Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/networkx/classes/multigraph.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
author | shellac |
---|---|
date | Sat, 02 May 2020 07:14:21 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:26e78fe6e8c4 |
---|---|
1 # Copyright (C) 2004-2019 by | |
2 # Aric Hagberg <hagberg@lanl.gov> | |
3 # Dan Schult <dschult@colgate.edu> | |
4 # Pieter Swart <swart@lanl.gov> | |
5 # All rights reserved. | |
6 # BSD license. | |
7 # | |
8 # Authors: Aric Hagberg <hagberg@lanl.gov> | |
9 # Dan Schult <dschult@colgate.edu> | |
10 # Pieter Swart <swart@lanl.gov> | |
11 """Base class for MultiGraph.""" | |
12 from copy import deepcopy | |
13 | |
14 import networkx as nx | |
15 from networkx.classes.graph import Graph | |
16 from networkx.classes.coreviews import MultiAdjacencyView | |
17 from networkx.classes.reportviews import MultiEdgeView, MultiDegreeView | |
18 from networkx import NetworkXError | |
19 from networkx.utils import iterable | |
20 | |
21 | |
22 class MultiGraph(Graph): | |
23 """ | |
24 An undirected graph class that can store multiedges. | |
25 | |
26 Multiedges are multiple edges between two nodes. Each edge | |
27 can hold optional data or attributes. | |
28 | |
29 A MultiGraph holds undirected edges. Self loops are allowed. | |
30 | |
31 Nodes can be arbitrary (hashable) Python objects with optional | |
32 key/value attributes. By convention `None` is not used as a node. | |
33 | |
34 Edges are represented as links between nodes with optional | |
35 key/value attributes. | |
36 | |
37 Parameters | |
38 ---------- | |
39 incoming_graph_data : input graph (optional, default: None) | |
40 Data to initialize graph. If None (default) an empty | |
41 graph is created. The data can be any format that is supported | |
42 by the to_networkx_graph() function, currently including edge list, | |
43 dict of dicts, dict of lists, NetworkX graph, NumPy matrix | |
44 or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. | |
45 | |
46 attr : keyword arguments, optional (default= no attributes) | |
47 Attributes to add to graph as key=value pairs. | |
48 | |
49 See Also | |
50 -------- | |
51 Graph | |
52 DiGraph | |
53 MultiDiGraph | |
54 OrderedMultiGraph | |
55 | |
56 Examples | |
57 -------- | |
58 Create an empty graph structure (a "null graph") with no nodes and | |
59 no edges. | |
60 | |
61 >>> G = nx.MultiGraph() | |
62 | |
63 G can be grown in several ways. | |
64 | |
65 **Nodes:** | |
66 | |
67 Add one node at a time: | |
68 | |
69 >>> G.add_node(1) | |
70 | |
71 Add the nodes from any container (a list, dict, set or | |
72 even the lines from a file or the nodes from another graph). | |
73 | |
74 >>> G.add_nodes_from([2, 3]) | |
75 >>> G.add_nodes_from(range(100, 110)) | |
76 >>> H = nx.path_graph(10) | |
77 >>> G.add_nodes_from(H) | |
78 | |
79 In addition to strings and integers any hashable Python object | |
80 (except None) can represent a node, e.g. a customized node object, | |
81 or even another Graph. | |
82 | |
83 >>> G.add_node(H) | |
84 | |
85 **Edges:** | |
86 | |
87 G can also be grown by adding edges. | |
88 | |
89 Add one edge, | |
90 | |
91 >>> key = G.add_edge(1, 2) | |
92 | |
93 a list of edges, | |
94 | |
95 >>> keys = G.add_edges_from([(1, 2), (1, 3)]) | |
96 | |
97 or a collection of edges, | |
98 | |
99 >>> keys = G.add_edges_from(H.edges) | |
100 | |
101 If some edges connect nodes not yet in the graph, the nodes | |
102 are added automatically. If an edge already exists, an additional | |
103 edge is created and stored using a key to identify the edge. | |
104 By default the key is the lowest unused integer. | |
105 | |
106 >>> keys = G.add_edges_from([(4,5,{'route':28}), (4,5,{'route':37})]) | |
107 >>> G[4] | |
108 AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}}) | |
109 | |
110 **Attributes:** | |
111 | |
112 Each graph, node, and edge can hold key/value attribute pairs | |
113 in an associated attribute dictionary (the keys must be hashable). | |
114 By default these are empty, but can be added or changed using | |
115 add_edge, add_node or direct manipulation of the attribute | |
116 dictionaries named graph, node and edge respectively. | |
117 | |
118 >>> G = nx.MultiGraph(day="Friday") | |
119 >>> G.graph | |
120 {'day': 'Friday'} | |
121 | |
122 Add node attributes using add_node(), add_nodes_from() or G.nodes | |
123 | |
124 >>> G.add_node(1, time='5pm') | |
125 >>> G.add_nodes_from([3], time='2pm') | |
126 >>> G.nodes[1] | |
127 {'time': '5pm'} | |
128 >>> G.nodes[1]['room'] = 714 | |
129 >>> del G.nodes[1]['room'] # remove attribute | |
130 >>> list(G.nodes(data=True)) | |
131 [(1, {'time': '5pm'}), (3, {'time': '2pm'})] | |
132 | |
133 Add edge attributes using add_edge(), add_edges_from(), subscript | |
134 notation, or G.edges. | |
135 | |
136 >>> key = G.add_edge(1, 2, weight=4.7 ) | |
137 >>> keys = G.add_edges_from([(3, 4), (4, 5)], color='red') | |
138 >>> keys = G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) | |
139 >>> G[1][2][0]['weight'] = 4.7 | |
140 >>> G.edges[1, 2, 0]['weight'] = 4 | |
141 | |
142 Warning: we protect the graph data structure by making `G.edges[1, 2]` a | |
143 read-only dict-like structure. However, you can assign to attributes | |
144 in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change | |
145 data attributes: `G.edges[1, 2]['weight'] = 4` | |
146 (For multigraphs: `MG.edges[u, v, key][name] = value`). | |
147 | |
148 **Shortcuts:** | |
149 | |
150 Many common graph features allow python syntax to speed reporting. | |
151 | |
152 >>> 1 in G # check if node in graph | |
153 True | |
154 >>> [n for n in G if n<3] # iterate through nodes | |
155 [1, 2] | |
156 >>> len(G) # number of nodes in graph | |
157 5 | |
158 >>> G[1] # adjacency dict-like view keyed by neighbor to edge attributes | |
159 AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) | |
160 | |
161 Often the best way to traverse all edges of a graph is via the neighbors. | |
162 The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`. | |
163 | |
164 >>> for n, nbrsdict in G.adjacency(): | |
165 ... for nbr, keydict in nbrsdict.items(): | |
166 ... for key, eattr in keydict.items(): | |
167 ... if 'weight' in eattr: | |
168 ... # Do something useful with the edges | |
169 ... pass | |
170 | |
171 But the edges() method is often more convenient: | |
172 | |
173 >>> for u, v, keys, weight in G.edges(data='weight', keys=True): | |
174 ... if weight is not None: | |
175 ... # Do something useful with the edges | |
176 ... pass | |
177 | |
178 **Reporting:** | |
179 | |
180 Simple graph information is obtained using methods and object-attributes. | |
181 Reporting usually provides views instead of containers to reduce memory | |
182 usage. The views update as the graph is updated similarly to dict-views. | |
183 The objects `nodes, `edges` and `adj` provide access to data attributes | |
184 via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration | |
185 (e.g. `nodes.items()`, `nodes.data('color')`, | |
186 `nodes.data('color', default='blue')` and similarly for `edges`) | |
187 Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. | |
188 | |
189 For details on these and other miscellaneous methods, see below. | |
190 | |
191 **Subclasses (Advanced):** | |
192 | |
193 The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. | |
194 The outer dict (node_dict) holds adjacency information keyed by node. | |
195 The next dict (adjlist_dict) represents the adjacency information and holds | |
196 edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr | |
197 dict keyed by edge key. The inner dict (edge_attr_dict) represents | |
198 the edge data and holds edge attribute values keyed by attribute names. | |
199 | |
200 Each of these four dicts in the dict-of-dict-of-dict-of-dict | |
201 structure can be replaced by a user defined dict-like object. | |
202 In general, the dict-like features should be maintained but | |
203 extra features can be added. To replace one of the dicts create | |
204 a new graph class by changing the class(!) variable holding the | |
205 factory for that dict-like structure. The variable names are | |
206 node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, | |
207 adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory | |
208 and graph_attr_dict_factory. | |
209 | |
210 node_dict_factory : function, (default: dict) | |
211 Factory function to be used to create the dict containing node | |
212 attributes, keyed by node id. | |
213 It should require no arguments and return a dict-like object | |
214 | |
215 node_attr_dict_factory: function, (default: dict) | |
216 Factory function to be used to create the node attribute | |
217 dict which holds attribute values keyed by attribute name. | |
218 It should require no arguments and return a dict-like object | |
219 | |
220 adjlist_outer_dict_factory : function, (default: dict) | |
221 Factory function to be used to create the outer-most dict | |
222 in the data structure that holds adjacency info keyed by node. | |
223 It should require no arguments and return a dict-like object. | |
224 | |
225 adjlist_inner_dict_factory : function, (default: dict) | |
226 Factory function to be used to create the adjacency list | |
227 dict which holds multiedge key dicts keyed by neighbor. | |
228 It should require no arguments and return a dict-like object. | |
229 | |
230 edge_key_dict_factory : function, (default: dict) | |
231 Factory function to be used to create the edge key dict | |
232 which holds edge data keyed by edge key. | |
233 It should require no arguments and return a dict-like object. | |
234 | |
235 edge_attr_dict_factory : function, (default: dict) | |
236 Factory function to be used to create the edge attribute | |
237 dict which holds attribute values keyed by attribute name. | |
238 It should require no arguments and return a dict-like object. | |
239 | |
240 graph_attr_dict_factory : function, (default: dict) | |
241 Factory function to be used to create the graph attribute | |
242 dict which holds attribute values keyed by attribute name. | |
243 It should require no arguments and return a dict-like object. | |
244 | |
245 Typically, if your extension doesn't impact the data structure all | |
246 methods will inherited without issue except: `to_directed/to_undirected`. | |
247 By default these methods create a DiGraph/Graph class and you probably | |
248 want them to create your extension of a DiGraph/Graph. To facilitate | |
249 this we define two class variables that you can set in your subclass. | |
250 | |
251 to_directed_class : callable, (default: DiGraph or MultiDiGraph) | |
252 Class to create a new graph structure in the `to_directed` method. | |
253 If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. | |
254 | |
255 to_undirected_class : callable, (default: Graph or MultiGraph) | |
256 Class to create a new graph structure in the `to_undirected` method. | |
257 If `None`, a NetworkX class (Graph or MultiGraph) is used. | |
258 | |
259 Examples | |
260 -------- | |
261 | |
262 Please see :mod:`~networkx.classes.ordered` for examples of | |
263 creating graph subclasses by overwriting the base class `dict` with | |
264 a dictionary-like object. | |
265 """ | |
266 # node_dict_factory = dict # already assigned in Graph | |
267 # adjlist_outer_dict_factory = dict | |
268 # adjlist_inner_dict_factory = dict | |
269 edge_key_dict_factory = dict | |
270 # edge_attr_dict_factory = dict | |
271 | |
272 def to_directed_class(self): | |
273 """Returns the class to use for empty directed copies. | |
274 | |
275 If you subclass the base classes, use this to designate | |
276 what directed class to use for `to_directed()` copies. | |
277 """ | |
278 return nx.MultiDiGraph | |
279 | |
280 def to_undirected_class(self): | |
281 """Returns the class to use for empty undirected copies. | |
282 | |
283 If you subclass the base classes, use this to designate | |
284 what directed class to use for `to_directed()` copies. | |
285 """ | |
286 return MultiGraph | |
287 | |
288 def __init__(self, incoming_graph_data=None, **attr): | |
289 """Initialize a graph with edges, name, or graph attributes. | |
290 | |
291 Parameters | |
292 ---------- | |
293 incoming_graph_data : input graph | |
294 Data to initialize graph. If incoming_graph_data=None (default) | |
295 an empty graph is created. The data can be an edge list, or any | |
296 NetworkX graph object. If the corresponding optional Python | |
297 packages are installed the data can also be a NumPy matrix | |
298 or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. | |
299 | |
300 attr : keyword arguments, optional (default= no attributes) | |
301 Attributes to add to graph as key=value pairs. | |
302 | |
303 See Also | |
304 -------- | |
305 convert | |
306 | |
307 Examples | |
308 -------- | |
309 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
310 >>> G = nx.Graph(name='my graph') | |
311 >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges | |
312 >>> G = nx.Graph(e) | |
313 | |
314 Arbitrary graph attribute pairs (key=value) may be assigned | |
315 | |
316 >>> G = nx.Graph(e, day="Friday") | |
317 >>> G.graph | |
318 {'day': 'Friday'} | |
319 | |
320 """ | |
321 self.edge_key_dict_factory = self.edge_key_dict_factory | |
322 Graph.__init__(self, incoming_graph_data, **attr) | |
323 | |
324 @property | |
325 def adj(self): | |
326 """Graph adjacency object holding the neighbors of each node. | |
327 | |
328 This object is a read-only dict-like structure with node keys | |
329 and neighbor-dict values. The neighbor-dict is keyed by neighbor | |
330 to the edgekey-data-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets | |
331 the color of the edge `(3, 2, 0)` to `"blue"`. | |
332 | |
333 Iterating over G.adj behaves like a dict. Useful idioms include | |
334 `for nbr, nbrdict in G.adj[n].items():`. | |
335 | |
336 The neighbor information is also provided by subscripting the graph. | |
337 So `for nbr, foovalue in G[node].data('foo', default=1):` works. | |
338 | |
339 For directed graphs, `G.adj` holds outgoing (successor) info. | |
340 """ | |
341 return MultiAdjacencyView(self._adj) | |
342 | |
343 def new_edge_key(self, u, v): | |
344 """Returns an unused key for edges between nodes `u` and `v`. | |
345 | |
346 The nodes `u` and `v` do not need to be already in the graph. | |
347 | |
348 Notes | |
349 ----- | |
350 In the standard MultiGraph class the new key is the number of existing | |
351 edges between `u` and `v` (increased if necessary to ensure unused). | |
352 The first edge will have key 0, then 1, etc. If an edge is removed | |
353 further new_edge_keys may not be in this order. | |
354 | |
355 Parameters | |
356 ---------- | |
357 u, v : nodes | |
358 | |
359 Returns | |
360 ------- | |
361 key : int | |
362 """ | |
363 try: | |
364 keydict = self._adj[u][v] | |
365 except KeyError: | |
366 return 0 | |
367 key = len(keydict) | |
368 while key in keydict: | |
369 key += 1 | |
370 return key | |
371 | |
372 def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): | |
373 """Add an edge between u and v. | |
374 | |
375 The nodes u and v will be automatically added if they are | |
376 not already in the graph. | |
377 | |
378 Edge attributes can be specified with keywords or by directly | |
379 accessing the edge's attribute dictionary. See examples below. | |
380 | |
381 Parameters | |
382 ---------- | |
383 u_for_edge, v_for_edge : nodes | |
384 Nodes can be, for example, strings or numbers. | |
385 Nodes must be hashable (and not None) Python objects. | |
386 key : hashable identifier, optional (default=lowest unused integer) | |
387 Used to distinguish multiedges between a pair of nodes. | |
388 attr : keyword arguments, optional | |
389 Edge data (or labels or objects) can be assigned using | |
390 keyword arguments. | |
391 | |
392 Returns | |
393 ------- | |
394 The edge key assigned to the edge. | |
395 | |
396 See Also | |
397 -------- | |
398 add_edges_from : add a collection of edges | |
399 | |
400 Notes | |
401 ----- | |
402 To replace/update edge data, use the optional key argument | |
403 to identify a unique edge. Otherwise a new edge will be created. | |
404 | |
405 NetworkX algorithms designed for weighted graphs cannot use | |
406 multigraphs directly because it is not clear how to handle | |
407 multiedge weights. Convert to Graph using edge attribute | |
408 'weight' to enable weighted graph algorithms. | |
409 | |
410 Default keys are generated using the method `new_edge_key()`. | |
411 This method can be overridden by subclassing the base class and | |
412 providing a custom `new_edge_key()` method. | |
413 | |
414 Examples | |
415 -------- | |
416 The following all add the edge e=(1, 2) to graph G: | |
417 | |
418 >>> G = nx.MultiGraph() | |
419 >>> e = (1, 2) | |
420 >>> ekey = G.add_edge(1, 2) # explicit two-node form | |
421 >>> G.add_edge(*e) # single edge as tuple of two nodes | |
422 1 | |
423 >>> G.add_edges_from( [(1, 2)] ) # add edges from iterable container | |
424 [2] | |
425 | |
426 Associate data to edges using keywords: | |
427 | |
428 >>> ekey = G.add_edge(1, 2, weight=3) | |
429 >>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 | |
430 >>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) | |
431 | |
432 For non-string attribute keys, use subscript notation. | |
433 | |
434 >>> ekey = G.add_edge(1, 2) | |
435 >>> G[1][2][0].update({0: 5}) | |
436 >>> G.edges[1, 2, 0].update({0: 5}) | |
437 """ | |
438 u, v = u_for_edge, v_for_edge | |
439 # add nodes | |
440 if u not in self._adj: | |
441 self._adj[u] = self.adjlist_inner_dict_factory() | |
442 self._node[u] = self.node_attr_dict_factory() | |
443 if v not in self._adj: | |
444 self._adj[v] = self.adjlist_inner_dict_factory() | |
445 self._node[v] = self.node_attr_dict_factory() | |
446 if key is None: | |
447 key = self.new_edge_key(u, v) | |
448 if v in self._adj[u]: | |
449 keydict = self._adj[u][v] | |
450 datadict = keydict.get(key, self.edge_attr_dict_factory()) | |
451 datadict.update(attr) | |
452 keydict[key] = datadict | |
453 else: | |
454 # selfloops work this way without special treatment | |
455 datadict = self.edge_attr_dict_factory() | |
456 datadict.update(attr) | |
457 keydict = self.edge_key_dict_factory() | |
458 keydict[key] = datadict | |
459 self._adj[u][v] = keydict | |
460 self._adj[v][u] = keydict | |
461 return key | |
462 | |
463 def add_edges_from(self, ebunch_to_add, **attr): | |
464 """Add all the edges in ebunch_to_add. | |
465 | |
466 Parameters | |
467 ---------- | |
468 ebunch_to_add : container of edges | |
469 Each edge given in the container will be added to the | |
470 graph. The edges can be: | |
471 | |
472 - 2-tuples (u, v) or | |
473 - 3-tuples (u, v, d) for an edge data dict d, or | |
474 - 3-tuples (u, v, k) for not iterable key k, or | |
475 - 4-tuples (u, v, k, d) for an edge with data and key k | |
476 | |
477 attr : keyword arguments, optional | |
478 Edge data (or labels or objects) can be assigned using | |
479 keyword arguments. | |
480 | |
481 Returns | |
482 ------- | |
483 A list of edge keys assigned to the edges in `ebunch`. | |
484 | |
485 See Also | |
486 -------- | |
487 add_edge : add a single edge | |
488 add_weighted_edges_from : convenient way to add weighted edges | |
489 | |
490 Notes | |
491 ----- | |
492 Adding the same edge twice has no effect but any edge data | |
493 will be updated when each duplicate edge is added. | |
494 | |
495 Edge attributes specified in an ebunch take precedence over | |
496 attributes specified via keyword arguments. | |
497 | |
498 Default keys are generated using the method ``new_edge_key()``. | |
499 This method can be overridden by subclassing the base class and | |
500 providing a custom ``new_edge_key()`` method. | |
501 | |
502 Examples | |
503 -------- | |
504 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
505 >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples | |
506 >>> e = zip(range(0, 3), range(1, 4)) | |
507 >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 | |
508 | |
509 Associate data to edges | |
510 | |
511 >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) | |
512 >>> G.add_edges_from([(3, 4), (1, 4)], label='WN2898') | |
513 """ | |
514 keylist = [] | |
515 for e in ebunch_to_add: | |
516 ne = len(e) | |
517 if ne == 4: | |
518 u, v, key, dd = e | |
519 elif ne == 3: | |
520 u, v, dd = e | |
521 key = None | |
522 elif ne == 2: | |
523 u, v = e | |
524 dd = {} | |
525 key = None | |
526 else: | |
527 msg = "Edge tuple {} must be a 2-tuple, 3-tuple or 4-tuple." | |
528 raise NetworkXError(msg.format(e)) | |
529 ddd = {} | |
530 ddd.update(attr) | |
531 try: | |
532 ddd.update(dd) | |
533 except: | |
534 if ne != 3: | |
535 raise | |
536 key = dd | |
537 key = self.add_edge(u, v, key) | |
538 self[u][v][key].update(ddd) | |
539 keylist.append(key) | |
540 return keylist | |
541 | |
542 def remove_edge(self, u, v, key=None): | |
543 """Remove an edge between u and v. | |
544 | |
545 Parameters | |
546 ---------- | |
547 u, v : nodes | |
548 Remove an edge between nodes u and v. | |
549 key : hashable identifier, optional (default=None) | |
550 Used to distinguish multiple edges between a pair of nodes. | |
551 If None remove a single (arbitrary) edge between u and v. | |
552 | |
553 Raises | |
554 ------ | |
555 NetworkXError | |
556 If there is not an edge between u and v, or | |
557 if there is no edge with the specified key. | |
558 | |
559 See Also | |
560 -------- | |
561 remove_edges_from : remove a collection of edges | |
562 | |
563 Examples | |
564 -------- | |
565 >>> G = nx.MultiGraph() | |
566 >>> nx.add_path(G, [0, 1, 2, 3]) | |
567 >>> G.remove_edge(0, 1) | |
568 >>> e = (1, 2) | |
569 >>> G.remove_edge(*e) # unpacks e from an edge tuple | |
570 | |
571 For multiple edges | |
572 | |
573 >>> G = nx.MultiGraph() # or MultiDiGraph, etc | |
574 >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned | |
575 [0, 1, 2] | |
576 >>> G.remove_edge(1, 2) # remove a single (arbitrary) edge | |
577 | |
578 For edges with keys | |
579 | |
580 >>> G = nx.MultiGraph() # or MultiDiGraph, etc | |
581 >>> G.add_edge(1, 2, key='first') | |
582 'first' | |
583 >>> G.add_edge(1, 2, key='second') | |
584 'second' | |
585 >>> G.remove_edge(1, 2, key='second') | |
586 | |
587 """ | |
588 try: | |
589 d = self._adj[u][v] | |
590 except KeyError: | |
591 raise NetworkXError( | |
592 "The edge %s-%s is not in the graph." % (u, v)) | |
593 # remove the edge with specified data | |
594 if key is None: | |
595 d.popitem() | |
596 else: | |
597 try: | |
598 del d[key] | |
599 except KeyError: | |
600 msg = "The edge %s-%s with key %s is not in the graph." | |
601 raise NetworkXError(msg % (u, v, key)) | |
602 if len(d) == 0: | |
603 # remove the key entries if last edge | |
604 del self._adj[u][v] | |
605 if u != v: # check for selfloop | |
606 del self._adj[v][u] | |
607 | |
608 def remove_edges_from(self, ebunch): | |
609 """Remove all edges specified in ebunch. | |
610 | |
611 Parameters | |
612 ---------- | |
613 ebunch: list or container of edge tuples | |
614 Each edge given in the list or container will be removed | |
615 from the graph. The edges can be: | |
616 | |
617 - 2-tuples (u, v) All edges between u and v are removed. | |
618 - 3-tuples (u, v, key) The edge identified by key is removed. | |
619 - 4-tuples (u, v, key, data) where data is ignored. | |
620 | |
621 See Also | |
622 -------- | |
623 remove_edge : remove a single edge | |
624 | |
625 Notes | |
626 ----- | |
627 Will fail silently if an edge in ebunch is not in the graph. | |
628 | |
629 Examples | |
630 -------- | |
631 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc | |
632 >>> ebunch=[(1, 2), (2, 3)] | |
633 >>> G.remove_edges_from(ebunch) | |
634 | |
635 Removing multiple copies of edges | |
636 | |
637 >>> G = nx.MultiGraph() | |
638 >>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)]) | |
639 >>> G.remove_edges_from([(1, 2), (1, 2)]) | |
640 >>> list(G.edges()) | |
641 [(1, 2)] | |
642 >>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy | |
643 >>> list(G.edges) # now empty graph | |
644 [] | |
645 """ | |
646 for e in ebunch: | |
647 try: | |
648 self.remove_edge(*e[:3]) | |
649 except NetworkXError: | |
650 pass | |
651 | |
652 def has_edge(self, u, v, key=None): | |
653 """Returns True if the graph has an edge between nodes u and v. | |
654 | |
655 This is the same as `v in G[u] or key in G[u][v]` | |
656 without KeyError exceptions. | |
657 | |
658 Parameters | |
659 ---------- | |
660 u, v : nodes | |
661 Nodes can be, for example, strings or numbers. | |
662 | |
663 key : hashable identifier, optional (default=None) | |
664 If specified return True only if the edge with | |
665 key is found. | |
666 | |
667 Returns | |
668 ------- | |
669 edge_ind : bool | |
670 True if edge is in the graph, False otherwise. | |
671 | |
672 Examples | |
673 -------- | |
674 Can be called either using two nodes u, v, an edge tuple (u, v), | |
675 or an edge tuple (u, v, key). | |
676 | |
677 >>> G = nx.MultiGraph() # or MultiDiGraph | |
678 >>> nx.add_path(G, [0, 1, 2, 3]) | |
679 >>> G.has_edge(0, 1) # using two nodes | |
680 True | |
681 >>> e = (0, 1) | |
682 >>> G.has_edge(*e) # e is a 2-tuple (u, v) | |
683 True | |
684 >>> G.add_edge(0, 1, key='a') | |
685 'a' | |
686 >>> G.has_edge(0, 1, key='a') # specify key | |
687 True | |
688 >>> e=(0, 1, 'a') | |
689 >>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a') | |
690 True | |
691 | |
692 The following syntax are equivalent: | |
693 | |
694 >>> G.has_edge(0, 1) | |
695 True | |
696 >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G | |
697 True | |
698 | |
699 """ | |
700 try: | |
701 if key is None: | |
702 return v in self._adj[u] | |
703 else: | |
704 return key in self._adj[u][v] | |
705 except KeyError: | |
706 return False | |
707 | |
708 @property | |
709 def edges(self): | |
710 """Returns an iterator over the edges. | |
711 | |
712 edges(self, nbunch=None, data=False, keys=False, default=None) | |
713 | |
714 The EdgeView provides set-like operations on the edge-tuples | |
715 as well as edge attribute lookup. When called, it also provides | |
716 an EdgeDataView object which allows control of access to edge | |
717 attributes (but does not provide set-like operations). | |
718 Hence, `G.edges[u, v]['color']` provides the value of the color | |
719 attribute for edge `(u, v)` while | |
720 `for (u, v, c) in G.edges(data='color', default='red'):` | |
721 iterates through all the edges yielding the color attribute. | |
722 | |
723 Edges are returned as tuples with optional data and keys | |
724 in the order (node, neighbor, key, data). | |
725 | |
726 Parameters | |
727 ---------- | |
728 nbunch : single node, container, or all nodes (default= all nodes) | |
729 The view will only report edges incident to these nodes. | |
730 data : string or bool, optional (default=False) | |
731 The edge attribute returned in 3-tuple (u, v, ddict[data]). | |
732 If True, return edge attribute dict in 3-tuple (u, v, ddict). | |
733 If False, return 2-tuple (u, v). | |
734 keys : bool, optional (default=False) | |
735 If True, return edge keys with each edge. | |
736 default : value, optional (default=None) | |
737 Value used for edges that don't have the requested attribute. | |
738 Only relevant if data is not True or False. | |
739 | |
740 Returns | |
741 ------- | |
742 edges : MultiEdgeView | |
743 A view of edge attributes, usually it iterates over (u, v) | |
744 (u, v, k) or (u, v, k, d) tuples of edges, but can also be | |
745 used for attribute lookup as `edges[u, v, k]['foo']`. | |
746 | |
747 Notes | |
748 ----- | |
749 Nodes in nbunch that are not in the graph will be (quietly) ignored. | |
750 For directed graphs this returns the out-edges. | |
751 | |
752 Examples | |
753 -------- | |
754 >>> G = nx.MultiGraph() # or MultiDiGraph | |
755 >>> nx.add_path(G, [0, 1, 2]) | |
756 >>> key = G.add_edge(2, 3, weight=5) | |
757 >>> [e for e in G.edges()] | |
758 [(0, 1), (1, 2), (2, 3)] | |
759 >>> G.edges.data() # default data is {} (empty dict) | |
760 MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) | |
761 >>> G.edges.data('weight', default=1) | |
762 MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) | |
763 >>> G.edges(keys=True) # default keys are integers | |
764 MultiEdgeView([(0, 1, 0), (1, 2, 0), (2, 3, 0)]) | |
765 >>> G.edges.data(keys=True) | |
766 MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]) | |
767 >>> G.edges.data('weight', default=1, keys=True) | |
768 MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]) | |
769 >>> G.edges([0, 3]) | |
770 MultiEdgeDataView([(0, 1), (3, 2)]) | |
771 >>> G.edges(0) | |
772 MultiEdgeDataView([(0, 1)]) | |
773 """ | |
774 return MultiEdgeView(self) | |
775 | |
776 def get_edge_data(self, u, v, key=None, default=None): | |
777 """Returns the attribute dictionary associated with edge (u, v). | |
778 | |
779 This is identical to `G[u][v][key]` except the default is returned | |
780 instead of an exception is the edge doesn't exist. | |
781 | |
782 Parameters | |
783 ---------- | |
784 u, v : nodes | |
785 | |
786 default : any Python object (default=None) | |
787 Value to return if the edge (u, v) is not found. | |
788 | |
789 key : hashable identifier, optional (default=None) | |
790 Return data only for the edge with specified key. | |
791 | |
792 Returns | |
793 ------- | |
794 edge_dict : dictionary | |
795 The edge attribute dictionary. | |
796 | |
797 Examples | |
798 -------- | |
799 >>> G = nx.MultiGraph() # or MultiDiGraph | |
800 >>> key = G.add_edge(0, 1, key='a', weight=7) | |
801 >>> G[0][1]['a'] # key='a' | |
802 {'weight': 7} | |
803 >>> G.edges[0, 1, 'a'] # key='a' | |
804 {'weight': 7} | |
805 | |
806 Warning: we protect the graph data structure by making | |
807 `G.edges` and `G[1][2]` read-only dict-like structures. | |
808 However, you can assign values to attributes in e.g. | |
809 `G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional | |
810 bracket as shown next. You need to specify all edge info | |
811 to assign to the edge data associated with an edge. | |
812 | |
813 >>> G[0][1]['a']['weight'] = 10 | |
814 >>> G.edges[0, 1, 'a']['weight'] = 10 | |
815 >>> G[0][1]['a']['weight'] | |
816 10 | |
817 >>> G.edges[1, 0, 'a']['weight'] | |
818 10 | |
819 | |
820 >>> G = nx.MultiGraph() # or MultiDiGraph | |
821 >>> nx.add_path(G, [0, 1, 2, 3]) | |
822 >>> G.get_edge_data(0, 1) | |
823 {0: {}} | |
824 >>> e = (0, 1) | |
825 >>> G.get_edge_data(*e) # tuple form | |
826 {0: {}} | |
827 >>> G.get_edge_data('a', 'b', default=0) # edge not in graph, return 0 | |
828 0 | |
829 """ | |
830 try: | |
831 if key is None: | |
832 return self._adj[u][v] | |
833 else: | |
834 return self._adj[u][v][key] | |
835 except KeyError: | |
836 return default | |
837 | |
838 @property | |
839 def degree(self): | |
840 """A DegreeView for the Graph as G.degree or G.degree(). | |
841 | |
842 The node degree is the number of edges adjacent to the node. | |
843 The weighted node degree is the sum of the edge weights for | |
844 edges incident to that node. | |
845 | |
846 This object provides an iterator for (node, degree) as well as | |
847 lookup for the degree for a single node. | |
848 | |
849 Parameters | |
850 ---------- | |
851 nbunch : single node, container, or all nodes (default= all nodes) | |
852 The view will only report edges incident to these nodes. | |
853 | |
854 weight : string or None, optional (default=None) | |
855 The name of an edge attribute that holds the numerical value used | |
856 as a weight. If None, then each edge has weight 1. | |
857 The degree is the sum of the edge weights adjacent to the node. | |
858 | |
859 Returns | |
860 ------- | |
861 If a single node is requested | |
862 deg : int | |
863 Degree of the node, if a single node is passed as argument. | |
864 | |
865 OR if multiple nodes are requested | |
866 nd_iter : iterator | |
867 The iterator returns two-tuples of (node, degree). | |
868 | |
869 Examples | |
870 -------- | |
871 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc | |
872 >>> nx.add_path(G, [0, 1, 2, 3]) | |
873 >>> G.degree(0) # node 0 with degree 1 | |
874 1 | |
875 >>> list(G.degree([0, 1])) | |
876 [(0, 1), (1, 2)] | |
877 | |
878 """ | |
879 return MultiDegreeView(self) | |
880 | |
881 def is_multigraph(self): | |
882 """Returns True if graph is a multigraph, False otherwise.""" | |
883 return True | |
884 | |
885 def is_directed(self): | |
886 """Returns True if graph is directed, False otherwise.""" | |
887 return False | |
888 | |
889 def copy(self, as_view=False): | |
890 """Returns a copy of the graph. | |
891 | |
892 The copy method by default returns an independent shallow copy | |
893 of the graph and attributes. That is, if an attribute is a | |
894 container, that container is shared by the original an the copy. | |
895 Use Python's `copy.deepcopy` for new containers. | |
896 | |
897 If `as_view` is True then a view is returned instead of a copy. | |
898 | |
899 Notes | |
900 ----- | |
901 All copies reproduce the graph structure, but data attributes | |
902 may be handled in different ways. There are four types of copies | |
903 of a graph that people might want. | |
904 | |
905 Deepcopy -- A "deepcopy" copies the graph structure as well as | |
906 all data attributes and any objects they might contain. | |
907 The entire graph object is new so that changes in the copy | |
908 do not affect the original object. (see Python's copy.deepcopy) | |
909 | |
910 Data Reference (Shallow) -- For a shallow copy the graph structure | |
911 is copied but the edge, node and graph attribute dicts are | |
912 references to those in the original graph. This saves | |
913 time and memory but could cause confusion if you change an attribute | |
914 in one graph and it changes the attribute in the other. | |
915 NetworkX does not provide this level of shallow copy. | |
916 | |
917 Independent Shallow -- This copy creates new independent attribute | |
918 dicts and then does a shallow copy of the attributes. That is, any | |
919 attributes that are containers are shared between the new graph | |
920 and the original. This is exactly what `dict.copy()` provides. | |
921 You can obtain this style copy using: | |
922 | |
923 >>> G = nx.path_graph(5) | |
924 >>> H = G.copy() | |
925 >>> H = G.copy(as_view=False) | |
926 >>> H = nx.Graph(G) | |
927 >>> H = G.__class__(G) | |
928 | |
929 Fresh Data -- For fresh data, the graph structure is copied while | |
930 new empty data attribute dicts are created. The resulting graph | |
931 is independent of the original and it has no edge, node or graph | |
932 attributes. Fresh copies are not enabled. Instead use: | |
933 | |
934 >>> H = G.__class__() | |
935 >>> H.add_nodes_from(G) | |
936 >>> H.add_edges_from(G.edges) | |
937 | |
938 View -- Inspired by dict-views, graph-views act like read-only | |
939 versions of the original graph, providing a copy of the original | |
940 structure without requiring any memory for copying the information. | |
941 | |
942 See the Python copy module for more information on shallow | |
943 and deep copies, https://docs.python.org/2/library/copy.html. | |
944 | |
945 Parameters | |
946 ---------- | |
947 as_view : bool, optional (default=False) | |
948 If True, the returned graph-view provides a read-only view | |
949 of the original graph without actually copying any data. | |
950 | |
951 Returns | |
952 ------- | |
953 G : Graph | |
954 A copy of the graph. | |
955 | |
956 See Also | |
957 -------- | |
958 to_directed: return a directed copy of the graph. | |
959 | |
960 Examples | |
961 -------- | |
962 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc | |
963 >>> H = G.copy() | |
964 | |
965 """ | |
966 if as_view is True: | |
967 return nx.graphviews.generic_graph_view(self) | |
968 G = self.__class__() | |
969 G.graph.update(self.graph) | |
970 G.add_nodes_from((n, d.copy()) for n, d in self._node.items()) | |
971 G.add_edges_from((u, v, key, datadict.copy()) | |
972 for u, nbrs in self._adj.items() | |
973 for v, keydict in nbrs.items() | |
974 for key, datadict in keydict.items()) | |
975 return G | |
976 | |
977 def to_directed(self, as_view=False): | |
978 """Returns a directed representation of the graph. | |
979 | |
980 Returns | |
981 ------- | |
982 G : MultiDiGraph | |
983 A directed graph with the same name, same nodes, and with | |
984 each edge (u, v, data) replaced by two directed edges | |
985 (u, v, data) and (v, u, data). | |
986 | |
987 Notes | |
988 ----- | |
989 This returns a "deepcopy" of the edge, node, and | |
990 graph attributes which attempts to completely copy | |
991 all of the data and references. | |
992 | |
993 This is in contrast to the similar D=DiGraph(G) which returns a | |
994 shallow copy of the data. | |
995 | |
996 See the Python copy module for more information on shallow | |
997 and deep copies, https://docs.python.org/2/library/copy.html. | |
998 | |
999 Warning: If you have subclassed MultiGraph to use dict-like objects | |
1000 in the data structure, those changes do not transfer to the | |
1001 MultiDiGraph created by this method. | |
1002 | |
1003 Examples | |
1004 -------- | |
1005 >>> G = nx.Graph() # or MultiGraph, etc | |
1006 >>> G.add_edge(0, 1) | |
1007 >>> H = G.to_directed() | |
1008 >>> list(H.edges) | |
1009 [(0, 1), (1, 0)] | |
1010 | |
1011 If already directed, return a (deep) copy | |
1012 | |
1013 >>> G = nx.DiGraph() # or MultiDiGraph, etc | |
1014 >>> G.add_edge(0, 1) | |
1015 >>> H = G.to_directed() | |
1016 >>> list(H.edges) | |
1017 [(0, 1)] | |
1018 """ | |
1019 graph_class = self.to_directed_class() | |
1020 if as_view is True: | |
1021 return nx.graphviews.generic_graph_view(self, graph_class) | |
1022 # deepcopy when not a view | |
1023 G = graph_class() | |
1024 G.graph.update(deepcopy(self.graph)) | |
1025 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) | |
1026 G.add_edges_from((u, v, key, deepcopy(datadict)) | |
1027 for u, nbrs in self.adj.items() | |
1028 for v, keydict in nbrs.items() | |
1029 for key, datadict in keydict.items()) | |
1030 return G | |
1031 | |
1032 def to_undirected(self, as_view=False): | |
1033 """Returns an undirected copy of the graph. | |
1034 | |
1035 Returns | |
1036 ------- | |
1037 G : Graph/MultiGraph | |
1038 A deepcopy of the graph. | |
1039 | |
1040 See Also | |
1041 -------- | |
1042 copy, add_edge, add_edges_from | |
1043 | |
1044 Notes | |
1045 ----- | |
1046 This returns a "deepcopy" of the edge, node, and | |
1047 graph attributes which attempts to completely copy | |
1048 all of the data and references. | |
1049 | |
1050 This is in contrast to the similar `G = nx.MultiGraph(D)` | |
1051 which returns a shallow copy of the data. | |
1052 | |
1053 See the Python copy module for more information on shallow | |
1054 and deep copies, https://docs.python.org/2/library/copy.html. | |
1055 | |
1056 Warning: If you have subclassed MultiiGraph to use dict-like | |
1057 objects in the data structure, those changes do not transfer | |
1058 to the MultiGraph created by this method. | |
1059 | |
1060 Examples | |
1061 -------- | |
1062 >>> G = nx.path_graph(2) # or MultiGraph, etc | |
1063 >>> H = G.to_directed() | |
1064 >>> list(H.edges) | |
1065 [(0, 1), (1, 0)] | |
1066 >>> G2 = H.to_undirected() | |
1067 >>> list(G2.edges) | |
1068 [(0, 1)] | |
1069 """ | |
1070 graph_class = self.to_undirected_class() | |
1071 if as_view is True: | |
1072 return nx.graphviews.generic_graph_view(self, graph_class) | |
1073 # deepcopy when not a view | |
1074 G = graph_class() | |
1075 G.graph.update(deepcopy(self.graph)) | |
1076 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) | |
1077 G.add_edges_from((u, v, key, deepcopy(datadict)) | |
1078 for u, nbrs in self._adj.items() | |
1079 for v, keydict in nbrs.items() | |
1080 for key, datadict in keydict.items()) | |
1081 return G | |
1082 | |
1083 def number_of_edges(self, u=None, v=None): | |
1084 """Returns the number of edges between two nodes. | |
1085 | |
1086 Parameters | |
1087 ---------- | |
1088 u, v : nodes, optional (Gefault=all edges) | |
1089 If u and v are specified, return the number of edges between | |
1090 u and v. Otherwise return the total number of all edges. | |
1091 | |
1092 Returns | |
1093 ------- | |
1094 nedges : int | |
1095 The number of edges in the graph. If nodes `u` and `v` are | |
1096 specified return the number of edges between those nodes. If | |
1097 the graph is directed, this only returns the number of edges | |
1098 from `u` to `v`. | |
1099 | |
1100 See Also | |
1101 -------- | |
1102 size | |
1103 | |
1104 Examples | |
1105 -------- | |
1106 For undirected multigraphs, this method counts the total number | |
1107 of edges in the graph:: | |
1108 | |
1109 >>> G = nx.MultiGraph() | |
1110 >>> G.add_edges_from([(0, 1), (0, 1), (1, 2)]) | |
1111 [0, 1, 0] | |
1112 >>> G.number_of_edges() | |
1113 3 | |
1114 | |
1115 If you specify two nodes, this counts the total number of edges | |
1116 joining the two nodes:: | |
1117 | |
1118 >>> G.number_of_edges(0, 1) | |
1119 2 | |
1120 | |
1121 For directed multigraphs, this method can count the total number | |
1122 of directed edges from `u` to `v`:: | |
1123 | |
1124 >>> G = nx.MultiDiGraph() | |
1125 >>> G.add_edges_from([(0, 1), (0, 1), (1, 0)]) | |
1126 [0, 1, 0] | |
1127 >>> G.number_of_edges(0, 1) | |
1128 2 | |
1129 >>> G.number_of_edges(1, 0) | |
1130 1 | |
1131 | |
1132 """ | |
1133 if u is None: | |
1134 return self.size() | |
1135 try: | |
1136 edgedata = self._adj[u][v] | |
1137 except KeyError: | |
1138 return 0 # no such edge | |
1139 return len(edgedata) |