Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/boltons/iterutils.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
| author | shellac |
|---|---|
| date | Sat, 02 May 2020 07:14:21 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:26e78fe6e8c4 |
|---|---|
| 1 # -*- coding: utf-8 -*- | |
| 2 """:mod:`itertools` is full of great examples of Python generator | |
| 3 usage. However, there are still some critical gaps. ``iterutils`` | |
| 4 fills many of those gaps with featureful, tested, and Pythonic | |
| 5 solutions. | |
| 6 | |
| 7 Many of the functions below have two versions, one which | |
| 8 returns an iterator (denoted by the ``*_iter`` naming pattern), and a | |
| 9 shorter-named convenience form that returns a list. Some of the | |
| 10 following are based on examples in itertools docs. | |
| 11 """ | |
| 12 | |
| 13 import os | |
| 14 import math | |
| 15 import time | |
| 16 import codecs | |
| 17 import random | |
| 18 import socket | |
| 19 import hashlib | |
| 20 import itertools | |
| 21 | |
| 22 try: | |
| 23 from collections.abc import Mapping, Sequence, Set, ItemsView, Iterable | |
| 24 except ImportError: | |
| 25 from collections import Mapping, Sequence, Set, ItemsView, Iterable | |
| 26 | |
| 27 | |
| 28 try: | |
| 29 from typeutils import make_sentinel | |
| 30 _UNSET = make_sentinel('_UNSET') | |
| 31 _REMAP_EXIT = make_sentinel('_REMAP_EXIT') | |
| 32 except ImportError: | |
| 33 _REMAP_EXIT = object() | |
| 34 _UNSET = object() | |
| 35 | |
| 36 try: | |
| 37 from future_builtins import filter | |
| 38 from itertools import izip | |
| 39 _IS_PY3 = False | |
| 40 except ImportError: | |
| 41 # Python 3 compat | |
| 42 _IS_PY3 = True | |
| 43 basestring = (str, bytes) | |
| 44 unicode = str | |
| 45 izip, xrange = zip, range | |
| 46 | |
| 47 | |
| 48 def is_iterable(obj): | |
| 49 """Similar in nature to :func:`callable`, ``is_iterable`` returns | |
| 50 ``True`` if an object is `iterable`_, ``False`` if not. | |
| 51 | |
| 52 >>> is_iterable([]) | |
| 53 True | |
| 54 >>> is_iterable(object()) | |
| 55 False | |
| 56 | |
| 57 .. _iterable: https://docs.python.org/2/glossary.html#term-iterable | |
| 58 """ | |
| 59 try: | |
| 60 iter(obj) | |
| 61 except TypeError: | |
| 62 return False | |
| 63 return True | |
| 64 | |
| 65 | |
| 66 def is_scalar(obj): | |
| 67 """A near-mirror of :func:`is_iterable`. Returns ``False`` if an | |
| 68 object is an iterable container type. Strings are considered | |
| 69 scalar as well, because strings are more often treated as whole | |
| 70 values as opposed to iterables of 1-character substrings. | |
| 71 | |
| 72 >>> is_scalar(object()) | |
| 73 True | |
| 74 >>> is_scalar(range(10)) | |
| 75 False | |
| 76 >>> is_scalar('hello') | |
| 77 True | |
| 78 """ | |
| 79 return not is_iterable(obj) or isinstance(obj, basestring) | |
| 80 | |
| 81 | |
| 82 def is_collection(obj): | |
| 83 """The opposite of :func:`is_scalar`. Returns ``True`` if an object | |
| 84 is an iterable other than a string. | |
| 85 | |
| 86 >>> is_collection(object()) | |
| 87 False | |
| 88 >>> is_collection(range(10)) | |
| 89 True | |
| 90 >>> is_collection('hello') | |
| 91 False | |
| 92 """ | |
| 93 return is_iterable(obj) and not isinstance(obj, basestring) | |
| 94 | |
| 95 | |
| 96 def split(src, sep=None, maxsplit=None): | |
| 97 """Splits an iterable based on a separator. Like :meth:`str.split`, | |
| 98 but for all iterables. Returns a list of lists. | |
| 99 | |
| 100 >>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None]) | |
| 101 [['hi', 'hello'], ['sup'], ['soap']] | |
| 102 | |
| 103 See :func:`split_iter` docs for more info. | |
| 104 """ | |
| 105 return list(split_iter(src, sep, maxsplit)) | |
| 106 | |
| 107 | |
| 108 def split_iter(src, sep=None, maxsplit=None): | |
| 109 """Splits an iterable based on a separator, *sep*, a max of | |
| 110 *maxsplit* times (no max by default). *sep* can be: | |
| 111 | |
| 112 * a single value | |
| 113 * an iterable of separators | |
| 114 * a single-argument callable that returns True when a separator is | |
| 115 encountered | |
| 116 | |
| 117 ``split_iter()`` yields lists of non-separator values. A separator will | |
| 118 never appear in the output. | |
| 119 | |
| 120 >>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None])) | |
| 121 [['hi', 'hello'], ['sup'], ['soap']] | |
| 122 | |
| 123 Note that ``split_iter`` is based on :func:`str.split`, so if | |
| 124 *sep* is ``None``, ``split()`` **groups** separators. If empty lists | |
| 125 are desired between two contiguous ``None`` values, simply use | |
| 126 ``sep=[None]``: | |
| 127 | |
| 128 >>> list(split_iter(['hi', 'hello', None, None, 'sup', None])) | |
| 129 [['hi', 'hello'], ['sup']] | |
| 130 >>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None])) | |
| 131 [['hi', 'hello'], [], ['sup'], []] | |
| 132 | |
| 133 Using a callable separator: | |
| 134 | |
| 135 >>> falsy_sep = lambda x: not x | |
| 136 >>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep)) | |
| 137 [['hi', 'hello'], [], ['sup'], []] | |
| 138 | |
| 139 See :func:`split` for a list-returning version. | |
| 140 | |
| 141 """ | |
| 142 if not is_iterable(src): | |
| 143 raise TypeError('expected an iterable') | |
| 144 | |
| 145 if maxsplit is not None: | |
| 146 maxsplit = int(maxsplit) | |
| 147 if maxsplit == 0: | |
| 148 yield [src] | |
| 149 return | |
| 150 | |
| 151 if callable(sep): | |
| 152 sep_func = sep | |
| 153 elif not is_scalar(sep): | |
| 154 sep = frozenset(sep) | |
| 155 sep_func = lambda x: x in sep | |
| 156 else: | |
| 157 sep_func = lambda x: x == sep | |
| 158 | |
| 159 cur_group = [] | |
| 160 split_count = 0 | |
| 161 for s in src: | |
| 162 if maxsplit is not None and split_count >= maxsplit: | |
| 163 sep_func = lambda x: False | |
| 164 if sep_func(s): | |
| 165 if sep is None and not cur_group: | |
| 166 # If sep is none, str.split() "groups" separators | |
| 167 # check the str.split() docs for more info | |
| 168 continue | |
| 169 split_count += 1 | |
| 170 yield cur_group | |
| 171 cur_group = [] | |
| 172 else: | |
| 173 cur_group.append(s) | |
| 174 | |
| 175 if cur_group or sep is not None: | |
| 176 yield cur_group | |
| 177 return | |
| 178 | |
| 179 | |
| 180 def chunked(src, size, count=None, **kw): | |
| 181 """Returns a list of *count* chunks, each with *size* elements, | |
| 182 generated from iterable *src*. If *src* is not evenly divisible by | |
| 183 *size*, the final chunk will have fewer than *size* elements. | |
| 184 Provide the *fill* keyword argument to provide a pad value and | |
| 185 enable padding, otherwise no padding will take place. | |
| 186 | |
| 187 >>> chunked(range(10), 3) | |
| 188 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] | |
| 189 >>> chunked(range(10), 3, fill=None) | |
| 190 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]] | |
| 191 >>> chunked(range(10), 3, count=2) | |
| 192 [[0, 1, 2], [3, 4, 5]] | |
| 193 | |
| 194 See :func:`chunked_iter` for more info. | |
| 195 """ | |
| 196 chunk_iter = chunked_iter(src, size, **kw) | |
| 197 if count is None: | |
| 198 return list(chunk_iter) | |
| 199 else: | |
| 200 return list(itertools.islice(chunk_iter, count)) | |
| 201 | |
| 202 | |
| 203 def chunked_iter(src, size, **kw): | |
| 204 """Generates *size*-sized chunks from *src* iterable. Unless the | |
| 205 optional *fill* keyword argument is provided, iterables not evenly | |
| 206 divisible by *size* will have a final chunk that is smaller than | |
| 207 *size*. | |
| 208 | |
| 209 >>> list(chunked_iter(range(10), 3)) | |
| 210 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] | |
| 211 >>> list(chunked_iter(range(10), 3, fill=None)) | |
| 212 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]] | |
| 213 | |
| 214 Note that ``fill=None`` in fact uses ``None`` as the fill value. | |
| 215 """ | |
| 216 # TODO: add count kwarg? | |
| 217 if not is_iterable(src): | |
| 218 raise TypeError('expected an iterable') | |
| 219 size = int(size) | |
| 220 if size <= 0: | |
| 221 raise ValueError('expected a positive integer chunk size') | |
| 222 do_fill = True | |
| 223 try: | |
| 224 fill_val = kw.pop('fill') | |
| 225 except KeyError: | |
| 226 do_fill = False | |
| 227 fill_val = None | |
| 228 if kw: | |
| 229 raise ValueError('got unexpected keyword arguments: %r' % kw.keys()) | |
| 230 if not src: | |
| 231 return | |
| 232 postprocess = lambda chk: chk | |
| 233 if isinstance(src, basestring): | |
| 234 postprocess = lambda chk, _sep=type(src)(): _sep.join(chk) | |
| 235 if _IS_PY3 and isinstance(src, bytes): | |
| 236 postprocess = lambda chk: bytes(chk) | |
| 237 src_iter = iter(src) | |
| 238 while True: | |
| 239 cur_chunk = list(itertools.islice(src_iter, size)) | |
| 240 if not cur_chunk: | |
| 241 break | |
| 242 lc = len(cur_chunk) | |
| 243 if lc < size and do_fill: | |
| 244 cur_chunk[lc:] = [fill_val] * (size - lc) | |
| 245 yield postprocess(cur_chunk) | |
| 246 return | |
| 247 | |
| 248 | |
| 249 def pairwise(src): | |
| 250 """Convenience function for calling :func:`windowed` on *src*, with | |
| 251 *size* set to 2. | |
| 252 | |
| 253 >>> pairwise(range(5)) | |
| 254 [(0, 1), (1, 2), (2, 3), (3, 4)] | |
| 255 >>> pairwise([]) | |
| 256 [] | |
| 257 | |
| 258 The number of pairs is always one less than the number of elements | |
| 259 in the iterable passed in, except on empty inputs, which returns | |
| 260 an empty list. | |
| 261 """ | |
| 262 return windowed(src, 2) | |
| 263 | |
| 264 | |
| 265 def pairwise_iter(src): | |
| 266 """Convenience function for calling :func:`windowed_iter` on *src*, | |
| 267 with *size* set to 2. | |
| 268 | |
| 269 >>> list(pairwise_iter(range(5))) | |
| 270 [(0, 1), (1, 2), (2, 3), (3, 4)] | |
| 271 >>> list(pairwise_iter([])) | |
| 272 [] | |
| 273 | |
| 274 The number of pairs is always one less than the number of elements | |
| 275 in the iterable passed in, or zero, when *src* is empty. | |
| 276 | |
| 277 """ | |
| 278 return windowed_iter(src, 2) | |
| 279 | |
| 280 | |
| 281 def windowed(src, size): | |
| 282 """Returns tuples with exactly length *size*. If the iterable is | |
| 283 too short to make a window of length *size*, no tuples are | |
| 284 returned. See :func:`windowed_iter` for more. | |
| 285 """ | |
| 286 return list(windowed_iter(src, size)) | |
| 287 | |
| 288 | |
| 289 def windowed_iter(src, size): | |
| 290 """Returns tuples with length *size* which represent a sliding | |
| 291 window over iterable *src*. | |
| 292 | |
| 293 >>> list(windowed_iter(range(7), 3)) | |
| 294 [(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] | |
| 295 | |
| 296 If the iterable is too short to make a window of length *size*, | |
| 297 then no window tuples are returned. | |
| 298 | |
| 299 >>> list(windowed_iter(range(3), 5)) | |
| 300 [] | |
| 301 """ | |
| 302 # TODO: lists? (for consistency) | |
| 303 tees = itertools.tee(src, size) | |
| 304 try: | |
| 305 for i, t in enumerate(tees): | |
| 306 for _ in xrange(i): | |
| 307 next(t) | |
| 308 except StopIteration: | |
| 309 return izip([]) | |
| 310 return izip(*tees) | |
| 311 | |
| 312 | |
| 313 def xfrange(stop, start=None, step=1.0): | |
| 314 """Same as :func:`frange`, but generator-based instead of returning a | |
| 315 list. | |
| 316 | |
| 317 >>> tuple(xfrange(1, 3, step=0.75)) | |
| 318 (1.0, 1.75, 2.5) | |
| 319 | |
| 320 See :func:`frange` for more details. | |
| 321 """ | |
| 322 if not step: | |
| 323 raise ValueError('step must be non-zero') | |
| 324 if start is None: | |
| 325 start, stop = 0.0, stop * 1.0 | |
| 326 else: | |
| 327 # swap when all args are used | |
| 328 stop, start = start * 1.0, stop * 1.0 | |
| 329 cur = start | |
| 330 while cur < stop: | |
| 331 yield cur | |
| 332 cur += step | |
| 333 | |
| 334 | |
| 335 def frange(stop, start=None, step=1.0): | |
| 336 """A :func:`range` clone for float-based ranges. | |
| 337 | |
| 338 >>> frange(5) | |
| 339 [0.0, 1.0, 2.0, 3.0, 4.0] | |
| 340 >>> frange(6, step=1.25) | |
| 341 [0.0, 1.25, 2.5, 3.75, 5.0] | |
| 342 >>> frange(100.5, 101.5, 0.25) | |
| 343 [100.5, 100.75, 101.0, 101.25] | |
| 344 >>> frange(5, 0) | |
| 345 [] | |
| 346 >>> frange(5, 0, step=-1.25) | |
| 347 [5.0, 3.75, 2.5, 1.25] | |
| 348 """ | |
| 349 if not step: | |
| 350 raise ValueError('step must be non-zero') | |
| 351 if start is None: | |
| 352 start, stop = 0.0, stop * 1.0 | |
| 353 else: | |
| 354 # swap when all args are used | |
| 355 stop, start = start * 1.0, stop * 1.0 | |
| 356 count = int(math.ceil((stop - start) / step)) | |
| 357 ret = [None] * count | |
| 358 if not ret: | |
| 359 return ret | |
| 360 ret[0] = start | |
| 361 for i in xrange(1, count): | |
| 362 ret[i] = ret[i - 1] + step | |
| 363 return ret | |
| 364 | |
| 365 | |
| 366 def backoff(start, stop, count=None, factor=2.0, jitter=False): | |
| 367 """Returns a list of geometrically-increasing floating-point numbers, | |
| 368 suitable for usage with `exponential backoff`_. Exactly like | |
| 369 :func:`backoff_iter`, but without the ``'repeat'`` option for | |
| 370 *count*. See :func:`backoff_iter` for more details. | |
| 371 | |
| 372 .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff | |
| 373 | |
| 374 >>> backoff(1, 10) | |
| 375 [1.0, 2.0, 4.0, 8.0, 10.0] | |
| 376 """ | |
| 377 if count == 'repeat': | |
| 378 raise ValueError("'repeat' supported in backoff_iter, not backoff") | |
| 379 return list(backoff_iter(start, stop, count=count, | |
| 380 factor=factor, jitter=jitter)) | |
| 381 | |
| 382 | |
| 383 def backoff_iter(start, stop, count=None, factor=2.0, jitter=False): | |
| 384 """Generates a sequence of geometrically-increasing floats, suitable | |
| 385 for usage with `exponential backoff`_. Starts with *start*, | |
| 386 increasing by *factor* until *stop* is reached, optionally | |
| 387 stopping iteration once *count* numbers are yielded. *factor* | |
| 388 defaults to 2. In general retrying with properly-configured | |
| 389 backoff creates a better-behaved component for a larger service | |
| 390 ecosystem. | |
| 391 | |
| 392 .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff | |
| 393 | |
| 394 >>> list(backoff_iter(1.0, 10.0, count=5)) | |
| 395 [1.0, 2.0, 4.0, 8.0, 10.0] | |
| 396 >>> list(backoff_iter(1.0, 10.0, count=8)) | |
| 397 [1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0] | |
| 398 >>> list(backoff_iter(0.25, 100.0, factor=10)) | |
| 399 [0.25, 2.5, 25.0, 100.0] | |
| 400 | |
| 401 A simplified usage example: | |
| 402 | |
| 403 .. code-block:: python | |
| 404 | |
| 405 for timeout in backoff_iter(0.25, 5.0): | |
| 406 try: | |
| 407 res = network_call() | |
| 408 break | |
| 409 except Exception as e: | |
| 410 log(e) | |
| 411 time.sleep(timeout) | |
| 412 | |
| 413 An enhancement for large-scale systems would be to add variation, | |
| 414 or *jitter*, to timeout values. This is done to avoid a thundering | |
| 415 herd on the receiving end of the network call. | |
| 416 | |
| 417 Finally, for *count*, the special value ``'repeat'`` can be passed to | |
| 418 continue yielding indefinitely. | |
| 419 | |
| 420 Args: | |
| 421 | |
| 422 start (float): Positive number for baseline. | |
| 423 stop (float): Positive number for maximum. | |
| 424 count (int): Number of steps before stopping | |
| 425 iteration. Defaults to the number of steps between *start* and | |
| 426 *stop*. Pass the string, `'repeat'`, to continue iteration | |
| 427 indefinitely. | |
| 428 factor (float): Rate of exponential increase. Defaults to `2.0`, | |
| 429 e.g., `[1, 2, 4, 8, 16]`. | |
| 430 jitter (float): A factor between `-1.0` and `1.0`, used to | |
| 431 uniformly randomize and thus spread out timeouts in a distributed | |
| 432 system, avoiding rhythm effects. Positive values use the base | |
| 433 backoff curve as a maximum, negative values use the curve as a | |
| 434 minimum. Set to 1.0 or `True` for a jitter approximating | |
| 435 Ethernet's time-tested backoff solution. Defaults to `False`. | |
| 436 | |
| 437 """ | |
| 438 start = float(start) | |
| 439 stop = float(stop) | |
| 440 factor = float(factor) | |
| 441 if start < 0.0: | |
| 442 raise ValueError('expected start >= 0, not %r' % start) | |
| 443 if factor < 1.0: | |
| 444 raise ValueError('expected factor >= 1.0, not %r' % factor) | |
| 445 if stop == 0.0: | |
| 446 raise ValueError('expected stop >= 0') | |
| 447 if stop < start: | |
| 448 raise ValueError('expected stop >= start, not %r' % stop) | |
| 449 if count is None: | |
| 450 denom = start if start else 1 | |
| 451 count = 1 + math.ceil(math.log(stop/denom, factor)) | |
| 452 count = count if start else count + 1 | |
| 453 if count != 'repeat' and count < 0: | |
| 454 raise ValueError('count must be positive or "repeat", not %r' % count) | |
| 455 if jitter: | |
| 456 jitter = float(jitter) | |
| 457 if not (-1.0 <= jitter <= 1.0): | |
| 458 raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter) | |
| 459 | |
| 460 cur, i = start, 0 | |
| 461 while count == 'repeat' or i < count: | |
| 462 if not jitter: | |
| 463 cur_ret = cur | |
| 464 elif jitter: | |
| 465 cur_ret = cur - (cur * jitter * random.random()) | |
| 466 yield cur_ret | |
| 467 i += 1 | |
| 468 if cur == 0: | |
| 469 cur = 1 | |
| 470 elif cur < stop: | |
| 471 cur *= factor | |
| 472 if cur > stop: | |
| 473 cur = stop | |
| 474 return | |
| 475 | |
| 476 | |
| 477 def bucketize(src, key=bool, value_transform=None, key_filter=None): | |
| 478 """Group values in the *src* iterable by the value returned by *key*. | |
| 479 | |
| 480 >>> bucketize(range(5)) | |
| 481 {False: [0], True: [1, 2, 3, 4]} | |
| 482 >>> is_odd = lambda x: x % 2 == 1 | |
| 483 >>> bucketize(range(5), is_odd) | |
| 484 {False: [0, 2, 4], True: [1, 3]} | |
| 485 | |
| 486 *key* is :class:`bool` by default, but can either be a callable or a string | |
| 487 name of the attribute on which to bucketize objects. | |
| 488 | |
| 489 >>> bucketize([1+1j, 2+2j, 1, 2], key='real') | |
| 490 {1.0: [(1+1j), 1], 2.0: [(2+2j), 2]} | |
| 491 | |
| 492 Value lists are not deduplicated: | |
| 493 | |
| 494 >>> bucketize([None, None, None, 'hello']) | |
| 495 {False: [None, None, None], True: ['hello']} | |
| 496 | |
| 497 Bucketize into more than 3 groups | |
| 498 | |
| 499 >>> bucketize(range(10), lambda x: x % 3) | |
| 500 {0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]} | |
| 501 | |
| 502 ``bucketize`` has a couple of advanced options useful in certain | |
| 503 cases. *value_transform* can be used to modify values as they are | |
| 504 added to buckets, and *key_filter* will allow excluding certain | |
| 505 buckets from being collected. | |
| 506 | |
| 507 >>> bucketize(range(5), value_transform=lambda x: x*x) | |
| 508 {False: [0], True: [1, 4, 9, 16]} | |
| 509 | |
| 510 >>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1) | |
| 511 {0: [0, 3, 6, 9], 2: [2, 5, 8]} | |
| 512 | |
| 513 Note in some of these examples there were at most two keys, ``True`` and | |
| 514 ``False``, and each key present has a list with at least one | |
| 515 item. See :func:`partition` for a version specialized for binary | |
| 516 use cases. | |
| 517 | |
| 518 """ | |
| 519 if not is_iterable(src): | |
| 520 raise TypeError('expected an iterable') | |
| 521 | |
| 522 if isinstance(key, basestring): | |
| 523 key_func = lambda x: getattr(x, key, x) | |
| 524 elif callable(key): | |
| 525 key_func = key | |
| 526 else: | |
| 527 raise TypeError('expected key to be callable or a string') | |
| 528 | |
| 529 if value_transform is None: | |
| 530 value_transform = lambda x: x | |
| 531 if not callable(value_transform): | |
| 532 raise TypeError('expected callable value transform function') | |
| 533 | |
| 534 ret = {} | |
| 535 for val in src: | |
| 536 key_of_val = key_func(val) | |
| 537 if key_filter is None or key_filter(key_of_val): | |
| 538 ret.setdefault(key_of_val, []).append(value_transform(val)) | |
| 539 return ret | |
| 540 | |
| 541 | |
| 542 def partition(src, key=bool): | |
| 543 """No relation to :meth:`str.partition`, ``partition`` is like | |
| 544 :func:`bucketize`, but for added convenience returns a tuple of | |
| 545 ``(truthy_values, falsy_values)``. | |
| 546 | |
| 547 >>> nonempty, empty = partition(['', '', 'hi', '', 'bye']) | |
| 548 >>> nonempty | |
| 549 ['hi', 'bye'] | |
| 550 | |
| 551 *key* defaults to :class:`bool`, but can be carefully overridden to | |
| 552 use either a function that returns either ``True`` or ``False`` or | |
| 553 a string name of the attribute on which to partition objects. | |
| 554 | |
| 555 >>> import string | |
| 556 >>> is_digit = lambda x: x in string.digits | |
| 557 >>> decimal_digits, hexletters = partition(string.hexdigits, is_digit) | |
| 558 >>> ''.join(decimal_digits), ''.join(hexletters) | |
| 559 ('0123456789', 'abcdefABCDEF') | |
| 560 """ | |
| 561 bucketized = bucketize(src, key) | |
| 562 return bucketized.get(True, []), bucketized.get(False, []) | |
| 563 | |
| 564 | |
| 565 def unique(src, key=None): | |
| 566 """``unique()`` returns a list of unique values, as determined by | |
| 567 *key*, in the order they first appeared in the input iterable, | |
| 568 *src*. | |
| 569 | |
| 570 >>> ones_n_zeros = '11010110001010010101010' | |
| 571 >>> ''.join(unique(ones_n_zeros)) | |
| 572 '10' | |
| 573 | |
| 574 See :func:`unique_iter` docs for more details. | |
| 575 """ | |
| 576 return list(unique_iter(src, key)) | |
| 577 | |
| 578 | |
| 579 def unique_iter(src, key=None): | |
| 580 """Yield unique elements from the iterable, *src*, based on *key*, | |
| 581 in the order in which they first appeared in *src*. | |
| 582 | |
| 583 >>> repetitious = [1, 2, 3] * 10 | |
| 584 >>> list(unique_iter(repetitious)) | |
| 585 [1, 2, 3] | |
| 586 | |
| 587 By default, *key* is the object itself, but *key* can either be a | |
| 588 callable or, for convenience, a string name of the attribute on | |
| 589 which to uniqueify objects, falling back on identity when the | |
| 590 attribute is not present. | |
| 591 | |
| 592 >>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes'] | |
| 593 >>> list(unique_iter(pleasantries, key=lambda x: len(x))) | |
| 594 ['hi', 'hello', 'bye'] | |
| 595 """ | |
| 596 if not is_iterable(src): | |
| 597 raise TypeError('expected an iterable, not %r' % type(src)) | |
| 598 if key is None: | |
| 599 key_func = lambda x: x | |
| 600 elif callable(key): | |
| 601 key_func = key | |
| 602 elif isinstance(key, basestring): | |
| 603 key_func = lambda x: getattr(x, key, x) | |
| 604 else: | |
| 605 raise TypeError('"key" expected a string or callable, not %r' % key) | |
| 606 seen = set() | |
| 607 for i in src: | |
| 608 k = key_func(i) | |
| 609 if k not in seen: | |
| 610 seen.add(k) | |
| 611 yield i | |
| 612 return | |
| 613 | |
| 614 | |
| 615 def redundant(src, key=None, groups=False): | |
| 616 """The complement of :func:`unique()`. | |
| 617 | |
| 618 By default returns non-unique values as a list of the *first* | |
| 619 redundant value in *src*. Pass ``groups=True`` to get groups of | |
| 620 all values with redundancies, ordered by position of the first | |
| 621 redundant value. This is useful in conjunction with some | |
| 622 normalizing *key* function. | |
| 623 | |
| 624 >>> redundant([1, 2, 3, 4]) | |
| 625 [] | |
| 626 >>> redundant([1, 2, 3, 2, 3, 3, 4]) | |
| 627 [2, 3] | |
| 628 >>> redundant([1, 2, 3, 2, 3, 3, 4], groups=True) | |
| 629 [[2, 2], [3, 3, 3]] | |
| 630 | |
| 631 An example using a *key* function to do case-insensitive | |
| 632 redundancy detection. | |
| 633 | |
| 634 >>> redundant(['hi', 'Hi', 'HI', 'hello'], key=str.lower) | |
| 635 ['Hi'] | |
| 636 >>> redundant(['hi', 'Hi', 'HI', 'hello'], groups=True, key=str.lower) | |
| 637 [['hi', 'Hi', 'HI']] | |
| 638 | |
| 639 *key* should also be used when the values in *src* are not hashable. | |
| 640 | |
| 641 .. note:: | |
| 642 | |
| 643 This output of this function is designed for reporting | |
| 644 duplicates in contexts when a unique input is desired. Due to | |
| 645 the grouped return type, there is no streaming equivalent of | |
| 646 this function for the time being. | |
| 647 | |
| 648 """ | |
| 649 if key is None: | |
| 650 pass | |
| 651 elif callable(key): | |
| 652 key_func = key | |
| 653 elif isinstance(key, basestring): | |
| 654 key_func = lambda x: getattr(x, key, x) | |
| 655 else: | |
| 656 raise TypeError('"key" expected a string or callable, not %r' % key) | |
| 657 seen = {} # key to first seen item | |
| 658 redundant_order = [] | |
| 659 redundant_groups = {} | |
| 660 for i in src: | |
| 661 k = key_func(i) if key else i | |
| 662 if k not in seen: | |
| 663 seen[k] = i | |
| 664 else: | |
| 665 if k in redundant_groups: | |
| 666 if groups: | |
| 667 redundant_groups[k].append(i) | |
| 668 else: | |
| 669 redundant_order.append(k) | |
| 670 redundant_groups[k] = [seen[k], i] | |
| 671 if not groups: | |
| 672 ret = [redundant_groups[k][1] for k in redundant_order] | |
| 673 else: | |
| 674 ret = [redundant_groups[k] for k in redundant_order] | |
| 675 return ret | |
| 676 | |
| 677 | |
| 678 def one(src, default=None, key=None): | |
| 679 """Along the same lines as builtins, :func:`all` and :func:`any`, and | |
| 680 similar to :func:`first`, ``one()`` returns the single object in | |
| 681 the given iterable *src* that evaluates to ``True``, as determined | |
| 682 by callable *key*. If unset, *key* defaults to :class:`bool`. If | |
| 683 no such objects are found, *default* is returned. If *default* is | |
| 684 not passed, ``None`` is returned. | |
| 685 | |
| 686 If *src* has more than one object that evaluates to ``True``, or | |
| 687 if there is no object that fulfills such condition, return | |
| 688 *default*. It's like an `XOR`_ over an iterable. | |
| 689 | |
| 690 >>> one((True, False, False)) | |
| 691 True | |
| 692 >>> one((True, False, True)) | |
| 693 >>> one((0, 0, 'a')) | |
| 694 'a' | |
| 695 >>> one((0, False, None)) | |
| 696 >>> one((True, True), default=False) | |
| 697 False | |
| 698 >>> bool(one(('', 1))) | |
| 699 True | |
| 700 >>> one((10, 20, 30, 42), key=lambda i: i > 40) | |
| 701 42 | |
| 702 | |
| 703 See `MartÃn Gaitán's original repo`_ for further use cases. | |
| 704 | |
| 705 .. _MartÃn Gaitán's original repo: https://github.com/mgaitan/one | |
| 706 .. _XOR: https://en.wikipedia.org/wiki/Exclusive_or | |
| 707 | |
| 708 """ | |
| 709 ones = list(itertools.islice(filter(key, src), 2)) | |
| 710 return ones[0] if len(ones) == 1 else default | |
| 711 | |
| 712 | |
| 713 def first(iterable, default=None, key=None): | |
| 714 """Return first element of *iterable* that evaluates to ``True``, else | |
| 715 return ``None`` or optional *default*. Similar to :func:`one`. | |
| 716 | |
| 717 >>> first([0, False, None, [], (), 42]) | |
| 718 42 | |
| 719 >>> first([0, False, None, [], ()]) is None | |
| 720 True | |
| 721 >>> first([0, False, None, [], ()], default='ohai') | |
| 722 'ohai' | |
| 723 >>> import re | |
| 724 >>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)']) | |
| 725 >>> m.group(1) | |
| 726 'bc' | |
| 727 | |
| 728 The optional *key* argument specifies a one-argument predicate function | |
| 729 like that used for *filter()*. The *key* argument, if supplied, should be | |
| 730 in keyword form. For example, finding the first even number in an iterable: | |
| 731 | |
| 732 >>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0) | |
| 733 4 | |
| 734 | |
| 735 Contributed by Hynek Schlawack, author of `the original standalone module`_. | |
| 736 | |
| 737 .. _the original standalone module: https://github.com/hynek/first | |
| 738 """ | |
| 739 return next(filter(key, iterable), default) | |
| 740 | |
| 741 | |
| 742 def flatten_iter(iterable): | |
| 743 """``flatten_iter()`` yields all the elements from *iterable* while | |
| 744 collapsing any nested iterables. | |
| 745 | |
| 746 >>> nested = [[1, 2], [[3], [4, 5]]] | |
| 747 >>> list(flatten_iter(nested)) | |
| 748 [1, 2, 3, 4, 5] | |
| 749 """ | |
| 750 for item in iterable: | |
| 751 if isinstance(item, Iterable) and not isinstance(item, basestring): | |
| 752 for subitem in flatten_iter(item): | |
| 753 yield subitem | |
| 754 else: | |
| 755 yield item | |
| 756 | |
| 757 def flatten(iterable): | |
| 758 """``flatten()`` returns a collapsed list of all the elements from | |
| 759 *iterable* while collapsing any nested iterables. | |
| 760 | |
| 761 >>> nested = [[1, 2], [[3], [4, 5]]] | |
| 762 >>> flatten(nested) | |
| 763 [1, 2, 3, 4, 5] | |
| 764 """ | |
| 765 return list(flatten_iter(iterable)) | |
| 766 | |
| 767 | |
| 768 def same(iterable, ref=_UNSET): | |
| 769 """``same()`` returns ``True`` when all values in *iterable* are | |
| 770 equal to one another, or optionally a reference value, | |
| 771 *ref*. Similar to :func:`all` and :func:`any` in that it evaluates | |
| 772 an iterable and returns a :class:`bool`. ``same()`` returns | |
| 773 ``True`` for empty iterables. | |
| 774 | |
| 775 >>> same([]) | |
| 776 True | |
| 777 >>> same([1]) | |
| 778 True | |
| 779 >>> same(['a', 'a', 'a']) | |
| 780 True | |
| 781 >>> same(range(20)) | |
| 782 False | |
| 783 >>> same([[], []]) | |
| 784 True | |
| 785 >>> same([[], []], ref='test') | |
| 786 False | |
| 787 | |
| 788 """ | |
| 789 iterator = iter(iterable) | |
| 790 if ref is _UNSET: | |
| 791 ref = next(iterator, ref) | |
| 792 return all(val == ref for val in iterator) | |
| 793 | |
| 794 | |
| 795 def default_visit(path, key, value): | |
| 796 # print('visit(%r, %r, %r)' % (path, key, value)) | |
| 797 return key, value | |
| 798 | |
| 799 # enable the extreme: monkeypatching iterutils with a different default_visit | |
| 800 _orig_default_visit = default_visit | |
| 801 | |
| 802 | |
| 803 def default_enter(path, key, value): | |
| 804 # print('enter(%r, %r)' % (key, value)) | |
| 805 if isinstance(value, basestring): | |
| 806 return value, False | |
| 807 elif isinstance(value, Mapping): | |
| 808 return value.__class__(), ItemsView(value) | |
| 809 elif isinstance(value, Sequence): | |
| 810 return value.__class__(), enumerate(value) | |
| 811 elif isinstance(value, Set): | |
| 812 return value.__class__(), enumerate(value) | |
| 813 else: | |
| 814 # files, strings, other iterables, and scalars are not | |
| 815 # traversed | |
| 816 return value, False | |
| 817 | |
| 818 | |
| 819 def default_exit(path, key, old_parent, new_parent, new_items): | |
| 820 # print('exit(%r, %r, %r, %r, %r)' | |
| 821 # % (path, key, old_parent, new_parent, new_items)) | |
| 822 ret = new_parent | |
| 823 if isinstance(new_parent, Mapping): | |
| 824 new_parent.update(new_items) | |
| 825 elif isinstance(new_parent, Sequence): | |
| 826 vals = [v for i, v in new_items] | |
| 827 try: | |
| 828 new_parent.extend(vals) | |
| 829 except AttributeError: | |
| 830 ret = new_parent.__class__(vals) # tuples | |
| 831 elif isinstance(new_parent, Set): | |
| 832 vals = [v for i, v in new_items] | |
| 833 try: | |
| 834 new_parent.update(vals) | |
| 835 except AttributeError: | |
| 836 ret = new_parent.__class__(vals) # frozensets | |
| 837 else: | |
| 838 raise RuntimeError('unexpected iterable type: %r' % type(new_parent)) | |
| 839 return ret | |
| 840 | |
| 841 | |
| 842 def remap(root, visit=default_visit, enter=default_enter, exit=default_exit, | |
| 843 **kwargs): | |
| 844 """The remap ("recursive map") function is used to traverse and | |
| 845 transform nested structures. Lists, tuples, sets, and dictionaries | |
| 846 are just a few of the data structures nested into heterogenous | |
| 847 tree-like structures that are so common in programming. | |
| 848 Unfortunately, Python's built-in ways to manipulate collections | |
| 849 are almost all flat. List comprehensions may be fast and succinct, | |
| 850 but they do not recurse, making it tedious to apply quick changes | |
| 851 or complex transforms to real-world data. | |
| 852 | |
| 853 remap goes where list comprehensions cannot. | |
| 854 | |
| 855 Here's an example of removing all Nones from some data: | |
| 856 | |
| 857 >>> from pprint import pprint | |
| 858 >>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None}, | |
| 859 ... 'Babylon 5': 6, 'Dr. Who': None} | |
| 860 >>> pprint(remap(reviews, lambda p, k, v: v is not None)) | |
| 861 {'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}} | |
| 862 | |
| 863 Notice how both Nones have been removed despite the nesting in the | |
| 864 dictionary. Not bad for a one-liner, and that's just the beginning. | |
| 865 See `this remap cookbook`_ for more delicious recipes. | |
| 866 | |
| 867 .. _this remap cookbook: http://sedimental.org/remap.html | |
| 868 | |
| 869 remap takes four main arguments: the object to traverse and three | |
| 870 optional callables which determine how the remapped object will be | |
| 871 created. | |
| 872 | |
| 873 Args: | |
| 874 | |
| 875 root: The target object to traverse. By default, remap | |
| 876 supports iterables like :class:`list`, :class:`tuple`, | |
| 877 :class:`dict`, and :class:`set`, but any object traversable by | |
| 878 *enter* will work. | |
| 879 visit (callable): This function is called on every item in | |
| 880 *root*. It must accept three positional arguments, *path*, | |
| 881 *key*, and *value*. *path* is simply a tuple of parents' | |
| 882 keys. *visit* should return the new key-value pair. It may | |
| 883 also return ``True`` as shorthand to keep the old item | |
| 884 unmodified, or ``False`` to drop the item from the new | |
| 885 structure. *visit* is called after *enter*, on the new parent. | |
| 886 | |
| 887 The *visit* function is called for every item in root, | |
| 888 including duplicate items. For traversable values, it is | |
| 889 called on the new parent object, after all its children | |
| 890 have been visited. The default visit behavior simply | |
| 891 returns the key-value pair unmodified. | |
| 892 enter (callable): This function controls which items in *root* | |
| 893 are traversed. It accepts the same arguments as *visit*: the | |
| 894 path, the key, and the value of the current item. It returns a | |
| 895 pair of the blank new parent, and an iterator over the items | |
| 896 which should be visited. If ``False`` is returned instead of | |
| 897 an iterator, the value will not be traversed. | |
| 898 | |
| 899 The *enter* function is only called once per unique value. The | |
| 900 default enter behavior support mappings, sequences, and | |
| 901 sets. Strings and all other iterables will not be traversed. | |
| 902 exit (callable): This function determines how to handle items | |
| 903 once they have been visited. It gets the same three | |
| 904 arguments as the other functions -- *path*, *key*, *value* | |
| 905 -- plus two more: the blank new parent object returned | |
| 906 from *enter*, and a list of the new items, as remapped by | |
| 907 *visit*. | |
| 908 | |
| 909 Like *enter*, the *exit* function is only called once per | |
| 910 unique value. The default exit behavior is to simply add | |
| 911 all new items to the new parent, e.g., using | |
| 912 :meth:`list.extend` and :meth:`dict.update` to add to the | |
| 913 new parent. Immutable objects, such as a :class:`tuple` or | |
| 914 :class:`namedtuple`, must be recreated from scratch, but | |
| 915 use the same type as the new parent passed back from the | |
| 916 *enter* function. | |
| 917 reraise_visit (bool): A pragmatic convenience for the *visit* | |
| 918 callable. When set to ``False``, remap ignores any errors | |
| 919 raised by the *visit* callback. Items causing exceptions | |
| 920 are kept. See examples for more details. | |
| 921 | |
| 922 remap is designed to cover the majority of cases with just the | |
| 923 *visit* callable. While passing in multiple callables is very | |
| 924 empowering, remap is designed so very few cases should require | |
| 925 passing more than one function. | |
| 926 | |
| 927 When passing *enter* and *exit*, it's common and easiest to build | |
| 928 on the default behavior. Simply add ``from boltons.iterutils import | |
| 929 default_enter`` (or ``default_exit``), and have your enter/exit | |
| 930 function call the default behavior before or after your custom | |
| 931 logic. See `this example`_. | |
| 932 | |
| 933 Duplicate and self-referential objects (aka reference loops) are | |
| 934 automatically handled internally, `as shown here`_. | |
| 935 | |
| 936 .. _this example: http://sedimental.org/remap.html#sort_all_lists | |
| 937 .. _as shown here: http://sedimental.org/remap.html#corner_cases | |
| 938 | |
| 939 """ | |
| 940 # TODO: improve argument formatting in sphinx doc | |
| 941 # TODO: enter() return (False, items) to continue traverse but cancel copy? | |
| 942 if not callable(visit): | |
| 943 raise TypeError('visit expected callable, not: %r' % visit) | |
| 944 if not callable(enter): | |
| 945 raise TypeError('enter expected callable, not: %r' % enter) | |
| 946 if not callable(exit): | |
| 947 raise TypeError('exit expected callable, not: %r' % exit) | |
| 948 reraise_visit = kwargs.pop('reraise_visit', True) | |
| 949 if kwargs: | |
| 950 raise TypeError('unexpected keyword arguments: %r' % kwargs.keys()) | |
| 951 | |
| 952 path, registry, stack = (), {}, [(None, root)] | |
| 953 new_items_stack = [] | |
| 954 while stack: | |
| 955 key, value = stack.pop() | |
| 956 id_value = id(value) | |
| 957 if key is _REMAP_EXIT: | |
| 958 key, new_parent, old_parent = value | |
| 959 id_value = id(old_parent) | |
| 960 path, new_items = new_items_stack.pop() | |
| 961 value = exit(path, key, old_parent, new_parent, new_items) | |
| 962 registry[id_value] = value | |
| 963 if not new_items_stack: | |
| 964 continue | |
| 965 elif id_value in registry: | |
| 966 value = registry[id_value] | |
| 967 else: | |
| 968 res = enter(path, key, value) | |
| 969 try: | |
| 970 new_parent, new_items = res | |
| 971 except TypeError: | |
| 972 # TODO: handle False? | |
| 973 raise TypeError('enter should return a tuple of (new_parent,' | |
| 974 ' items_iterator), not: %r' % res) | |
| 975 if new_items is not False: | |
| 976 # traverse unless False is explicitly passed | |
| 977 registry[id_value] = new_parent | |
| 978 new_items_stack.append((path, [])) | |
| 979 if value is not root: | |
| 980 path += (key,) | |
| 981 stack.append((_REMAP_EXIT, (key, new_parent, value))) | |
| 982 if new_items: | |
| 983 stack.extend(reversed(list(new_items))) | |
| 984 continue | |
| 985 if visit is _orig_default_visit: | |
| 986 # avoid function call overhead by inlining identity operation | |
| 987 visited_item = (key, value) | |
| 988 else: | |
| 989 try: | |
| 990 visited_item = visit(path, key, value) | |
| 991 except Exception: | |
| 992 if reraise_visit: | |
| 993 raise | |
| 994 visited_item = True | |
| 995 if visited_item is False: | |
| 996 continue # drop | |
| 997 elif visited_item is True: | |
| 998 visited_item = (key, value) | |
| 999 # TODO: typecheck? | |
| 1000 # raise TypeError('expected (key, value) from visit(),' | |
| 1001 # ' not: %r' % visited_item) | |
| 1002 try: | |
| 1003 new_items_stack[-1][1].append(visited_item) | |
| 1004 except IndexError: | |
| 1005 raise TypeError('expected remappable root, not: %r' % root) | |
| 1006 return value | |
| 1007 | |
| 1008 | |
| 1009 class PathAccessError(KeyError, IndexError, TypeError): | |
| 1010 """An amalgamation of KeyError, IndexError, and TypeError, | |
| 1011 representing what can occur when looking up a path in a nested | |
| 1012 object. | |
| 1013 """ | |
| 1014 def __init__(self, exc, seg, path): | |
| 1015 self.exc = exc | |
| 1016 self.seg = seg | |
| 1017 self.path = path | |
| 1018 | |
| 1019 def __repr__(self): | |
| 1020 cn = self.__class__.__name__ | |
| 1021 return '%s(%r, %r, %r)' % (cn, self.exc, self.seg, self.path) | |
| 1022 | |
| 1023 def __str__(self): | |
| 1024 return ('could not access %r from path %r, got error: %r' | |
| 1025 % (self.seg, self.path, self.exc)) | |
| 1026 | |
| 1027 | |
| 1028 def get_path(root, path, default=_UNSET): | |
| 1029 """Retrieve a value from a nested object via a tuple representing the | |
| 1030 lookup path. | |
| 1031 | |
| 1032 >>> root = {'a': {'b': {'c': [[1], [2], [3]]}}} | |
| 1033 >>> get_path(root, ('a', 'b', 'c', 2, 0)) | |
| 1034 3 | |
| 1035 | |
| 1036 The path format is intentionally consistent with that of | |
| 1037 :func:`remap`. | |
| 1038 | |
| 1039 One of get_path's chief aims is improved error messaging. EAFP is | |
| 1040 great, but the error messages are not. | |
| 1041 | |
| 1042 For instance, ``root['a']['b']['c'][2][1]`` gives back | |
| 1043 ``IndexError: list index out of range`` | |
| 1044 | |
| 1045 What went out of range where? get_path currently raises | |
| 1046 ``PathAccessError: could not access 2 from path ('a', 'b', 'c', 2, | |
| 1047 1), got error: IndexError('list index out of range',)``, a | |
| 1048 subclass of IndexError and KeyError. | |
| 1049 | |
| 1050 You can also pass a default that covers the entire operation, | |
| 1051 should the lookup fail at any level. | |
| 1052 | |
| 1053 Args: | |
| 1054 root: The target nesting of dictionaries, lists, or other | |
| 1055 objects supporting ``__getitem__``. | |
| 1056 path (tuple): A list of strings and integers to be successively | |
| 1057 looked up within *root*. | |
| 1058 default: The value to be returned should any | |
| 1059 ``PathAccessError`` exceptions be raised. | |
| 1060 """ | |
| 1061 if isinstance(path, basestring): | |
| 1062 path = path.split('.') | |
| 1063 cur = root | |
| 1064 try: | |
| 1065 for seg in path: | |
| 1066 try: | |
| 1067 cur = cur[seg] | |
| 1068 except (KeyError, IndexError) as exc: | |
| 1069 raise PathAccessError(exc, seg, path) | |
| 1070 except TypeError as exc: | |
| 1071 # either string index in a list, or a parent that | |
| 1072 # doesn't support indexing | |
| 1073 try: | |
| 1074 seg = int(seg) | |
| 1075 cur = cur[seg] | |
| 1076 except (ValueError, KeyError, IndexError, TypeError): | |
| 1077 if not is_iterable(cur): | |
| 1078 exc = TypeError('%r object is not indexable' | |
| 1079 % type(cur).__name__) | |
| 1080 raise PathAccessError(exc, seg, path) | |
| 1081 except PathAccessError: | |
| 1082 if default is _UNSET: | |
| 1083 raise | |
| 1084 return default | |
| 1085 return cur | |
| 1086 | |
| 1087 | |
| 1088 def research(root, query=lambda p, k, v: True, reraise=False): | |
| 1089 """The :func:`research` function uses :func:`remap` to recurse over | |
| 1090 any data nested in *root*, and find values which match a given | |
| 1091 criterion, specified by the *query* callable. | |
| 1092 | |
| 1093 Results are returned as a list of ``(path, value)`` pairs. The | |
| 1094 paths are tuples in the same format accepted by | |
| 1095 :func:`get_path`. This can be useful for comparing values nested | |
| 1096 in two or more different structures. | |
| 1097 | |
| 1098 Here's a simple example that finds all integers: | |
| 1099 | |
| 1100 >>> root = {'a': {'b': 1, 'c': (2, 'd', 3)}, 'e': None} | |
| 1101 >>> res = research(root, query=lambda p, k, v: isinstance(v, int)) | |
| 1102 >>> print(sorted(res)) | |
| 1103 [(('a', 'b'), 1), (('a', 'c', 0), 2), (('a', 'c', 2), 3)] | |
| 1104 | |
| 1105 Note how *query* follows the same, familiar ``path, key, value`` | |
| 1106 signature as the ``visit`` and ``enter`` functions on | |
| 1107 :func:`remap`, and returns a :class:`bool`. | |
| 1108 | |
| 1109 Args: | |
| 1110 root: The target object to search. Supports the same types of | |
| 1111 objects as :func:`remap`, including :class:`list`, | |
| 1112 :class:`tuple`, :class:`dict`, and :class:`set`. | |
| 1113 query (callable): The function called on every object to | |
| 1114 determine whether to include it in the search results. The | |
| 1115 callable must accept three arguments, *path*, *key*, and | |
| 1116 *value*, commonly abbreviated *p*, *k*, and *v*, same as | |
| 1117 *enter* and *visit* from :func:`remap`. | |
| 1118 reraise (bool): Whether to reraise exceptions raised by *query* | |
| 1119 or to simply drop the result that caused the error. | |
| 1120 | |
| 1121 | |
| 1122 With :func:`research` it's easy to inspect the details of a data | |
| 1123 structure, like finding values that are at a certain depth (using | |
| 1124 ``len(p)``) and much more. If more advanced functionality is | |
| 1125 needed, check out the code and make your own :func:`remap` | |
| 1126 wrapper, and consider `submitting a patch`_! | |
| 1127 | |
| 1128 .. _submitting a patch: https://github.com/mahmoud/boltons/pulls | |
| 1129 """ | |
| 1130 ret = [] | |
| 1131 | |
| 1132 if not callable(query): | |
| 1133 raise TypeError('query expected callable, not: %r' % query) | |
| 1134 | |
| 1135 def enter(path, key, value): | |
| 1136 try: | |
| 1137 if query(path, key, value): | |
| 1138 ret.append((path + (key,), value)) | |
| 1139 except Exception: | |
| 1140 if reraise: | |
| 1141 raise | |
| 1142 return default_enter(path, key, value) | |
| 1143 | |
| 1144 remap(root, enter=enter) | |
| 1145 return ret | |
| 1146 | |
| 1147 | |
| 1148 # TODO: recollect() | |
| 1149 # TODO: refilter() | |
| 1150 # TODO: reiter() | |
| 1151 | |
| 1152 | |
| 1153 # GUID iterators: 10x faster and somewhat more compact than uuid. | |
| 1154 | |
| 1155 class GUIDerator(object): | |
| 1156 """The GUIDerator is an iterator that yields a globally-unique | |
| 1157 identifier (GUID) on every iteration. The GUIDs produced are | |
| 1158 hexadecimal strings. | |
| 1159 | |
| 1160 Testing shows it to be around 12x faster than the uuid module. By | |
| 1161 default it is also more compact, partly due to its default 96-bit | |
| 1162 (24-hexdigit) length. 96 bits of randomness means that there is a | |
| 1163 1 in 2 ^ 32 chance of collision after 2 ^ 64 iterations. If more | |
| 1164 or less uniqueness is desired, the *size* argument can be adjusted | |
| 1165 accordingly. | |
| 1166 | |
| 1167 Args: | |
| 1168 size (int): character length of the GUID, defaults to 24. Lengths | |
| 1169 between 20 and 36 are considered valid. | |
| 1170 | |
| 1171 The GUIDerator has built-in fork protection that causes it to | |
| 1172 detect a fork on next iteration and reseed accordingly. | |
| 1173 | |
| 1174 """ | |
| 1175 def __init__(self, size=24): | |
| 1176 self.size = size | |
| 1177 if size < 20 or size > 36: | |
| 1178 raise ValueError('expected 20 < size <= 36') | |
| 1179 self.count = itertools.count() | |
| 1180 self.reseed() | |
| 1181 | |
| 1182 def reseed(self): | |
| 1183 self.pid = os.getpid() | |
| 1184 self.salt = '-'.join([str(self.pid), | |
| 1185 socket.gethostname() or b'<nohostname>', | |
| 1186 str(time.time()), | |
| 1187 codecs.encode(os.urandom(6), | |
| 1188 'hex_codec').decode('ascii')]) | |
| 1189 # that codecs trick is the best/only way to get a bytes to | |
| 1190 # hexbytes in py2/3 | |
| 1191 return | |
| 1192 | |
| 1193 def __iter__(self): | |
| 1194 return self | |
| 1195 | |
| 1196 if _IS_PY3: | |
| 1197 def __next__(self): | |
| 1198 if os.getpid() != self.pid: | |
| 1199 self.reseed() | |
| 1200 target_bytes = (self.salt + str(next(self.count))).encode('utf8') | |
| 1201 hash_text = hashlib.sha1(target_bytes).hexdigest()[:self.size] | |
| 1202 return hash_text | |
| 1203 else: | |
| 1204 def __next__(self): | |
| 1205 if os.getpid() != self.pid: | |
| 1206 self.reseed() | |
| 1207 return hashlib.sha1(self.salt + | |
| 1208 str(next(self.count))).hexdigest()[:self.size] | |
| 1209 | |
| 1210 next = __next__ | |
| 1211 | |
| 1212 | |
| 1213 class SequentialGUIDerator(GUIDerator): | |
| 1214 """Much like the standard GUIDerator, the SequentialGUIDerator is an | |
| 1215 iterator that yields a globally-unique identifier (GUID) on every | |
| 1216 iteration. The GUIDs produced are hexadecimal strings. | |
| 1217 | |
| 1218 The SequentialGUIDerator differs in that it picks a starting GUID | |
| 1219 value and increments every iteration. This yields GUIDs which are | |
| 1220 of course unique, but also ordered and lexicographically sortable. | |
| 1221 | |
| 1222 The SequentialGUIDerator is around 50% faster than the normal | |
| 1223 GUIDerator, making it almost 20x as fast as the built-in uuid | |
| 1224 module. By default it is also more compact, partly due to its | |
| 1225 96-bit (24-hexdigit) default length. 96 bits of randomness means that | |
| 1226 there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64 | |
| 1227 iterations. If more or less uniqueness is desired, the *size* | |
| 1228 argument can be adjusted accordingly. | |
| 1229 | |
| 1230 Args: | |
| 1231 size (int): character length of the GUID, defaults to 24. | |
| 1232 | |
| 1233 Note that with SequentialGUIDerator there is a chance of GUIDs | |
| 1234 growing larger than the size configured. The SequentialGUIDerator | |
| 1235 has built-in fork protection that causes it to detect a fork on | |
| 1236 next iteration and reseed accordingly. | |
| 1237 | |
| 1238 """ | |
| 1239 | |
| 1240 if _IS_PY3: | |
| 1241 def reseed(self): | |
| 1242 super(SequentialGUIDerator, self).reseed() | |
| 1243 start_str = hashlib.sha1(self.salt.encode('utf8')).hexdigest() | |
| 1244 self.start = int(start_str[:self.size], 16) | |
| 1245 self.start |= (1 << ((self.size * 4) - 2)) | |
| 1246 else: | |
| 1247 def reseed(self): | |
| 1248 super(SequentialGUIDerator, self).reseed() | |
| 1249 start_str = hashlib.sha1(self.salt).hexdigest() | |
| 1250 self.start = int(start_str[:self.size], 16) | |
| 1251 self.start |= (1 << ((self.size * 4) - 2)) | |
| 1252 | |
| 1253 def __next__(self): | |
| 1254 if os.getpid() != self.pid: | |
| 1255 self.reseed() | |
| 1256 return '%x' % (next(self.count) + self.start) | |
| 1257 | |
| 1258 next = __next__ | |
| 1259 | |
| 1260 | |
| 1261 guid_iter = GUIDerator() | |
| 1262 seq_guid_iter = SequentialGUIDerator() | |
| 1263 | |
| 1264 | |
| 1265 def soft_sorted(iterable, first=None, last=None, key=None, reverse=False): | |
| 1266 """For when you care about the order of some elements, but not about | |
| 1267 others. | |
| 1268 | |
| 1269 Use this to float to the top and/or sink to the bottom a specific | |
| 1270 ordering, while sorting the rest of the elements according to | |
| 1271 normal :func:`sorted` rules. | |
| 1272 | |
| 1273 >>> soft_sorted(['two', 'b', 'one', 'a'], first=['one', 'two']) | |
| 1274 ['one', 'two', 'a', 'b'] | |
| 1275 >>> soft_sorted(range(7), first=[6, 15], last=[2, 4], reverse=True) | |
| 1276 [6, 5, 3, 1, 0, 2, 4] | |
| 1277 >>> import string | |
| 1278 >>> ''.join(soft_sorted(string.hexdigits, first='za1', last='b', key=str.lower)) | |
| 1279 'aA1023456789cCdDeEfFbB' | |
| 1280 | |
| 1281 Args: | |
| 1282 iterable (list): A list or other iterable to sort. | |
| 1283 first (list): A sequence to enforce for elements which should | |
| 1284 appear at the beginning of the returned list. | |
| 1285 last (list): A sequence to enforce for elements which should | |
| 1286 appear at the end of the returned list. | |
| 1287 key (callable): Callable used to generate a comparable key for | |
| 1288 each item to be sorted, same as the key in | |
| 1289 :func:`sorted`. Note that entries in *first* and *last* | |
| 1290 should be the keys for the items. Defaults to | |
| 1291 passthrough/the identity function. | |
| 1292 reverse (bool): Whether or not elements not explicitly ordered | |
| 1293 by *first* and *last* should be in reverse order or not. | |
| 1294 | |
| 1295 Returns a new list in sorted order. | |
| 1296 """ | |
| 1297 first = first or [] | |
| 1298 last = last or [] | |
| 1299 key = key or (lambda x: x) | |
| 1300 seq = list(iterable) | |
| 1301 other = [x for x in seq if not ((first and key(x) in first) or (last and key(x) in last))] | |
| 1302 other.sort(key=key, reverse=reverse) | |
| 1303 | |
| 1304 if first: | |
| 1305 first = sorted([x for x in seq if key(x) in first], key=lambda x: first.index(key(x))) | |
| 1306 if last: | |
| 1307 last = sorted([x for x in seq if key(x) in last], key=lambda x: last.index(key(x))) | |
| 1308 return first + other + last | |
| 1309 | |
| 1310 """ | |
| 1311 May actually be faster to do an isinstance check for a str path | |
| 1312 | |
| 1313 $ python -m timeit -s "x = [1]" "x[0]" | |
| 1314 10000000 loops, best of 3: 0.0207 usec per loop | |
| 1315 $ python -m timeit -s "x = [1]" "try: x[0] \nexcept: pass" | |
| 1316 10000000 loops, best of 3: 0.029 usec per loop | |
| 1317 $ python -m timeit -s "x = [1]" "try: x[1] \nexcept: pass" | |
| 1318 1000000 loops, best of 3: 0.315 usec per loop | |
| 1319 # setting up try/except is fast, only around 0.01us | |
| 1320 # actually triggering the exception takes almost 10x as long | |
| 1321 | |
| 1322 $ python -m timeit -s "x = [1]" "isinstance(x, basestring)" | |
| 1323 10000000 loops, best of 3: 0.141 usec per loop | |
| 1324 $ python -m timeit -s "x = [1]" "isinstance(x, str)" | |
| 1325 10000000 loops, best of 3: 0.131 usec per loop | |
| 1326 $ python -m timeit -s "x = [1]" "try: x.split('.')\n except: pass" | |
| 1327 1000000 loops, best of 3: 0.443 usec per loop | |
| 1328 $ python -m timeit -s "x = [1]" "try: x.split('.') \nexcept AttributeError: pass" | |
| 1329 1000000 loops, best of 3: 0.544 usec per loop | |
| 1330 """ |
