levels." if args.strFeatures: for abndTable in lsTables: fResult = abndTable.funcGetFeatureAbundanceTable(lsFeatures) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" has been reduced to given features and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" could not be reduced to the given list." if args.strRemoveMetadata: lsMetadata = args.strRemoveMetadata.split(",") for abndTable in lsTables: fResult = abndTable.funcRemoveSamplesByMetadata(sMetadata=lsMetadata[0], lValuesToRemove=lsMetadata[1:]) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" has had samples removed and now has "+str(len(abndTable.funcGetSampleNames()))+" samples." else: print "ManipulateTable::ERROR. Could not remove samples from "+abndTable.funcGetName()+"." # Normalize if needed if args.fNormalize: for abndTable in lsTables: fResult = abndTable.funcNormalize() if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" was normalized." else: print "ManipulateTable::"+abndTable.funcGetName()+" was NOT normalized." # Filter on percentile if args.strFilterPercentile: dPercentile,dPercentage = args.strFilterPercentile.split(",") for abndTable in lsTables: if abndTable.funcIsNormalized(): fResult = abndTable.funcFilterAbundanceByPercentile(dPercentileCutOff = float(dPercentile), dPercentageAbovePercentile = float(dPercentage)) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" has been reduced by percentile and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" could not be reduced by percentile." else: print "ManipulateTable::"+abndTable.funcGetName()+" was NOT normalized and so the percentile filter is invalid, please indicate to normalize the table." # Filter on abundance (should go after filter on percentile because the filter on percentile # needs the full distribution of features in a sample if args.strFilterAbundance: dAbundance,iMinSamples = args.strFilterAbundance.split(",") dAbundance = float(dAbundance) iMinSamples = int(iMinSamples) for abndTable in lsTables: if abndTable.funcIsNormalized(): fResult = abndTable.funcFilterAbundanceByMinValue(dMinAbundance=dAbundance,iMinSamples=iMinSamples) if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" has been reduced by minimum relative abundance value and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." else: print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" could not be reduced by percentile." else: print "ManipulateTable::"+abndTable.funcGetName()+" was NOT normalized and so the abundance filter is invalid, please indicate to normalize the table." #if args.dCuttOff: # print "Standard deviation filtering not completed" # for abndTable in lsTables: # abndTable.funcFilterFeatureBySD(dMinSDCuttOff=args.dCuttOff) # if fResult: # print "ManipulateTable::"+abndTable.funcGetName()+" has been reduced by standard deviation and now has "+str(len(abndTable.funcGetFeatureNames()))+" features." # else: # print "ManipulateTable::ERROR. "+abndTable.funcGetName()+" could not be reduced by standard devation." # Need to normalize again after abundance data filtering given removing features breaks the normalization # This happends twice because normalization is required to make the abundance data to filter on ;-) # Normalize if needed if args.fNormalize: for abndTable in lsTables: fResult = abndTable.funcNormalize() if fResult: print "ManipulateTable::"+abndTable.funcGetName()+" was normalized after filtering on abundance data." #Manipulate lineage if args.fPrefixClades: for abndTable in lsTables: fResult = abndTable.funcAddCladePrefixToFeatures() if fResult: print "ManipulateTable::Clade Prefix was added to "+abndTable.funcGetName() else: print "ManipulateTable::ERROR. Clade Prefix was NOT added to "+abndTable.funcGetName() # Under development # Reduce dimensionality #if args.fDoPCA: # pcaCur = PCA() # for abndTable in lsTables: # # # Add data features # # Make data components and add to abundance table # pcaCur.loadData(abndTable,True) # pcaCur.run(fASTransform=True) # ldVariance = pcaCur.getVariance() # lldComponents = pcaCur.getComponents() # # Make Names # lsNamesData = ["Data_PC"+str((tpleVariance[0]+1))+"_"+re.sub("[\.|-]","_",str(tpleVariance[1])) for tpleVariance in enumerate(ldVariance)] # abndTable.funcAddDataFeature(lsNamesData,lldComponents) # # # Add metadata features # # Convert metadata to an input for PCA # pcaCur.loadData(pcaCur.convertMetadataForPCA(abndTable),False) # fSuccessful = pcaCur.run(fASTransform=False) # if(fSuccessful): # ldVariance = pcaCur.getVariance() # lldComponents = pcaCur.getComponents() # # Make Names # lsNamesMetadata = ["Metadata_PC"+str((tpleVariance[0]+1))+"_"+re.sub("[\.|-]","_",str(tpleVariance[1])) for tpleVariance in enumerate(ldVariance)] # # Make metadata components and add to abundance # llsMetadata = [list(npdRow) for npdRow in lldComponents] # abndTable.funcAddMetadataFeature(lsNamesMetadata, llsMetadata) # else: # print "ManipulateTable::No metadata to PCA, no PCA components added to file based on metadata" #Manipulate based on metadata if args.strStratifyBy: labndStratifiedTables = [] for abndTable in lsTables: labndResult = abndTable.funcStratifyByMetadata(strMetadata=args.strStratifyBy) print "ManipulateTable::"+abndTable.funcGetName()+" was stratified by "+args.strStratifyBy+" in to "+str(len(labndResult))+" tables." labndStratifiedTables.extend(labndResult) lsTables = labndStratifiedTables if len(lsTables) == 1: lsTables[0].funcWriteToFile(args.strOutFile) else: iIndex = 1 for abndManTable in lsTables: abndManTable.funcWriteToFile(lsPieces[0]+str(iIndex)+lsPieces[1]) iIndex = iIndex + 1