Mercurial > repos > sblanck > smagexp
comparison MetaRNASeq.R @ 0:1024245abc70 draft
planemo upload for repository https://github.com/sblanck/smagexp/tree/master/smagexp_tools commit 5974f806f344dbcc384b931492d7f023bfbbe03b
author | sblanck |
---|---|
date | Thu, 22 Feb 2018 08:38:22 -0500 |
parents | |
children | 58052f8bc987 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1024245abc70 |
---|---|
1 #!/usr/bin/env Rscript | |
2 # setup R error handling to go to stderr | |
3 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
4 | |
5 # we need that to not crash galaxy with an UTF8 error on German LC settings. | |
6 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | |
7 | |
8 library("optparse") | |
9 | |
10 ##### Read options | |
11 option_list=list( | |
12 make_option("--input",type="character",default="NULL",help="list of rdata objects containing eset objects"), | |
13 make_option("--result",type="character",default=NULL,help="text file containing result of the meta-analysis"), | |
14 make_option("--htmloutput",type="character",default=NULL,help="Output html report"), | |
15 make_option("--htmloutputpath",type="character",default="NULL",help="Path of output html report"), | |
16 make_option("--htmltemplate",type="character",default=NULL,help="html template)") | |
17 ); | |
18 | |
19 opt_parser = OptionParser(option_list=option_list); | |
20 opt = parse_args(opt_parser); | |
21 | |
22 if(is.null(opt$input)){ | |
23 print_help(opt_parser) | |
24 stop("input required.", call.=FALSE) | |
25 } | |
26 | |
27 #loading libraries | |
28 | |
29 suppressPackageStartupMessages(require(affy)) | |
30 suppressPackageStartupMessages(require(annaffy)) | |
31 suppressPackageStartupMessages(require(VennDiagram)) | |
32 suppressPackageStartupMessages(require(GEOquery)) | |
33 | |
34 listInput <- trimws( unlist( strsplit(trimws(opt$input), ",") ) ) | |
35 | |
36 listfiles=vector() | |
37 listfilenames=vector() | |
38 | |
39 for (i in 1:length(listInput)) | |
40 { | |
41 inputFileInfo <- unlist( strsplit( listInput[i], ';' ) ) | |
42 listfiles=c(listfiles,inputFileInfo[1]) | |
43 listfilenames=c(listfilenames,inputFileInfo[2]) | |
44 } | |
45 | |
46 cargs <- commandArgs() | |
47 cargs <- cargs[(which(cargs == "--args")+1):length(cargs)] | |
48 nbargs=length(cargs) | |
49 listfiles=vector() | |
50 listfilenames=vector() | |
51 for (i in seq(1,nbargs-6,2)) { | |
52 listfiles=c(listfiles,cargs[[i]]) | |
53 listfilenames=c(listfilenames,cargs[[i+1]]) | |
54 } | |
55 #mod<-cargs[[length(cargs) - 6]] | |
56 outputfile <- opt$result | |
57 result.html = opt$htmloutput | |
58 html.files.path=opt$htmloutputpath | |
59 result.template=opt$htmltemplate | |
60 | |
61 alpha=0.05 | |
62 | |
63 #print(comparison) | |
64 | |
65 listData=lapply(listfiles,read.table) | |
66 orderData=lapply(listData, function(x) x[order(x[1]), ]) | |
67 rawpval=lapply(orderData,function(x) x[6]) | |
68 rawpval=lapply(rawpval, function(x) as.numeric(unlist(x))) | |
69 | |
70 DE=list() | |
71 DE=lapply(orderData, function(x) ifelse(x[7]<=0.05,1,0)) | |
72 | |
73 FC=list() | |
74 FC=lapply(orderData, function(x) x[3]) | |
75 | |
76 DE=as.data.frame(DE) | |
77 colnames(DE)=listfilenames | |
78 FC=as.data.frame(FC) | |
79 colnames(FC)=listfilenames | |
80 # the comparison must only have two values and the conds must | |
81 # be a vector from those values, at least one of each. | |
82 | |
83 #if (length(comparison) != 2) { | |
84 # stop("Comparison type must be a tuple: ", cargs[length(cargs) - 8]) | |
85 #} | |
86 | |
87 sink("/dev/null") | |
88 dir.create(html.files.path, recursive=TRUE) | |
89 #library(DESeq) | |
90 #library(HTSFilter) | |
91 | |
92 #DE=list() | |
93 #FC=list() | |
94 #i=1 | |
95 | |
96 # Open the html output file | |
97 #file.conn = file(diag.html, open="w") | |
98 | |
99 #writeLines( c("<html><body>"), file.conn) | |
100 | |
101 # Perform deseq analysis on each study | |
102 #for(i in 1:length(listfiles)) | |
103 #{ | |
104 # f=listfiles[i] | |
105 # fname=listfilenames[i] | |
106 # study_name=unlist(strsplit(fname,"[.]"))[1] | |
107 # print(paste0("study.name ",study_name)) | |
108 # d <- read.table(f, sep=" ", header=TRUE, row.names=1) | |
109 # conds<-sapply(strsplit(colnames(d),"[.]"),FUN=function(x) x[1]) | |
110 # if (length(unique(conds)) != 2) { | |
111 # warning(as.data.frame(strsplit(colnames(d),"[.]"))) | |
112 # stop("You can only have two columns types: ", paste(conds,collapse=" ")) | |
113 # } | |
114 # if (!identical(sort(comparison), sort(unique(conds)))) { | |
115 # stop("Column types must use the two names from Comparison type, and vice versa. Must have at least one of each in the Column types.\nColumn types: ", cargs[2], "\n", "Comparison type: ", cargs[3]) | |
116 # } | |
117 # if (length(d) != length(conds)) { | |
118 # stop("Number of total sample columns in counts file must correspond to the columns types field. E.g. if column types is 'kidney,kidney,liver,liver' then number of sample columns in counts file must be 4 as well.") | |
119 # } | |
120 # | |
121 # cds <- newCountDataSet(d, conds) | |
122 # cds <- estimateSizeFactors(cds) | |
123 # | |
124 # cdsBlind <- estimateDispersions( cds, method="blind" ) | |
125 # | |
126 # if (length(conds) != 2) { | |
127 # cds <- estimateDispersions( cds ) | |
128 # norep = FALSE | |
129 # } | |
130 # | |
131 # if (length(conds) == 2) { | |
132 # cds <- estimateDispersions( cds, method=method, sharingMode=mod, fitType="parametric" ) | |
133 # norep = TRUE | |
134 # } | |
135 # | |
136 # filter<-HTSFilter(cds, plot=FALSE) | |
137 # cds.filter<-filter$filteredData | |
138 # on.index<-which(filter$on==1) | |
139 # | |
140 # res<-as.data.frame(matrix(NA,nrow=nrow(cds),ncol=ncol(cds))) | |
141 # nbT <- nbinomTest(cds.filter, comparison[1], comparison[2]) | |
142 # colnames(res)<-colnames(nbT) | |
143 # res[on.index,]<-nbT | |
144 # #write.table(res[order(res$padj), ], file=outputfile, quote=FALSE, row.names=FALSE, sep="\t") | |
145 # | |
146 # | |
147 # temp.pval.plot = file.path( html.files.path, paste("PvalHist",i,".png",sep="")) | |
148 # png( temp.pval.plot, width=500, height=500 ) | |
149 # hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="") | |
150 # dev.off() | |
151 # | |
152 # writeLines( c("<h2>P-value histogram for ",study_name,"</h2>"), file.conn) | |
153 # writeLines( c("<img src='PvalHist",i,".png'><br/><br/>"), file.conn) | |
154 # | |
155 # #on enregistre la p-value | |
156 # rawpval[[study_name]]<-res$pval | |
157 # DE[[study_name]]<-ifelse(res$padj<=alpha,1,0) | |
158 # FC[[study_name]]<-res$log2FoldChange | |
159 # | |
160 # i=i+1 | |
161 #} | |
162 | |
163 | |
164 # combinations | |
165 library(metaRNASeq) | |
166 fishcomb<-fishercomb(rawpval, BHth=alpha) | |
167 warning(length(rawpval)) | |
168 invnormcomb<-invnorm(rawpval, nrep=c(8,8), BHth=alpha) | |
169 #DE[["fishercomb"]]<-ifelse(fishcomb$adjpval<=alpha,1,0) | |
170 #DE[["invnormcomb"]]<-ifelse(invnormcomb$adjpval<=alpha,1,0) | |
171 | |
172 signsFC<-mapply(FC,FUN=function(x) sign(x)) | |
173 sumsigns<-apply(signsFC,1,sum) | |
174 commonsgnFC<-ifelse(abs(sumsigns)==dim(signsFC)[2],sign(sumsigns),0) | |
175 | |
176 DEresults <- data.frame(DE=DE,"DE.fishercomb"=ifelse(fishcomb$adjpval<=alpha,1,0),"DE.invnorm"=ifelse(invnormcomb$adjpval<=alpha,1,0)) | |
177 | |
178 unionDE <- unique(c(fishcomb$DEindices,invnormcomb$DEindices)) | |
179 FC.selecDE <- data.frame(DEresults[unionDE,],FC[unionDE,],signFC=commonsgnFC[unionDE]) | |
180 keepDE <- FC.selecDE[which(abs(FC.selecDE$signFC)==1),] | |
181 | |
182 fishcomb_de <- rownames(keepDE)[which(keepDE[,"DE.fishercomb"]==1)] | |
183 invnorm_de <- rownames(keepDE)[which(keepDE[,"DE.invnorm"]==1)] | |
184 indstudy_de = list() | |
185 for (i in 1:length(listfiles)) { | |
186 currentIndstudy_de = rownames(keepDE)[which(keepDE[,i]==1)] | |
187 indstudy_de[[listfilenames[i]]]=currentIndstudy_de | |
188 } | |
189 | |
190 IDDIRRfishcomb=IDD.IRR(fishcomb_de,indstudy_de) | |
191 IDDIRRinvnorm=IDD.IRR(invnorm_de,indstudy_de) | |
192 | |
193 #conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],Fishercomb=DEresults[["DE.fishercomb"]],Invnormcomb=DEresults[["DE.invnorm"]],sign=commonsgnFC) | |
194 conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],DE=DEresults,FC=FC,signFC=commonsgnFC) | |
195 #write DE outputfile | |
196 write.table(conflits, outputfile,sep="\t",,row.names=FALSE) | |
197 library(VennDiagram) | |
198 DE_num=apply(DEresults, 2, FUN=function(x) which(x==1)) | |
199 venn.plot<-venn.diagram(x=as.list(DE_num),filename=NULL, col="black", fill=1:length(DE_num)+1,alpha=0.6) | |
200 temp.venn.plot = file.path( html.files.path, paste("venn.png")) | |
201 png(temp.venn.plot,width=500,height=500) | |
202 grid.draw(venn.plot) | |
203 dev.off() | |
204 | |
205 library(jsonlite) | |
206 matrixConflits=as.matrix(conflits) | |
207 datajson=toJSON(matrixConflits,pretty = TRUE) | |
208 summaryFishcombjson=toJSON(as.matrix(t(IDDIRRfishcomb)),pretty = TRUE) | |
209 summaryinvnormjson=toJSON(as.matrix(t(IDDIRRinvnorm)),pretty = TRUE) | |
210 | |
211 | |
212 #vennsplit=strsplit(result.venn,split="/")[[1]] | |
213 #venn=paste0("./",vennsplit[length(vennsplit)]) | |
214 | |
215 | |
216 vennFilename="venn.png" | |
217 vennFile=file.path(html.files.path,vennFilename) | |
218 htmlfile=readChar(result.template, file.info(result.template)$size) | |
219 htmlfile=gsub(x=htmlfile,pattern = "###DATAJSON###",replacement = datajson, fixed = TRUE) | |
220 htmlfile=gsub(x=htmlfile,pattern = "###FISHSUMMARYJSON###",replacement = summaryFishcombjson, fixed = TRUE) | |
221 htmlfile=gsub(x=htmlfile,pattern = "###INVSUMMARYJSON###",replacement = summaryinvnormjson, fixed = TRUE) | |
222 htmlfile=gsub(x=htmlfile,pattern = "###VENN###",replacement = vennFilename, fixed = TRUE) | |
223 write(htmlfile,result.html) | |
224 | |
225 #library(VennDiagram) | |
226 #flog.threshold(ERROR) | |
227 # | |
228 ##venn.plot<-venn.diagram(x = c(res[c(1:(length(res)-3))],meta=list(res$Meta)),filename = v, col = "black", fill = c(1:(length(res)-2)), margin=0.05, alpha = 0.6,imagetype = "png") | |
229 #dir.create(result.path, showWarnings = TRUE, recursive = FALSE) | |
230 # | |
231 #showVenn<-function(liste,file) | |
232 #{ | |
233 # venn.plot<-venn.diagram(x = liste, | |
234 # filename = vennFilename, col = "black", | |
235 # fill = 1:length(liste)+1, | |
236 # margin=0.05, alpha = 0.6,imagetype = "png") | |
237 ## png(file); | |
238 ## grid.draw(venn.plot); | |
239 ## dev.off(); | |
240 # | |
241 #} | |
242 # | |
243 #l=list() | |
244 #for(i in 1:length(esets)) | |
245 #{ | |
246 # l[[paste("study",i,sep="")]]<-res[[i]] | |
247 #} | |
248 #l[["Meta"]]=res[[length(res)-1]] | |
249 #showVenn(l,vennFile) | |
250 #file.copy(vennFilename,result.path) | |
251 | |
252 | |
253 #writeLines( c("<h2>Venn Plot</h2>"), file.conn) | |
254 #writeLines( c("<img src='venn.png'><br/><br/>"), file.conn) | |
255 #writeLines( c("</body></html>"), file.conn) | |
256 #close(file.conn) | |
257 #print("passe6") | |
258 #sink(NULL) |