Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/networkx/classes/multigraph.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
| author | shellac |
|---|---|
| date | Sat, 02 May 2020 07:14:21 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:26e78fe6e8c4 |
|---|---|
| 1 # Copyright (C) 2004-2019 by | |
| 2 # Aric Hagberg <hagberg@lanl.gov> | |
| 3 # Dan Schult <dschult@colgate.edu> | |
| 4 # Pieter Swart <swart@lanl.gov> | |
| 5 # All rights reserved. | |
| 6 # BSD license. | |
| 7 # | |
| 8 # Authors: Aric Hagberg <hagberg@lanl.gov> | |
| 9 # Dan Schult <dschult@colgate.edu> | |
| 10 # Pieter Swart <swart@lanl.gov> | |
| 11 """Base class for MultiGraph.""" | |
| 12 from copy import deepcopy | |
| 13 | |
| 14 import networkx as nx | |
| 15 from networkx.classes.graph import Graph | |
| 16 from networkx.classes.coreviews import MultiAdjacencyView | |
| 17 from networkx.classes.reportviews import MultiEdgeView, MultiDegreeView | |
| 18 from networkx import NetworkXError | |
| 19 from networkx.utils import iterable | |
| 20 | |
| 21 | |
| 22 class MultiGraph(Graph): | |
| 23 """ | |
| 24 An undirected graph class that can store multiedges. | |
| 25 | |
| 26 Multiedges are multiple edges between two nodes. Each edge | |
| 27 can hold optional data or attributes. | |
| 28 | |
| 29 A MultiGraph holds undirected edges. Self loops are allowed. | |
| 30 | |
| 31 Nodes can be arbitrary (hashable) Python objects with optional | |
| 32 key/value attributes. By convention `None` is not used as a node. | |
| 33 | |
| 34 Edges are represented as links between nodes with optional | |
| 35 key/value attributes. | |
| 36 | |
| 37 Parameters | |
| 38 ---------- | |
| 39 incoming_graph_data : input graph (optional, default: None) | |
| 40 Data to initialize graph. If None (default) an empty | |
| 41 graph is created. The data can be any format that is supported | |
| 42 by the to_networkx_graph() function, currently including edge list, | |
| 43 dict of dicts, dict of lists, NetworkX graph, NumPy matrix | |
| 44 or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. | |
| 45 | |
| 46 attr : keyword arguments, optional (default= no attributes) | |
| 47 Attributes to add to graph as key=value pairs. | |
| 48 | |
| 49 See Also | |
| 50 -------- | |
| 51 Graph | |
| 52 DiGraph | |
| 53 MultiDiGraph | |
| 54 OrderedMultiGraph | |
| 55 | |
| 56 Examples | |
| 57 -------- | |
| 58 Create an empty graph structure (a "null graph") with no nodes and | |
| 59 no edges. | |
| 60 | |
| 61 >>> G = nx.MultiGraph() | |
| 62 | |
| 63 G can be grown in several ways. | |
| 64 | |
| 65 **Nodes:** | |
| 66 | |
| 67 Add one node at a time: | |
| 68 | |
| 69 >>> G.add_node(1) | |
| 70 | |
| 71 Add the nodes from any container (a list, dict, set or | |
| 72 even the lines from a file or the nodes from another graph). | |
| 73 | |
| 74 >>> G.add_nodes_from([2, 3]) | |
| 75 >>> G.add_nodes_from(range(100, 110)) | |
| 76 >>> H = nx.path_graph(10) | |
| 77 >>> G.add_nodes_from(H) | |
| 78 | |
| 79 In addition to strings and integers any hashable Python object | |
| 80 (except None) can represent a node, e.g. a customized node object, | |
| 81 or even another Graph. | |
| 82 | |
| 83 >>> G.add_node(H) | |
| 84 | |
| 85 **Edges:** | |
| 86 | |
| 87 G can also be grown by adding edges. | |
| 88 | |
| 89 Add one edge, | |
| 90 | |
| 91 >>> key = G.add_edge(1, 2) | |
| 92 | |
| 93 a list of edges, | |
| 94 | |
| 95 >>> keys = G.add_edges_from([(1, 2), (1, 3)]) | |
| 96 | |
| 97 or a collection of edges, | |
| 98 | |
| 99 >>> keys = G.add_edges_from(H.edges) | |
| 100 | |
| 101 If some edges connect nodes not yet in the graph, the nodes | |
| 102 are added automatically. If an edge already exists, an additional | |
| 103 edge is created and stored using a key to identify the edge. | |
| 104 By default the key is the lowest unused integer. | |
| 105 | |
| 106 >>> keys = G.add_edges_from([(4,5,{'route':28}), (4,5,{'route':37})]) | |
| 107 >>> G[4] | |
| 108 AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}}) | |
| 109 | |
| 110 **Attributes:** | |
| 111 | |
| 112 Each graph, node, and edge can hold key/value attribute pairs | |
| 113 in an associated attribute dictionary (the keys must be hashable). | |
| 114 By default these are empty, but can be added or changed using | |
| 115 add_edge, add_node or direct manipulation of the attribute | |
| 116 dictionaries named graph, node and edge respectively. | |
| 117 | |
| 118 >>> G = nx.MultiGraph(day="Friday") | |
| 119 >>> G.graph | |
| 120 {'day': 'Friday'} | |
| 121 | |
| 122 Add node attributes using add_node(), add_nodes_from() or G.nodes | |
| 123 | |
| 124 >>> G.add_node(1, time='5pm') | |
| 125 >>> G.add_nodes_from([3], time='2pm') | |
| 126 >>> G.nodes[1] | |
| 127 {'time': '5pm'} | |
| 128 >>> G.nodes[1]['room'] = 714 | |
| 129 >>> del G.nodes[1]['room'] # remove attribute | |
| 130 >>> list(G.nodes(data=True)) | |
| 131 [(1, {'time': '5pm'}), (3, {'time': '2pm'})] | |
| 132 | |
| 133 Add edge attributes using add_edge(), add_edges_from(), subscript | |
| 134 notation, or G.edges. | |
| 135 | |
| 136 >>> key = G.add_edge(1, 2, weight=4.7 ) | |
| 137 >>> keys = G.add_edges_from([(3, 4), (4, 5)], color='red') | |
| 138 >>> keys = G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) | |
| 139 >>> G[1][2][0]['weight'] = 4.7 | |
| 140 >>> G.edges[1, 2, 0]['weight'] = 4 | |
| 141 | |
| 142 Warning: we protect the graph data structure by making `G.edges[1, 2]` a | |
| 143 read-only dict-like structure. However, you can assign to attributes | |
| 144 in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change | |
| 145 data attributes: `G.edges[1, 2]['weight'] = 4` | |
| 146 (For multigraphs: `MG.edges[u, v, key][name] = value`). | |
| 147 | |
| 148 **Shortcuts:** | |
| 149 | |
| 150 Many common graph features allow python syntax to speed reporting. | |
| 151 | |
| 152 >>> 1 in G # check if node in graph | |
| 153 True | |
| 154 >>> [n for n in G if n<3] # iterate through nodes | |
| 155 [1, 2] | |
| 156 >>> len(G) # number of nodes in graph | |
| 157 5 | |
| 158 >>> G[1] # adjacency dict-like view keyed by neighbor to edge attributes | |
| 159 AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) | |
| 160 | |
| 161 Often the best way to traverse all edges of a graph is via the neighbors. | |
| 162 The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`. | |
| 163 | |
| 164 >>> for n, nbrsdict in G.adjacency(): | |
| 165 ... for nbr, keydict in nbrsdict.items(): | |
| 166 ... for key, eattr in keydict.items(): | |
| 167 ... if 'weight' in eattr: | |
| 168 ... # Do something useful with the edges | |
| 169 ... pass | |
| 170 | |
| 171 But the edges() method is often more convenient: | |
| 172 | |
| 173 >>> for u, v, keys, weight in G.edges(data='weight', keys=True): | |
| 174 ... if weight is not None: | |
| 175 ... # Do something useful with the edges | |
| 176 ... pass | |
| 177 | |
| 178 **Reporting:** | |
| 179 | |
| 180 Simple graph information is obtained using methods and object-attributes. | |
| 181 Reporting usually provides views instead of containers to reduce memory | |
| 182 usage. The views update as the graph is updated similarly to dict-views. | |
| 183 The objects `nodes, `edges` and `adj` provide access to data attributes | |
| 184 via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration | |
| 185 (e.g. `nodes.items()`, `nodes.data('color')`, | |
| 186 `nodes.data('color', default='blue')` and similarly for `edges`) | |
| 187 Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. | |
| 188 | |
| 189 For details on these and other miscellaneous methods, see below. | |
| 190 | |
| 191 **Subclasses (Advanced):** | |
| 192 | |
| 193 The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. | |
| 194 The outer dict (node_dict) holds adjacency information keyed by node. | |
| 195 The next dict (adjlist_dict) represents the adjacency information and holds | |
| 196 edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr | |
| 197 dict keyed by edge key. The inner dict (edge_attr_dict) represents | |
| 198 the edge data and holds edge attribute values keyed by attribute names. | |
| 199 | |
| 200 Each of these four dicts in the dict-of-dict-of-dict-of-dict | |
| 201 structure can be replaced by a user defined dict-like object. | |
| 202 In general, the dict-like features should be maintained but | |
| 203 extra features can be added. To replace one of the dicts create | |
| 204 a new graph class by changing the class(!) variable holding the | |
| 205 factory for that dict-like structure. The variable names are | |
| 206 node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, | |
| 207 adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory | |
| 208 and graph_attr_dict_factory. | |
| 209 | |
| 210 node_dict_factory : function, (default: dict) | |
| 211 Factory function to be used to create the dict containing node | |
| 212 attributes, keyed by node id. | |
| 213 It should require no arguments and return a dict-like object | |
| 214 | |
| 215 node_attr_dict_factory: function, (default: dict) | |
| 216 Factory function to be used to create the node attribute | |
| 217 dict which holds attribute values keyed by attribute name. | |
| 218 It should require no arguments and return a dict-like object | |
| 219 | |
| 220 adjlist_outer_dict_factory : function, (default: dict) | |
| 221 Factory function to be used to create the outer-most dict | |
| 222 in the data structure that holds adjacency info keyed by node. | |
| 223 It should require no arguments and return a dict-like object. | |
| 224 | |
| 225 adjlist_inner_dict_factory : function, (default: dict) | |
| 226 Factory function to be used to create the adjacency list | |
| 227 dict which holds multiedge key dicts keyed by neighbor. | |
| 228 It should require no arguments and return a dict-like object. | |
| 229 | |
| 230 edge_key_dict_factory : function, (default: dict) | |
| 231 Factory function to be used to create the edge key dict | |
| 232 which holds edge data keyed by edge key. | |
| 233 It should require no arguments and return a dict-like object. | |
| 234 | |
| 235 edge_attr_dict_factory : function, (default: dict) | |
| 236 Factory function to be used to create the edge attribute | |
| 237 dict which holds attribute values keyed by attribute name. | |
| 238 It should require no arguments and return a dict-like object. | |
| 239 | |
| 240 graph_attr_dict_factory : function, (default: dict) | |
| 241 Factory function to be used to create the graph attribute | |
| 242 dict which holds attribute values keyed by attribute name. | |
| 243 It should require no arguments and return a dict-like object. | |
| 244 | |
| 245 Typically, if your extension doesn't impact the data structure all | |
| 246 methods will inherited without issue except: `to_directed/to_undirected`. | |
| 247 By default these methods create a DiGraph/Graph class and you probably | |
| 248 want them to create your extension of a DiGraph/Graph. To facilitate | |
| 249 this we define two class variables that you can set in your subclass. | |
| 250 | |
| 251 to_directed_class : callable, (default: DiGraph or MultiDiGraph) | |
| 252 Class to create a new graph structure in the `to_directed` method. | |
| 253 If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. | |
| 254 | |
| 255 to_undirected_class : callable, (default: Graph or MultiGraph) | |
| 256 Class to create a new graph structure in the `to_undirected` method. | |
| 257 If `None`, a NetworkX class (Graph or MultiGraph) is used. | |
| 258 | |
| 259 Examples | |
| 260 -------- | |
| 261 | |
| 262 Please see :mod:`~networkx.classes.ordered` for examples of | |
| 263 creating graph subclasses by overwriting the base class `dict` with | |
| 264 a dictionary-like object. | |
| 265 """ | |
| 266 # node_dict_factory = dict # already assigned in Graph | |
| 267 # adjlist_outer_dict_factory = dict | |
| 268 # adjlist_inner_dict_factory = dict | |
| 269 edge_key_dict_factory = dict | |
| 270 # edge_attr_dict_factory = dict | |
| 271 | |
| 272 def to_directed_class(self): | |
| 273 """Returns the class to use for empty directed copies. | |
| 274 | |
| 275 If you subclass the base classes, use this to designate | |
| 276 what directed class to use for `to_directed()` copies. | |
| 277 """ | |
| 278 return nx.MultiDiGraph | |
| 279 | |
| 280 def to_undirected_class(self): | |
| 281 """Returns the class to use for empty undirected copies. | |
| 282 | |
| 283 If you subclass the base classes, use this to designate | |
| 284 what directed class to use for `to_directed()` copies. | |
| 285 """ | |
| 286 return MultiGraph | |
| 287 | |
| 288 def __init__(self, incoming_graph_data=None, **attr): | |
| 289 """Initialize a graph with edges, name, or graph attributes. | |
| 290 | |
| 291 Parameters | |
| 292 ---------- | |
| 293 incoming_graph_data : input graph | |
| 294 Data to initialize graph. If incoming_graph_data=None (default) | |
| 295 an empty graph is created. The data can be an edge list, or any | |
| 296 NetworkX graph object. If the corresponding optional Python | |
| 297 packages are installed the data can also be a NumPy matrix | |
| 298 or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. | |
| 299 | |
| 300 attr : keyword arguments, optional (default= no attributes) | |
| 301 Attributes to add to graph as key=value pairs. | |
| 302 | |
| 303 See Also | |
| 304 -------- | |
| 305 convert | |
| 306 | |
| 307 Examples | |
| 308 -------- | |
| 309 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
| 310 >>> G = nx.Graph(name='my graph') | |
| 311 >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges | |
| 312 >>> G = nx.Graph(e) | |
| 313 | |
| 314 Arbitrary graph attribute pairs (key=value) may be assigned | |
| 315 | |
| 316 >>> G = nx.Graph(e, day="Friday") | |
| 317 >>> G.graph | |
| 318 {'day': 'Friday'} | |
| 319 | |
| 320 """ | |
| 321 self.edge_key_dict_factory = self.edge_key_dict_factory | |
| 322 Graph.__init__(self, incoming_graph_data, **attr) | |
| 323 | |
| 324 @property | |
| 325 def adj(self): | |
| 326 """Graph adjacency object holding the neighbors of each node. | |
| 327 | |
| 328 This object is a read-only dict-like structure with node keys | |
| 329 and neighbor-dict values. The neighbor-dict is keyed by neighbor | |
| 330 to the edgekey-data-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets | |
| 331 the color of the edge `(3, 2, 0)` to `"blue"`. | |
| 332 | |
| 333 Iterating over G.adj behaves like a dict. Useful idioms include | |
| 334 `for nbr, nbrdict in G.adj[n].items():`. | |
| 335 | |
| 336 The neighbor information is also provided by subscripting the graph. | |
| 337 So `for nbr, foovalue in G[node].data('foo', default=1):` works. | |
| 338 | |
| 339 For directed graphs, `G.adj` holds outgoing (successor) info. | |
| 340 """ | |
| 341 return MultiAdjacencyView(self._adj) | |
| 342 | |
| 343 def new_edge_key(self, u, v): | |
| 344 """Returns an unused key for edges between nodes `u` and `v`. | |
| 345 | |
| 346 The nodes `u` and `v` do not need to be already in the graph. | |
| 347 | |
| 348 Notes | |
| 349 ----- | |
| 350 In the standard MultiGraph class the new key is the number of existing | |
| 351 edges between `u` and `v` (increased if necessary to ensure unused). | |
| 352 The first edge will have key 0, then 1, etc. If an edge is removed | |
| 353 further new_edge_keys may not be in this order. | |
| 354 | |
| 355 Parameters | |
| 356 ---------- | |
| 357 u, v : nodes | |
| 358 | |
| 359 Returns | |
| 360 ------- | |
| 361 key : int | |
| 362 """ | |
| 363 try: | |
| 364 keydict = self._adj[u][v] | |
| 365 except KeyError: | |
| 366 return 0 | |
| 367 key = len(keydict) | |
| 368 while key in keydict: | |
| 369 key += 1 | |
| 370 return key | |
| 371 | |
| 372 def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): | |
| 373 """Add an edge between u and v. | |
| 374 | |
| 375 The nodes u and v will be automatically added if they are | |
| 376 not already in the graph. | |
| 377 | |
| 378 Edge attributes can be specified with keywords or by directly | |
| 379 accessing the edge's attribute dictionary. See examples below. | |
| 380 | |
| 381 Parameters | |
| 382 ---------- | |
| 383 u_for_edge, v_for_edge : nodes | |
| 384 Nodes can be, for example, strings or numbers. | |
| 385 Nodes must be hashable (and not None) Python objects. | |
| 386 key : hashable identifier, optional (default=lowest unused integer) | |
| 387 Used to distinguish multiedges between a pair of nodes. | |
| 388 attr : keyword arguments, optional | |
| 389 Edge data (or labels or objects) can be assigned using | |
| 390 keyword arguments. | |
| 391 | |
| 392 Returns | |
| 393 ------- | |
| 394 The edge key assigned to the edge. | |
| 395 | |
| 396 See Also | |
| 397 -------- | |
| 398 add_edges_from : add a collection of edges | |
| 399 | |
| 400 Notes | |
| 401 ----- | |
| 402 To replace/update edge data, use the optional key argument | |
| 403 to identify a unique edge. Otherwise a new edge will be created. | |
| 404 | |
| 405 NetworkX algorithms designed for weighted graphs cannot use | |
| 406 multigraphs directly because it is not clear how to handle | |
| 407 multiedge weights. Convert to Graph using edge attribute | |
| 408 'weight' to enable weighted graph algorithms. | |
| 409 | |
| 410 Default keys are generated using the method `new_edge_key()`. | |
| 411 This method can be overridden by subclassing the base class and | |
| 412 providing a custom `new_edge_key()` method. | |
| 413 | |
| 414 Examples | |
| 415 -------- | |
| 416 The following all add the edge e=(1, 2) to graph G: | |
| 417 | |
| 418 >>> G = nx.MultiGraph() | |
| 419 >>> e = (1, 2) | |
| 420 >>> ekey = G.add_edge(1, 2) # explicit two-node form | |
| 421 >>> G.add_edge(*e) # single edge as tuple of two nodes | |
| 422 1 | |
| 423 >>> G.add_edges_from( [(1, 2)] ) # add edges from iterable container | |
| 424 [2] | |
| 425 | |
| 426 Associate data to edges using keywords: | |
| 427 | |
| 428 >>> ekey = G.add_edge(1, 2, weight=3) | |
| 429 >>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 | |
| 430 >>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) | |
| 431 | |
| 432 For non-string attribute keys, use subscript notation. | |
| 433 | |
| 434 >>> ekey = G.add_edge(1, 2) | |
| 435 >>> G[1][2][0].update({0: 5}) | |
| 436 >>> G.edges[1, 2, 0].update({0: 5}) | |
| 437 """ | |
| 438 u, v = u_for_edge, v_for_edge | |
| 439 # add nodes | |
| 440 if u not in self._adj: | |
| 441 self._adj[u] = self.adjlist_inner_dict_factory() | |
| 442 self._node[u] = self.node_attr_dict_factory() | |
| 443 if v not in self._adj: | |
| 444 self._adj[v] = self.adjlist_inner_dict_factory() | |
| 445 self._node[v] = self.node_attr_dict_factory() | |
| 446 if key is None: | |
| 447 key = self.new_edge_key(u, v) | |
| 448 if v in self._adj[u]: | |
| 449 keydict = self._adj[u][v] | |
| 450 datadict = keydict.get(key, self.edge_attr_dict_factory()) | |
| 451 datadict.update(attr) | |
| 452 keydict[key] = datadict | |
| 453 else: | |
| 454 # selfloops work this way without special treatment | |
| 455 datadict = self.edge_attr_dict_factory() | |
| 456 datadict.update(attr) | |
| 457 keydict = self.edge_key_dict_factory() | |
| 458 keydict[key] = datadict | |
| 459 self._adj[u][v] = keydict | |
| 460 self._adj[v][u] = keydict | |
| 461 return key | |
| 462 | |
| 463 def add_edges_from(self, ebunch_to_add, **attr): | |
| 464 """Add all the edges in ebunch_to_add. | |
| 465 | |
| 466 Parameters | |
| 467 ---------- | |
| 468 ebunch_to_add : container of edges | |
| 469 Each edge given in the container will be added to the | |
| 470 graph. The edges can be: | |
| 471 | |
| 472 - 2-tuples (u, v) or | |
| 473 - 3-tuples (u, v, d) for an edge data dict d, or | |
| 474 - 3-tuples (u, v, k) for not iterable key k, or | |
| 475 - 4-tuples (u, v, k, d) for an edge with data and key k | |
| 476 | |
| 477 attr : keyword arguments, optional | |
| 478 Edge data (or labels or objects) can be assigned using | |
| 479 keyword arguments. | |
| 480 | |
| 481 Returns | |
| 482 ------- | |
| 483 A list of edge keys assigned to the edges in `ebunch`. | |
| 484 | |
| 485 See Also | |
| 486 -------- | |
| 487 add_edge : add a single edge | |
| 488 add_weighted_edges_from : convenient way to add weighted edges | |
| 489 | |
| 490 Notes | |
| 491 ----- | |
| 492 Adding the same edge twice has no effect but any edge data | |
| 493 will be updated when each duplicate edge is added. | |
| 494 | |
| 495 Edge attributes specified in an ebunch take precedence over | |
| 496 attributes specified via keyword arguments. | |
| 497 | |
| 498 Default keys are generated using the method ``new_edge_key()``. | |
| 499 This method can be overridden by subclassing the base class and | |
| 500 providing a custom ``new_edge_key()`` method. | |
| 501 | |
| 502 Examples | |
| 503 -------- | |
| 504 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
| 505 >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples | |
| 506 >>> e = zip(range(0, 3), range(1, 4)) | |
| 507 >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 | |
| 508 | |
| 509 Associate data to edges | |
| 510 | |
| 511 >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) | |
| 512 >>> G.add_edges_from([(3, 4), (1, 4)], label='WN2898') | |
| 513 """ | |
| 514 keylist = [] | |
| 515 for e in ebunch_to_add: | |
| 516 ne = len(e) | |
| 517 if ne == 4: | |
| 518 u, v, key, dd = e | |
| 519 elif ne == 3: | |
| 520 u, v, dd = e | |
| 521 key = None | |
| 522 elif ne == 2: | |
| 523 u, v = e | |
| 524 dd = {} | |
| 525 key = None | |
| 526 else: | |
| 527 msg = "Edge tuple {} must be a 2-tuple, 3-tuple or 4-tuple." | |
| 528 raise NetworkXError(msg.format(e)) | |
| 529 ddd = {} | |
| 530 ddd.update(attr) | |
| 531 try: | |
| 532 ddd.update(dd) | |
| 533 except: | |
| 534 if ne != 3: | |
| 535 raise | |
| 536 key = dd | |
| 537 key = self.add_edge(u, v, key) | |
| 538 self[u][v][key].update(ddd) | |
| 539 keylist.append(key) | |
| 540 return keylist | |
| 541 | |
| 542 def remove_edge(self, u, v, key=None): | |
| 543 """Remove an edge between u and v. | |
| 544 | |
| 545 Parameters | |
| 546 ---------- | |
| 547 u, v : nodes | |
| 548 Remove an edge between nodes u and v. | |
| 549 key : hashable identifier, optional (default=None) | |
| 550 Used to distinguish multiple edges between a pair of nodes. | |
| 551 If None remove a single (arbitrary) edge between u and v. | |
| 552 | |
| 553 Raises | |
| 554 ------ | |
| 555 NetworkXError | |
| 556 If there is not an edge between u and v, or | |
| 557 if there is no edge with the specified key. | |
| 558 | |
| 559 See Also | |
| 560 -------- | |
| 561 remove_edges_from : remove a collection of edges | |
| 562 | |
| 563 Examples | |
| 564 -------- | |
| 565 >>> G = nx.MultiGraph() | |
| 566 >>> nx.add_path(G, [0, 1, 2, 3]) | |
| 567 >>> G.remove_edge(0, 1) | |
| 568 >>> e = (1, 2) | |
| 569 >>> G.remove_edge(*e) # unpacks e from an edge tuple | |
| 570 | |
| 571 For multiple edges | |
| 572 | |
| 573 >>> G = nx.MultiGraph() # or MultiDiGraph, etc | |
| 574 >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned | |
| 575 [0, 1, 2] | |
| 576 >>> G.remove_edge(1, 2) # remove a single (arbitrary) edge | |
| 577 | |
| 578 For edges with keys | |
| 579 | |
| 580 >>> G = nx.MultiGraph() # or MultiDiGraph, etc | |
| 581 >>> G.add_edge(1, 2, key='first') | |
| 582 'first' | |
| 583 >>> G.add_edge(1, 2, key='second') | |
| 584 'second' | |
| 585 >>> G.remove_edge(1, 2, key='second') | |
| 586 | |
| 587 """ | |
| 588 try: | |
| 589 d = self._adj[u][v] | |
| 590 except KeyError: | |
| 591 raise NetworkXError( | |
| 592 "The edge %s-%s is not in the graph." % (u, v)) | |
| 593 # remove the edge with specified data | |
| 594 if key is None: | |
| 595 d.popitem() | |
| 596 else: | |
| 597 try: | |
| 598 del d[key] | |
| 599 except KeyError: | |
| 600 msg = "The edge %s-%s with key %s is not in the graph." | |
| 601 raise NetworkXError(msg % (u, v, key)) | |
| 602 if len(d) == 0: | |
| 603 # remove the key entries if last edge | |
| 604 del self._adj[u][v] | |
| 605 if u != v: # check for selfloop | |
| 606 del self._adj[v][u] | |
| 607 | |
| 608 def remove_edges_from(self, ebunch): | |
| 609 """Remove all edges specified in ebunch. | |
| 610 | |
| 611 Parameters | |
| 612 ---------- | |
| 613 ebunch: list or container of edge tuples | |
| 614 Each edge given in the list or container will be removed | |
| 615 from the graph. The edges can be: | |
| 616 | |
| 617 - 2-tuples (u, v) All edges between u and v are removed. | |
| 618 - 3-tuples (u, v, key) The edge identified by key is removed. | |
| 619 - 4-tuples (u, v, key, data) where data is ignored. | |
| 620 | |
| 621 See Also | |
| 622 -------- | |
| 623 remove_edge : remove a single edge | |
| 624 | |
| 625 Notes | |
| 626 ----- | |
| 627 Will fail silently if an edge in ebunch is not in the graph. | |
| 628 | |
| 629 Examples | |
| 630 -------- | |
| 631 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc | |
| 632 >>> ebunch=[(1, 2), (2, 3)] | |
| 633 >>> G.remove_edges_from(ebunch) | |
| 634 | |
| 635 Removing multiple copies of edges | |
| 636 | |
| 637 >>> G = nx.MultiGraph() | |
| 638 >>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)]) | |
| 639 >>> G.remove_edges_from([(1, 2), (1, 2)]) | |
| 640 >>> list(G.edges()) | |
| 641 [(1, 2)] | |
| 642 >>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy | |
| 643 >>> list(G.edges) # now empty graph | |
| 644 [] | |
| 645 """ | |
| 646 for e in ebunch: | |
| 647 try: | |
| 648 self.remove_edge(*e[:3]) | |
| 649 except NetworkXError: | |
| 650 pass | |
| 651 | |
| 652 def has_edge(self, u, v, key=None): | |
| 653 """Returns True if the graph has an edge between nodes u and v. | |
| 654 | |
| 655 This is the same as `v in G[u] or key in G[u][v]` | |
| 656 without KeyError exceptions. | |
| 657 | |
| 658 Parameters | |
| 659 ---------- | |
| 660 u, v : nodes | |
| 661 Nodes can be, for example, strings or numbers. | |
| 662 | |
| 663 key : hashable identifier, optional (default=None) | |
| 664 If specified return True only if the edge with | |
| 665 key is found. | |
| 666 | |
| 667 Returns | |
| 668 ------- | |
| 669 edge_ind : bool | |
| 670 True if edge is in the graph, False otherwise. | |
| 671 | |
| 672 Examples | |
| 673 -------- | |
| 674 Can be called either using two nodes u, v, an edge tuple (u, v), | |
| 675 or an edge tuple (u, v, key). | |
| 676 | |
| 677 >>> G = nx.MultiGraph() # or MultiDiGraph | |
| 678 >>> nx.add_path(G, [0, 1, 2, 3]) | |
| 679 >>> G.has_edge(0, 1) # using two nodes | |
| 680 True | |
| 681 >>> e = (0, 1) | |
| 682 >>> G.has_edge(*e) # e is a 2-tuple (u, v) | |
| 683 True | |
| 684 >>> G.add_edge(0, 1, key='a') | |
| 685 'a' | |
| 686 >>> G.has_edge(0, 1, key='a') # specify key | |
| 687 True | |
| 688 >>> e=(0, 1, 'a') | |
| 689 >>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a') | |
| 690 True | |
| 691 | |
| 692 The following syntax are equivalent: | |
| 693 | |
| 694 >>> G.has_edge(0, 1) | |
| 695 True | |
| 696 >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G | |
| 697 True | |
| 698 | |
| 699 """ | |
| 700 try: | |
| 701 if key is None: | |
| 702 return v in self._adj[u] | |
| 703 else: | |
| 704 return key in self._adj[u][v] | |
| 705 except KeyError: | |
| 706 return False | |
| 707 | |
| 708 @property | |
| 709 def edges(self): | |
| 710 """Returns an iterator over the edges. | |
| 711 | |
| 712 edges(self, nbunch=None, data=False, keys=False, default=None) | |
| 713 | |
| 714 The EdgeView provides set-like operations on the edge-tuples | |
| 715 as well as edge attribute lookup. When called, it also provides | |
| 716 an EdgeDataView object which allows control of access to edge | |
| 717 attributes (but does not provide set-like operations). | |
| 718 Hence, `G.edges[u, v]['color']` provides the value of the color | |
| 719 attribute for edge `(u, v)` while | |
| 720 `for (u, v, c) in G.edges(data='color', default='red'):` | |
| 721 iterates through all the edges yielding the color attribute. | |
| 722 | |
| 723 Edges are returned as tuples with optional data and keys | |
| 724 in the order (node, neighbor, key, data). | |
| 725 | |
| 726 Parameters | |
| 727 ---------- | |
| 728 nbunch : single node, container, or all nodes (default= all nodes) | |
| 729 The view will only report edges incident to these nodes. | |
| 730 data : string or bool, optional (default=False) | |
| 731 The edge attribute returned in 3-tuple (u, v, ddict[data]). | |
| 732 If True, return edge attribute dict in 3-tuple (u, v, ddict). | |
| 733 If False, return 2-tuple (u, v). | |
| 734 keys : bool, optional (default=False) | |
| 735 If True, return edge keys with each edge. | |
| 736 default : value, optional (default=None) | |
| 737 Value used for edges that don't have the requested attribute. | |
| 738 Only relevant if data is not True or False. | |
| 739 | |
| 740 Returns | |
| 741 ------- | |
| 742 edges : MultiEdgeView | |
| 743 A view of edge attributes, usually it iterates over (u, v) | |
| 744 (u, v, k) or (u, v, k, d) tuples of edges, but can also be | |
| 745 used for attribute lookup as `edges[u, v, k]['foo']`. | |
| 746 | |
| 747 Notes | |
| 748 ----- | |
| 749 Nodes in nbunch that are not in the graph will be (quietly) ignored. | |
| 750 For directed graphs this returns the out-edges. | |
| 751 | |
| 752 Examples | |
| 753 -------- | |
| 754 >>> G = nx.MultiGraph() # or MultiDiGraph | |
| 755 >>> nx.add_path(G, [0, 1, 2]) | |
| 756 >>> key = G.add_edge(2, 3, weight=5) | |
| 757 >>> [e for e in G.edges()] | |
| 758 [(0, 1), (1, 2), (2, 3)] | |
| 759 >>> G.edges.data() # default data is {} (empty dict) | |
| 760 MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) | |
| 761 >>> G.edges.data('weight', default=1) | |
| 762 MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) | |
| 763 >>> G.edges(keys=True) # default keys are integers | |
| 764 MultiEdgeView([(0, 1, 0), (1, 2, 0), (2, 3, 0)]) | |
| 765 >>> G.edges.data(keys=True) | |
| 766 MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]) | |
| 767 >>> G.edges.data('weight', default=1, keys=True) | |
| 768 MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]) | |
| 769 >>> G.edges([0, 3]) | |
| 770 MultiEdgeDataView([(0, 1), (3, 2)]) | |
| 771 >>> G.edges(0) | |
| 772 MultiEdgeDataView([(0, 1)]) | |
| 773 """ | |
| 774 return MultiEdgeView(self) | |
| 775 | |
| 776 def get_edge_data(self, u, v, key=None, default=None): | |
| 777 """Returns the attribute dictionary associated with edge (u, v). | |
| 778 | |
| 779 This is identical to `G[u][v][key]` except the default is returned | |
| 780 instead of an exception is the edge doesn't exist. | |
| 781 | |
| 782 Parameters | |
| 783 ---------- | |
| 784 u, v : nodes | |
| 785 | |
| 786 default : any Python object (default=None) | |
| 787 Value to return if the edge (u, v) is not found. | |
| 788 | |
| 789 key : hashable identifier, optional (default=None) | |
| 790 Return data only for the edge with specified key. | |
| 791 | |
| 792 Returns | |
| 793 ------- | |
| 794 edge_dict : dictionary | |
| 795 The edge attribute dictionary. | |
| 796 | |
| 797 Examples | |
| 798 -------- | |
| 799 >>> G = nx.MultiGraph() # or MultiDiGraph | |
| 800 >>> key = G.add_edge(0, 1, key='a', weight=7) | |
| 801 >>> G[0][1]['a'] # key='a' | |
| 802 {'weight': 7} | |
| 803 >>> G.edges[0, 1, 'a'] # key='a' | |
| 804 {'weight': 7} | |
| 805 | |
| 806 Warning: we protect the graph data structure by making | |
| 807 `G.edges` and `G[1][2]` read-only dict-like structures. | |
| 808 However, you can assign values to attributes in e.g. | |
| 809 `G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional | |
| 810 bracket as shown next. You need to specify all edge info | |
| 811 to assign to the edge data associated with an edge. | |
| 812 | |
| 813 >>> G[0][1]['a']['weight'] = 10 | |
| 814 >>> G.edges[0, 1, 'a']['weight'] = 10 | |
| 815 >>> G[0][1]['a']['weight'] | |
| 816 10 | |
| 817 >>> G.edges[1, 0, 'a']['weight'] | |
| 818 10 | |
| 819 | |
| 820 >>> G = nx.MultiGraph() # or MultiDiGraph | |
| 821 >>> nx.add_path(G, [0, 1, 2, 3]) | |
| 822 >>> G.get_edge_data(0, 1) | |
| 823 {0: {}} | |
| 824 >>> e = (0, 1) | |
| 825 >>> G.get_edge_data(*e) # tuple form | |
| 826 {0: {}} | |
| 827 >>> G.get_edge_data('a', 'b', default=0) # edge not in graph, return 0 | |
| 828 0 | |
| 829 """ | |
| 830 try: | |
| 831 if key is None: | |
| 832 return self._adj[u][v] | |
| 833 else: | |
| 834 return self._adj[u][v][key] | |
| 835 except KeyError: | |
| 836 return default | |
| 837 | |
| 838 @property | |
| 839 def degree(self): | |
| 840 """A DegreeView for the Graph as G.degree or G.degree(). | |
| 841 | |
| 842 The node degree is the number of edges adjacent to the node. | |
| 843 The weighted node degree is the sum of the edge weights for | |
| 844 edges incident to that node. | |
| 845 | |
| 846 This object provides an iterator for (node, degree) as well as | |
| 847 lookup for the degree for a single node. | |
| 848 | |
| 849 Parameters | |
| 850 ---------- | |
| 851 nbunch : single node, container, or all nodes (default= all nodes) | |
| 852 The view will only report edges incident to these nodes. | |
| 853 | |
| 854 weight : string or None, optional (default=None) | |
| 855 The name of an edge attribute that holds the numerical value used | |
| 856 as a weight. If None, then each edge has weight 1. | |
| 857 The degree is the sum of the edge weights adjacent to the node. | |
| 858 | |
| 859 Returns | |
| 860 ------- | |
| 861 If a single node is requested | |
| 862 deg : int | |
| 863 Degree of the node, if a single node is passed as argument. | |
| 864 | |
| 865 OR if multiple nodes are requested | |
| 866 nd_iter : iterator | |
| 867 The iterator returns two-tuples of (node, degree). | |
| 868 | |
| 869 Examples | |
| 870 -------- | |
| 871 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
| 872 >>> nx.add_path(G, [0, 1, 2, 3]) | |
| 873 >>> G.degree(0) # node 0 with degree 1 | |
| 874 1 | |
| 875 >>> list(G.degree([0, 1])) | |
| 876 [(0, 1), (1, 2)] | |
| 877 | |
| 878 """ | |
| 879 return MultiDegreeView(self) | |
| 880 | |
| 881 def is_multigraph(self): | |
| 882 """Returns True if graph is a multigraph, False otherwise.""" | |
| 883 return True | |
| 884 | |
| 885 def is_directed(self): | |
| 886 """Returns True if graph is directed, False otherwise.""" | |
| 887 return False | |
| 888 | |
| 889 def copy(self, as_view=False): | |
| 890 """Returns a copy of the graph. | |
| 891 | |
| 892 The copy method by default returns an independent shallow copy | |
| 893 of the graph and attributes. That is, if an attribute is a | |
| 894 container, that container is shared by the original an the copy. | |
| 895 Use Python's `copy.deepcopy` for new containers. | |
| 896 | |
| 897 If `as_view` is True then a view is returned instead of a copy. | |
| 898 | |
| 899 Notes | |
| 900 ----- | |
| 901 All copies reproduce the graph structure, but data attributes | |
| 902 may be handled in different ways. There are four types of copies | |
| 903 of a graph that people might want. | |
| 904 | |
| 905 Deepcopy -- A "deepcopy" copies the graph structure as well as | |
| 906 all data attributes and any objects they might contain. | |
| 907 The entire graph object is new so that changes in the copy | |
| 908 do not affect the original object. (see Python's copy.deepcopy) | |
| 909 | |
| 910 Data Reference (Shallow) -- For a shallow copy the graph structure | |
| 911 is copied but the edge, node and graph attribute dicts are | |
| 912 references to those in the original graph. This saves | |
| 913 time and memory but could cause confusion if you change an attribute | |
| 914 in one graph and it changes the attribute in the other. | |
| 915 NetworkX does not provide this level of shallow copy. | |
| 916 | |
| 917 Independent Shallow -- This copy creates new independent attribute | |
| 918 dicts and then does a shallow copy of the attributes. That is, any | |
| 919 attributes that are containers are shared between the new graph | |
| 920 and the original. This is exactly what `dict.copy()` provides. | |
| 921 You can obtain this style copy using: | |
| 922 | |
| 923 >>> G = nx.path_graph(5) | |
| 924 >>> H = G.copy() | |
| 925 >>> H = G.copy(as_view=False) | |
| 926 >>> H = nx.Graph(G) | |
| 927 >>> H = G.__class__(G) | |
| 928 | |
| 929 Fresh Data -- For fresh data, the graph structure is copied while | |
| 930 new empty data attribute dicts are created. The resulting graph | |
| 931 is independent of the original and it has no edge, node or graph | |
| 932 attributes. Fresh copies are not enabled. Instead use: | |
| 933 | |
| 934 >>> H = G.__class__() | |
| 935 >>> H.add_nodes_from(G) | |
| 936 >>> H.add_edges_from(G.edges) | |
| 937 | |
| 938 View -- Inspired by dict-views, graph-views act like read-only | |
| 939 versions of the original graph, providing a copy of the original | |
| 940 structure without requiring any memory for copying the information. | |
| 941 | |
| 942 See the Python copy module for more information on shallow | |
| 943 and deep copies, https://docs.python.org/2/library/copy.html. | |
| 944 | |
| 945 Parameters | |
| 946 ---------- | |
| 947 as_view : bool, optional (default=False) | |
| 948 If True, the returned graph-view provides a read-only view | |
| 949 of the original graph without actually copying any data. | |
| 950 | |
| 951 Returns | |
| 952 ------- | |
| 953 G : Graph | |
| 954 A copy of the graph. | |
| 955 | |
| 956 See Also | |
| 957 -------- | |
| 958 to_directed: return a directed copy of the graph. | |
| 959 | |
| 960 Examples | |
| 961 -------- | |
| 962 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc | |
| 963 >>> H = G.copy() | |
| 964 | |
| 965 """ | |
| 966 if as_view is True: | |
| 967 return nx.graphviews.generic_graph_view(self) | |
| 968 G = self.__class__() | |
| 969 G.graph.update(self.graph) | |
| 970 G.add_nodes_from((n, d.copy()) for n, d in self._node.items()) | |
| 971 G.add_edges_from((u, v, key, datadict.copy()) | |
| 972 for u, nbrs in self._adj.items() | |
| 973 for v, keydict in nbrs.items() | |
| 974 for key, datadict in keydict.items()) | |
| 975 return G | |
| 976 | |
| 977 def to_directed(self, as_view=False): | |
| 978 """Returns a directed representation of the graph. | |
| 979 | |
| 980 Returns | |
| 981 ------- | |
| 982 G : MultiDiGraph | |
| 983 A directed graph with the same name, same nodes, and with | |
| 984 each edge (u, v, data) replaced by two directed edges | |
| 985 (u, v, data) and (v, u, data). | |
| 986 | |
| 987 Notes | |
| 988 ----- | |
| 989 This returns a "deepcopy" of the edge, node, and | |
| 990 graph attributes which attempts to completely copy | |
| 991 all of the data and references. | |
| 992 | |
| 993 This is in contrast to the similar D=DiGraph(G) which returns a | |
| 994 shallow copy of the data. | |
| 995 | |
| 996 See the Python copy module for more information on shallow | |
| 997 and deep copies, https://docs.python.org/2/library/copy.html. | |
| 998 | |
| 999 Warning: If you have subclassed MultiGraph to use dict-like objects | |
| 1000 in the data structure, those changes do not transfer to the | |
| 1001 MultiDiGraph created by this method. | |
| 1002 | |
| 1003 Examples | |
| 1004 -------- | |
| 1005 >>> G = nx.Graph() # or MultiGraph, etc | |
| 1006 >>> G.add_edge(0, 1) | |
| 1007 >>> H = G.to_directed() | |
| 1008 >>> list(H.edges) | |
| 1009 [(0, 1), (1, 0)] | |
| 1010 | |
| 1011 If already directed, return a (deep) copy | |
| 1012 | |
| 1013 >>> G = nx.DiGraph() # or MultiDiGraph, etc | |
| 1014 >>> G.add_edge(0, 1) | |
| 1015 >>> H = G.to_directed() | |
| 1016 >>> list(H.edges) | |
| 1017 [(0, 1)] | |
| 1018 """ | |
| 1019 graph_class = self.to_directed_class() | |
| 1020 if as_view is True: | |
| 1021 return nx.graphviews.generic_graph_view(self, graph_class) | |
| 1022 # deepcopy when not a view | |
| 1023 G = graph_class() | |
| 1024 G.graph.update(deepcopy(self.graph)) | |
| 1025 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) | |
| 1026 G.add_edges_from((u, v, key, deepcopy(datadict)) | |
| 1027 for u, nbrs in self.adj.items() | |
| 1028 for v, keydict in nbrs.items() | |
| 1029 for key, datadict in keydict.items()) | |
| 1030 return G | |
| 1031 | |
| 1032 def to_undirected(self, as_view=False): | |
| 1033 """Returns an undirected copy of the graph. | |
| 1034 | |
| 1035 Returns | |
| 1036 ------- | |
| 1037 G : Graph/MultiGraph | |
| 1038 A deepcopy of the graph. | |
| 1039 | |
| 1040 See Also | |
| 1041 -------- | |
| 1042 copy, add_edge, add_edges_from | |
| 1043 | |
| 1044 Notes | |
| 1045 ----- | |
| 1046 This returns a "deepcopy" of the edge, node, and | |
| 1047 graph attributes which attempts to completely copy | |
| 1048 all of the data and references. | |
| 1049 | |
| 1050 This is in contrast to the similar `G = nx.MultiGraph(D)` | |
| 1051 which returns a shallow copy of the data. | |
| 1052 | |
| 1053 See the Python copy module for more information on shallow | |
| 1054 and deep copies, https://docs.python.org/2/library/copy.html. | |
| 1055 | |
| 1056 Warning: If you have subclassed MultiiGraph to use dict-like | |
| 1057 objects in the data structure, those changes do not transfer | |
| 1058 to the MultiGraph created by this method. | |
| 1059 | |
| 1060 Examples | |
| 1061 -------- | |
| 1062 >>> G = nx.path_graph(2) # or MultiGraph, etc | |
| 1063 >>> H = G.to_directed() | |
| 1064 >>> list(H.edges) | |
| 1065 [(0, 1), (1, 0)] | |
| 1066 >>> G2 = H.to_undirected() | |
| 1067 >>> list(G2.edges) | |
| 1068 [(0, 1)] | |
| 1069 """ | |
| 1070 graph_class = self.to_undirected_class() | |
| 1071 if as_view is True: | |
| 1072 return nx.graphviews.generic_graph_view(self, graph_class) | |
| 1073 # deepcopy when not a view | |
| 1074 G = graph_class() | |
| 1075 G.graph.update(deepcopy(self.graph)) | |
| 1076 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) | |
| 1077 G.add_edges_from((u, v, key, deepcopy(datadict)) | |
| 1078 for u, nbrs in self._adj.items() | |
| 1079 for v, keydict in nbrs.items() | |
| 1080 for key, datadict in keydict.items()) | |
| 1081 return G | |
| 1082 | |
| 1083 def number_of_edges(self, u=None, v=None): | |
| 1084 """Returns the number of edges between two nodes. | |
| 1085 | |
| 1086 Parameters | |
| 1087 ---------- | |
| 1088 u, v : nodes, optional (Gefault=all edges) | |
| 1089 If u and v are specified, return the number of edges between | |
| 1090 u and v. Otherwise return the total number of all edges. | |
| 1091 | |
| 1092 Returns | |
| 1093 ------- | |
| 1094 nedges : int | |
| 1095 The number of edges in the graph. If nodes `u` and `v` are | |
| 1096 specified return the number of edges between those nodes. If | |
| 1097 the graph is directed, this only returns the number of edges | |
| 1098 from `u` to `v`. | |
| 1099 | |
| 1100 See Also | |
| 1101 -------- | |
| 1102 size | |
| 1103 | |
| 1104 Examples | |
| 1105 -------- | |
| 1106 For undirected multigraphs, this method counts the total number | |
| 1107 of edges in the graph:: | |
| 1108 | |
| 1109 >>> G = nx.MultiGraph() | |
| 1110 >>> G.add_edges_from([(0, 1), (0, 1), (1, 2)]) | |
| 1111 [0, 1, 0] | |
| 1112 >>> G.number_of_edges() | |
| 1113 3 | |
| 1114 | |
| 1115 If you specify two nodes, this counts the total number of edges | |
| 1116 joining the two nodes:: | |
| 1117 | |
| 1118 >>> G.number_of_edges(0, 1) | |
| 1119 2 | |
| 1120 | |
| 1121 For directed multigraphs, this method can count the total number | |
| 1122 of directed edges from `u` to `v`:: | |
| 1123 | |
| 1124 >>> G = nx.MultiDiGraph() | |
| 1125 >>> G.add_edges_from([(0, 1), (0, 1), (1, 0)]) | |
| 1126 [0, 1, 0] | |
| 1127 >>> G.number_of_edges(0, 1) | |
| 1128 2 | |
| 1129 >>> G.number_of_edges(1, 0) | |
| 1130 1 | |
| 1131 | |
| 1132 """ | |
| 1133 if u is None: | |
| 1134 return self.size() | |
| 1135 try: | |
| 1136 edgedata = self._adj[u][v] | |
| 1137 except KeyError: | |
| 1138 return 0 # no such edge | |
| 1139 return len(edgedata) |
