Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/gxformat2/converter.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
author | shellac |
---|---|
date | Sat, 02 May 2020 07:14:21 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:26e78fe6e8c4 |
---|---|
1 """Functionality for converting a Format 2 workflow into a standard Galaxy workflow.""" | |
2 from __future__ import print_function | |
3 | |
4 import copy | |
5 import json | |
6 import logging | |
7 import os | |
8 import sys | |
9 import uuid | |
10 from collections import OrderedDict | |
11 | |
12 from ._labels import Labels | |
13 from ._yaml import ordered_load | |
14 | |
15 # source: step#output and $link: step#output instead of outputSource: step/output and $link: step/output | |
16 SUPPORT_LEGACY_CONNECTIONS = os.environ.get("GXFORMAT2_SUPPORT_LEGACY_CONNECTIONS") == "1" | |
17 STEP_TYPES = [ | |
18 "subworkflow", | |
19 "data_input", | |
20 "data_collection_input", | |
21 "tool", | |
22 "pause", | |
23 "parameter_input", | |
24 ] | |
25 | |
26 STEP_TYPE_ALIASES = { | |
27 'input': 'data_input', | |
28 'input_collection': 'data_collection_input', | |
29 'parameter': 'parameter_input', | |
30 } | |
31 | |
32 RUN_ACTIONS_TO_STEPS = { | |
33 'GalaxyWorkflow': 'run_workflow_to_step', | |
34 'GalaxyTool': 'run_tool_to_step', | |
35 } | |
36 | |
37 POST_JOB_ACTIONS = { | |
38 'hide': { | |
39 'action_class': "HideDatasetAction", | |
40 'default': False, | |
41 'arguments': lambda x: x, | |
42 }, | |
43 'rename': { | |
44 'action_class': 'RenameDatasetAction', | |
45 'default': {}, | |
46 'arguments': lambda x: {'newname': x}, | |
47 }, | |
48 'delete_intermediate_datasets': { | |
49 'action_class': 'DeleteIntermediatesAction', | |
50 'default': False, | |
51 'arguments': lambda x: x, | |
52 }, | |
53 'change_datatype': { | |
54 'action_class': 'ChangeDatatypeAction', | |
55 'default': {}, | |
56 'arguments': lambda x: {'newtype': x}, | |
57 }, | |
58 'set_columns': { | |
59 'action_class': 'ColumnSetAction', | |
60 'default': {}, | |
61 'arguments': lambda x: x, | |
62 }, | |
63 'add_tags': { | |
64 'action_class': 'TagDatasetAction', | |
65 'default': [], | |
66 'arguments': lambda x: {'tags': ",".join(x)}, | |
67 }, | |
68 'remove_tags': { | |
69 'action_class': 'RemoveTagDatasetAction', | |
70 'default': [], | |
71 'arguments': lambda x: {'tags': ",".join(x)}, | |
72 }, | |
73 } | |
74 | |
75 log = logging.getLogger(__name__) | |
76 | |
77 | |
78 def rename_arg(argument): | |
79 return argument | |
80 | |
81 | |
82 def clean_connection(value): | |
83 if value and "#" in value and SUPPORT_LEGACY_CONNECTIONS: | |
84 # Hope these are just used by Galaxy testing workflows and such, and not in production workflows. | |
85 log.warn("Legacy workflow syntax for connections [%s] will not be supported in the future" % value) | |
86 value = value.replace("#", "/", 1) | |
87 else: | |
88 return value | |
89 | |
90 | |
91 class ImportOptions(object): | |
92 | |
93 def __init__(self): | |
94 self.deduplicate_subworkflows = False | |
95 | |
96 | |
97 def yaml_to_workflow(has_yaml, galaxy_interface, workflow_directory, import_options=None): | |
98 """Convert a Format 2 workflow into standard Galaxy format from supplied stream.""" | |
99 as_python = ordered_load(has_yaml) | |
100 return python_to_workflow(as_python, galaxy_interface, workflow_directory, import_options=import_options) | |
101 | |
102 | |
103 def python_to_workflow(as_python, galaxy_interface, workflow_directory=None, import_options=None): | |
104 """Convert a Format 2 workflow into standard Galaxy format from supplied dictionary.""" | |
105 if "yaml_content" in as_python: | |
106 as_python = ordered_load(as_python["yaml_content"]) | |
107 | |
108 if workflow_directory is None: | |
109 workflow_directory = os.path.abspath(".") | |
110 | |
111 conversion_context = ConversionContext( | |
112 galaxy_interface, | |
113 workflow_directory, | |
114 import_options, | |
115 ) | |
116 as_python = _preprocess_graphs(as_python, conversion_context) | |
117 subworkflows = None | |
118 if conversion_context.import_options.deduplicate_subworkflows: | |
119 # TODO: import only required workflows... | |
120 # TODO: dag sort these... | |
121 subworkflows = OrderedDict() | |
122 for graph_id, subworkflow_content in conversion_context.graph_ids.items(): | |
123 if graph_id == "main": | |
124 continue | |
125 subworkflow_conversion_context = conversion_context.get_subworkflow_conversion_context_graph("#" + graph_id) | |
126 subworkflows[graph_id] = _python_to_workflow(copy.deepcopy(subworkflow_content), subworkflow_conversion_context) | |
127 converted = _python_to_workflow(as_python, conversion_context) | |
128 if subworkflows is not None: | |
129 converted["subworkflows"] = subworkflows | |
130 return converted | |
131 | |
132 | |
133 # move to a utils file? | |
134 def steps_as_list(format2_workflow, add_label=True): | |
135 """Return steps as a list, converting ID map to list representation if needed.""" | |
136 steps = format2_workflow["steps"] | |
137 steps = _convert_dict_to_id_list_if_needed(steps, add_label=True) | |
138 return steps | |
139 | |
140 | |
141 def ensure_step_position(step, order_index): | |
142 """Ensure step contains a position definition.""" | |
143 if "position" not in step: | |
144 step["position"] = { | |
145 "left": 10 * order_index, | |
146 "top": 10 * order_index | |
147 } | |
148 | |
149 | |
150 def _python_to_workflow(as_python, conversion_context): | |
151 | |
152 if "class" not in as_python: | |
153 raise Exception("This is not a not a valid Galaxy workflow definition, must define a class.") | |
154 | |
155 if as_python["class"] != "GalaxyWorkflow": | |
156 raise Exception("This is not a not a valid Galaxy workflow definition, 'class' must be 'GalaxyWorkflow'.") | |
157 | |
158 # .ga files don't have this, drop it so it isn't interpreted as a format 2 workflow. | |
159 as_python.pop("class") | |
160 | |
161 _ensure_defaults(as_python, { | |
162 "a_galaxy_workflow": "true", | |
163 "format-version": "0.1", | |
164 "name": "Workflow", | |
165 "uuid": str(uuid.uuid4()), | |
166 }) | |
167 _populate_annotation(as_python) | |
168 | |
169 steps = steps_as_list(as_python) | |
170 | |
171 convert_inputs_to_steps(as_python, steps) | |
172 | |
173 if isinstance(steps, list): | |
174 steps_as_dict = OrderedDict() | |
175 for i, step in enumerate(steps): | |
176 steps_as_dict[str(i)] = step | |
177 if "id" not in step: | |
178 step["id"] = i | |
179 | |
180 if "label" in step: | |
181 label = step["label"] | |
182 conversion_context.labels[label] = i | |
183 | |
184 # TODO: this really should be optional in Galaxy API. | |
185 ensure_step_position(step, i) | |
186 | |
187 as_python["steps"] = steps_as_dict | |
188 steps = steps_as_dict | |
189 | |
190 for step in steps.values(): | |
191 step_type = step.get("type", None) | |
192 if "run" in step: | |
193 if step_type is not None: | |
194 raise Exception("Steps specified as run actions cannot specify a type.") | |
195 run_action = step.get("run") | |
196 run_action = conversion_context.get_runnable_description(run_action) | |
197 if isinstance(run_action, dict): | |
198 run_class = run_action["class"] | |
199 run_to_step_function = eval(RUN_ACTIONS_TO_STEPS[run_class]) | |
200 | |
201 run_to_step_function(conversion_context, step, run_action) | |
202 else: | |
203 step["content_id"] = run_action | |
204 step["type"] = "subworkflow" | |
205 del step["run"] | |
206 | |
207 for step in steps.values(): | |
208 step_type = step.get("type", "tool") | |
209 step_type = STEP_TYPE_ALIASES.get(step_type, step_type) | |
210 if step_type not in STEP_TYPES: | |
211 raise Exception("Unknown step type encountered %s" % step_type) | |
212 step["type"] = step_type | |
213 eval("transform_%s" % step_type)(conversion_context, step) | |
214 | |
215 outputs = as_python.get("outputs", []) | |
216 outputs = _convert_dict_to_id_list_if_needed(outputs) | |
217 | |
218 for output in outputs: | |
219 assert isinstance(output, dict), "Output definition must be dictionary" | |
220 assert "source" in output or "outputSource" in output, "Output definition must specify source" | |
221 | |
222 if "label" in output and "id" in output: | |
223 raise Exception("label and id are aliases for outputs, may only define one") | |
224 if "label" not in output and "id" not in output: | |
225 label = "" | |
226 | |
227 raw_label = output.pop("label", None) | |
228 raw_id = output.pop("id", None) | |
229 label = raw_label or raw_id | |
230 if Labels.is_anonymous_output_label(label): | |
231 label = None | |
232 source = clean_connection(output.get("outputSource")) | |
233 if source is None and SUPPORT_LEGACY_CONNECTIONS: | |
234 source = output.get("source").replace("#", "/", 1) | |
235 id, output_name = conversion_context.step_output(source) | |
236 step = steps[str(id)] | |
237 workflow_output = { | |
238 "output_name": output_name, | |
239 "label": label, | |
240 "uuid": output.get("uuid", None) | |
241 } | |
242 if "workflow_outputs" not in step: | |
243 step["workflow_outputs"] = [] | |
244 step["workflow_outputs"].append(workflow_output) | |
245 | |
246 return as_python | |
247 | |
248 | |
249 def _preprocess_graphs(as_python, conversion_context): | |
250 if not isinstance(as_python, dict): | |
251 raise Exception("This is not a not a valid Galaxy workflow definition.") | |
252 | |
253 format_version = as_python.get("format-version", "v2.0") | |
254 assert format_version == "v2.0" | |
255 | |
256 if "class" not in as_python and "$graph" in as_python: | |
257 for subworkflow in as_python["$graph"]: | |
258 if not isinstance(subworkflow, dict): | |
259 raise Exception("Malformed workflow content in $graph") | |
260 if "id" not in subworkflow: | |
261 raise Exception("No subworkflow ID found for entry in $graph.") | |
262 subworkflow_id = subworkflow["id"] | |
263 if subworkflow_id == "main": | |
264 as_python = subworkflow | |
265 | |
266 conversion_context.register_runnable(subworkflow) | |
267 | |
268 return as_python | |
269 | |
270 | |
271 def convert_inputs_to_steps(workflow_dict, steps): | |
272 """Convert workflow inputs to a steps in array - like in native Galaxy.""" | |
273 if "inputs" not in workflow_dict: | |
274 return | |
275 | |
276 inputs = workflow_dict["inputs"] | |
277 new_steps = [] | |
278 inputs = _convert_dict_to_id_list_if_needed(inputs) | |
279 for input_def_raw in inputs: | |
280 input_def = input_def_raw.copy() | |
281 | |
282 if "label" in input_def and "id" in input_def: | |
283 raise Exception("label and id are aliases for inputs, may only define one") | |
284 if "label" not in input_def and "id" not in input_def: | |
285 raise Exception("Input must define a label.") | |
286 | |
287 raw_label = input_def.pop("label", None) | |
288 raw_id = input_def.pop("id", None) | |
289 label = raw_label or raw_id | |
290 | |
291 if not label: | |
292 raise Exception("Input label must not be empty.") | |
293 | |
294 input_type = input_def.pop("type", "data") | |
295 if input_type in ["File", "data", "data_input"]: | |
296 step_type = "data_input" | |
297 elif input_type in ["collection", "data_collection", "data_collection_input"]: | |
298 step_type = "data_collection_input" | |
299 elif input_type in ["text", "integer", "float", "color", "boolean"]: | |
300 step_type = "parameter_input" | |
301 input_def["parameter_type"] = input_type | |
302 else: | |
303 raise Exception("Input type must be a data file or collection.") | |
304 | |
305 step_def = input_def | |
306 step_def.update({ | |
307 "type": step_type, | |
308 "label": label, | |
309 }) | |
310 new_steps.append(step_def) | |
311 | |
312 for i, new_step in enumerate(new_steps): | |
313 steps.insert(i, new_step) | |
314 | |
315 | |
316 def run_workflow_to_step(conversion_context, step, run_action): | |
317 step["type"] = "subworkflow" | |
318 if conversion_context.import_options.deduplicate_subworkflows and _is_graph_id_reference(run_action): | |
319 step["content_id"] = run_action | |
320 else: | |
321 subworkflow_conversion_context = conversion_context.get_subworkflow_conversion_context(step) | |
322 step["subworkflow"] = _python_to_workflow( | |
323 copy.deepcopy(run_action), | |
324 subworkflow_conversion_context, | |
325 ) | |
326 | |
327 | |
328 def _is_graph_id_reference(run_action): | |
329 return run_action and not isinstance(run_action, dict) | |
330 | |
331 | |
332 def transform_data_input(context, step): | |
333 transform_input(context, step, default_name="Input dataset") | |
334 | |
335 | |
336 def transform_data_collection_input(context, step): | |
337 transform_input(context, step, default_name="Input dataset collection") | |
338 | |
339 | |
340 def transform_parameter_input(context, step): | |
341 transform_input(context, step, default_name="input_parameter") | |
342 | |
343 | |
344 def transform_input(context, step, default_name): | |
345 default_name = step.get("label", default_name) | |
346 _populate_annotation(step) | |
347 _ensure_inputs_connections(step) | |
348 | |
349 if "inputs" not in step: | |
350 step["inputs"] = [{}] | |
351 | |
352 step_inputs = step["inputs"][0] | |
353 if "name" in step_inputs: | |
354 name = step_inputs["name"] | |
355 else: | |
356 name = default_name | |
357 | |
358 _ensure_defaults(step_inputs, { | |
359 "name": name, | |
360 "description": "", | |
361 }) | |
362 tool_state = { | |
363 "name": name | |
364 } | |
365 for attrib in ["collection_type", "parameter_type", "optional", "default"]: | |
366 if attrib in step: | |
367 tool_state[attrib] = step[attrib] | |
368 | |
369 _populate_tool_state(step, tool_state) | |
370 | |
371 | |
372 def transform_pause(context, step, default_name="Pause for dataset review"): | |
373 default_name = step.get("label", default_name) | |
374 _populate_annotation(step) | |
375 | |
376 _ensure_inputs_connections(step) | |
377 | |
378 if "inputs" not in step: | |
379 step["inputs"] = [{}] | |
380 | |
381 step_inputs = step["inputs"][0] | |
382 if "name" in step_inputs: | |
383 name = step_inputs["name"] | |
384 else: | |
385 name = default_name | |
386 | |
387 _ensure_defaults(step_inputs, { | |
388 "name": name, | |
389 }) | |
390 tool_state = { | |
391 "name": name | |
392 } | |
393 | |
394 connect = _init_connect_dict(step) | |
395 _populate_input_connections(context, step, connect) | |
396 _populate_tool_state(step, tool_state) | |
397 | |
398 | |
399 def transform_subworkflow(context, step): | |
400 _populate_annotation(step) | |
401 | |
402 _ensure_inputs_connections(step) | |
403 | |
404 tool_state = { | |
405 } | |
406 | |
407 connect = _init_connect_dict(step) | |
408 _populate_input_connections(context, step, connect) | |
409 _populate_tool_state(step, tool_state) | |
410 | |
411 | |
412 def _runtime_value(): | |
413 return {"__class__": "RuntimeValue"} | |
414 | |
415 | |
416 def transform_tool(context, step): | |
417 if "tool_id" not in step: | |
418 raise Exception("Tool steps must define a tool_id.") | |
419 | |
420 _ensure_defaults(step, { | |
421 "name": step['tool_id'], | |
422 "post_job_actions": {}, | |
423 "tool_version": None, | |
424 }) | |
425 post_job_actions = step["post_job_actions"] | |
426 _populate_annotation(step) | |
427 | |
428 tool_state = { | |
429 # TODO: Galaxy should not require tool state actually specify a __page__. | |
430 "__page__": 0, | |
431 } | |
432 | |
433 connect = _init_connect_dict(step) | |
434 | |
435 def append_link(key, value): | |
436 if key not in connect: | |
437 connect[key] = [] | |
438 assert "$link" in value | |
439 link_value = value["$link"] | |
440 connect[key].append(clean_connection(link_value)) | |
441 | |
442 def replace_links(value, key=""): | |
443 if _is_link(value): | |
444 append_link(key, value) | |
445 # Filled in by the connection, so to force late | |
446 # validation of the field just mark as RuntimeValue. | |
447 # It would be better I guess if this were some other | |
448 # value dedicated to this purpose (e.g. a ficitious | |
449 # {"__class__": "ConnectedValue"}) that could be further | |
450 # validated by Galaxy. | |
451 return _runtime_value() | |
452 if isinstance(value, dict): | |
453 new_values = {} | |
454 for k, v in value.items(): | |
455 new_key = _join_prefix(key, k) | |
456 new_values[k] = replace_links(v, new_key) | |
457 return new_values | |
458 elif isinstance(value, list): | |
459 new_values = [] | |
460 for i, v in enumerate(value): | |
461 # If we are a repeat we need to modify the key | |
462 # but not if values are actually $links. | |
463 if _is_link(v): | |
464 append_link(key, v) | |
465 new_values.append(None) | |
466 else: | |
467 new_key = "%s_%d" % (key, i) | |
468 new_values.append(replace_links(v, new_key)) | |
469 return new_values | |
470 else: | |
471 return value | |
472 | |
473 # TODO: handle runtime inputs and state together. | |
474 runtime_inputs = step.get("runtime_inputs", []) | |
475 if "state" in step or runtime_inputs: | |
476 step_state = step.pop("state", {}) | |
477 step_state = replace_links(step_state) | |
478 | |
479 for key, value in step_state.items(): | |
480 tool_state[key] = json.dumps(value) | |
481 for runtime_input in runtime_inputs: | |
482 tool_state[runtime_input] = json.dumps(_runtime_value()) | |
483 elif "tool_state" in step: | |
484 tool_state.update(step.get("tool_state")) | |
485 | |
486 # Fill in input connections | |
487 _populate_input_connections(context, step, connect) | |
488 | |
489 _populate_tool_state(step, tool_state) | |
490 | |
491 # Handle outputs. | |
492 out = step.pop("out", None) | |
493 if out is None: | |
494 # Handle LEGACY 19.XX outputs key. | |
495 out = step.pop("outputs", []) | |
496 out = _convert_dict_to_id_list_if_needed(out) | |
497 for output in out: | |
498 name = output["id"] | |
499 for action_key, action_dict in POST_JOB_ACTIONS.items(): | |
500 action_argument = output.get(action_key, action_dict['default']) | |
501 if action_argument: | |
502 action_class = action_dict['action_class'] | |
503 action_name = action_class + name | |
504 action = _action( | |
505 action_class, | |
506 name, | |
507 arguments=action_dict['arguments'](action_argument) | |
508 ) | |
509 post_job_actions[action_name] = action | |
510 | |
511 | |
512 def run_tool_to_step(conversion_context, step, run_action): | |
513 tool_description = conversion_context.galaxy_interface.import_tool( | |
514 run_action | |
515 ) | |
516 step["type"] = "tool" | |
517 step["tool_id"] = tool_description["tool_id"] | |
518 step["tool_version"] = tool_description["tool_version"] | |
519 step["tool_hash"] = tool_description.get("tool_hash") | |
520 step["tool_uuid"] = tool_description.get("uuid") | |
521 | |
522 | |
523 class BaseConversionContext(object): | |
524 | |
525 def __init__(self): | |
526 self.labels = {} | |
527 self.subworkflow_conversion_contexts = {} | |
528 | |
529 def step_id(self, label_or_id): | |
530 if label_or_id in self.labels: | |
531 id = self.labels[label_or_id] | |
532 else: | |
533 id = label_or_id | |
534 return int(id) | |
535 | |
536 def step_output(self, value): | |
537 value_parts = str(value).split("/") | |
538 if len(value_parts) == 1: | |
539 value_parts.append("output") | |
540 id = self.step_id(value_parts[0]) | |
541 return id, value_parts[1] | |
542 | |
543 def get_subworkflow_conversion_context(self, step): | |
544 # TODO: sometimes this method takes format2 steps and some times converted native ones | |
545 # (for input connections) - redo this so the type signature is stronger. | |
546 step_id = step.get("id") | |
547 run_action = step.get("run") | |
548 if self.import_options.deduplicate_subworkflows and _is_graph_id_reference(run_action): | |
549 subworkflow_conversion_context = self.get_subworkflow_conversion_context_graph(run_action) | |
550 return subworkflow_conversion_context | |
551 if "content_id" in step: | |
552 subworkflow_conversion_context = self.get_subworkflow_conversion_context_graph(step["content_id"]) | |
553 return subworkflow_conversion_context | |
554 | |
555 if step_id not in self.subworkflow_conversion_contexts: | |
556 | |
557 subworkflow_conversion_context = SubworkflowConversionContext( | |
558 self | |
559 ) | |
560 self.subworkflow_conversion_contexts[step_id] = subworkflow_conversion_context | |
561 return self.subworkflow_conversion_contexts[step_id] | |
562 | |
563 def get_runnable_description(self, run_action): | |
564 if "@import" in run_action: | |
565 if len(run_action) > 1: | |
566 raise Exception("@import must be only key if present.") | |
567 | |
568 run_action_path = run_action["@import"] | |
569 runnable_path = os.path.join(self.workflow_directory, run_action_path) | |
570 with open(runnable_path, "r") as f: | |
571 runnable_description = ordered_load(f) | |
572 run_action = runnable_description | |
573 | |
574 if not self.import_options.deduplicate_subworkflows and _is_graph_id_reference(run_action): | |
575 run_action = self.graph_ids[run_action[1:]] | |
576 | |
577 return run_action | |
578 | |
579 | |
580 class ConversionContext(BaseConversionContext): | |
581 | |
582 def __init__(self, galaxy_interface, workflow_directory, import_options=None): | |
583 super(ConversionContext, self).__init__() | |
584 self.import_options = import_options or ImportOptions() | |
585 self.graph_ids = OrderedDict() | |
586 self.graph_id_subworkflow_conversion_contexts = {} | |
587 self.workflow_directory = workflow_directory | |
588 self.galaxy_interface = galaxy_interface | |
589 | |
590 def register_runnable(self, run_action): | |
591 assert "id" in run_action | |
592 self.graph_ids[run_action["id"]] = run_action | |
593 | |
594 def get_subworkflow_conversion_context_graph(self, graph_id): | |
595 if graph_id not in self.graph_id_subworkflow_conversion_contexts: | |
596 subworkflow_conversion_context = SubworkflowConversionContext( | |
597 self | |
598 ) | |
599 self.graph_id_subworkflow_conversion_contexts[graph_id] = subworkflow_conversion_context | |
600 return self.graph_id_subworkflow_conversion_contexts[graph_id] | |
601 | |
602 | |
603 class SubworkflowConversionContext(BaseConversionContext): | |
604 | |
605 def __init__(self, parent_context): | |
606 super(SubworkflowConversionContext, self).__init__() | |
607 self.parent_context = parent_context | |
608 | |
609 @property | |
610 def graph_ids(self): | |
611 return self.parent_context.graph_ids | |
612 | |
613 @property | |
614 def workflow_directory(self): | |
615 return self.parent_context.workflow_directory | |
616 | |
617 @property | |
618 def import_options(self): | |
619 return self.parent_context.import_options | |
620 | |
621 @property | |
622 def galaxy_interface(self): | |
623 return self.parent_context.galaxy_interface | |
624 | |
625 def get_subworkflow_conversion_context_graph(self, graph_id): | |
626 return self.parent_context.get_subworkflow_conversion_context_graph(graph_id) | |
627 | |
628 | |
629 def _action(type, name, arguments={}): | |
630 return { | |
631 "action_arguments": arguments, | |
632 "action_type": type, | |
633 "output_name": name, | |
634 } | |
635 | |
636 | |
637 def _is_link(value): | |
638 return isinstance(value, dict) and "$link" in value | |
639 | |
640 | |
641 def _join_prefix(prefix, key): | |
642 if prefix: | |
643 new_key = "%s|%s" % (prefix, key) | |
644 else: | |
645 new_key = key | |
646 return new_key | |
647 | |
648 | |
649 def _init_connect_dict(step): | |
650 if "connect" not in step: | |
651 step["connect"] = {} | |
652 | |
653 connect = step["connect"] | |
654 del step["connect"] | |
655 | |
656 # handle CWL-style in dict connections. | |
657 if "in" in step: | |
658 step_in = step["in"] | |
659 assert isinstance(step_in, dict) | |
660 connection_keys = set() | |
661 for key, value in step_in.items(): | |
662 # TODO: this can be a list right? | |
663 if isinstance(value, dict) and 'source' in value: | |
664 value = value["source"] | |
665 elif isinstance(value, dict) and 'default' in value: | |
666 continue | |
667 elif isinstance(value, dict): | |
668 raise KeyError('step input must define either source or default %s' % value) | |
669 connect[key] = [value] | |
670 connection_keys.add(key) | |
671 | |
672 for key in connection_keys: | |
673 del step_in[key] | |
674 | |
675 if len(step_in) == 0: | |
676 del step['in'] | |
677 | |
678 return connect | |
679 | |
680 | |
681 def _populate_input_connections(context, step, connect): | |
682 _ensure_inputs_connections(step) | |
683 input_connections = step["input_connections"] | |
684 is_subworkflow_step = step.get("type") == "subworkflow" | |
685 | |
686 for key, values in connect.items(): | |
687 input_connection_value = [] | |
688 if not isinstance(values, list): | |
689 values = [values] | |
690 for value in values: | |
691 if not isinstance(value, dict): | |
692 if key == "$step": | |
693 value += "/__NO_INPUT_OUTPUT_NAME__" | |
694 id, output_name = context.step_output(value) | |
695 value = {"id": id, "output_name": output_name} | |
696 if is_subworkflow_step: | |
697 subworkflow_conversion_context = context.get_subworkflow_conversion_context(step) | |
698 input_subworkflow_step_id = subworkflow_conversion_context.step_id(key) | |
699 value["input_subworkflow_step_id"] = input_subworkflow_step_id | |
700 input_connection_value.append(value) | |
701 if key == "$step": | |
702 key = "__NO_INPUT_OUTPUT_NAME__" | |
703 input_connections[key] = input_connection_value | |
704 | |
705 | |
706 def _populate_annotation(step): | |
707 if "annotation" not in step and "doc" in step: | |
708 annotation = step.pop("doc") | |
709 step["annotation"] = annotation | |
710 elif "annotation" not in step: | |
711 step["annotation"] = "" | |
712 | |
713 | |
714 def _ensure_inputs_connections(step): | |
715 if "input_connections" not in step: | |
716 step["input_connections"] = {} | |
717 | |
718 | |
719 def _ensure_defaults(in_dict, defaults): | |
720 for key, value in defaults.items(): | |
721 if key not in in_dict: | |
722 in_dict[key] = value | |
723 | |
724 | |
725 def _populate_tool_state(step, tool_state): | |
726 step["tool_state"] = json.dumps(tool_state) | |
727 | |
728 | |
729 def _convert_dict_to_id_list_if_needed(dict_or_list, add_label=False): | |
730 rval = dict_or_list | |
731 if isinstance(dict_or_list, dict): | |
732 rval = [] | |
733 for key, value in dict_or_list.items(): | |
734 if not isinstance(value, dict): | |
735 value = {"type": value} | |
736 if add_label: | |
737 value["label"] = key | |
738 else: | |
739 value["id"] = key | |
740 rval.append(value) | |
741 return rval | |
742 | |
743 | |
744 def main(argv): | |
745 print(json.dumps(yaml_to_workflow(argv[0]))) | |
746 | |
747 | |
748 if __name__ == "__main__": | |
749 main(sys.argv) | |
750 | |
751 __all__ = ( | |
752 'yaml_to_workflow', | |
753 'python_to_workflow', | |
754 ) |