Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/networkx/convert.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
author | shellac |
---|---|
date | Sat, 02 May 2020 07:14:21 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:26e78fe6e8c4 |
---|---|
1 """Functions to convert NetworkX graphs to and from other formats. | |
2 | |
3 The preferred way of converting data to a NetworkX graph is through the | |
4 graph constructor. The constructor calls the to_networkx_graph() function | |
5 which attempts to guess the input type and convert it automatically. | |
6 | |
7 Examples | |
8 -------- | |
9 Create a graph with a single edge from a dictionary of dictionaries | |
10 | |
11 >>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) | |
12 >>> G=nx.Graph(d) | |
13 | |
14 See Also | |
15 -------- | |
16 nx_agraph, nx_pydot | |
17 """ | |
18 # Copyright (C) 2006-2013 by | |
19 # Aric Hagberg <hagberg@lanl.gov> | |
20 # Dan Schult <dschult@colgate.edu> | |
21 # Pieter Swart <swart@lanl.gov> | |
22 # All rights reserved. | |
23 # BSD license. | |
24 import warnings | |
25 import networkx as nx | |
26 __author__ = """\n""".join(['Aric Hagberg <aric.hagberg@gmail.com>', | |
27 'Pieter Swart (swart@lanl.gov)', | |
28 'Dan Schult(dschult@colgate.edu)']) | |
29 __all__ = ['to_networkx_graph', | |
30 'from_dict_of_dicts', 'to_dict_of_dicts', | |
31 'from_dict_of_lists', 'to_dict_of_lists', | |
32 'from_edgelist', 'to_edgelist'] | |
33 | |
34 | |
35 def to_networkx_graph(data, create_using=None, multigraph_input=False): | |
36 """Make a NetworkX graph from a known data structure. | |
37 | |
38 The preferred way to call this is automatically | |
39 from the class constructor | |
40 | |
41 >>> d = {0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1) | |
42 >>> G = nx.Graph(d) | |
43 | |
44 instead of the equivalent | |
45 | |
46 >>> G = nx.from_dict_of_dicts(d) | |
47 | |
48 Parameters | |
49 ---------- | |
50 data : object to be converted | |
51 | |
52 Current known types are: | |
53 any NetworkX graph | |
54 dict-of-dicts | |
55 dict-of-lists | |
56 list of edges | |
57 Pandas DataFrame (row per edge) | |
58 numpy matrix | |
59 numpy ndarray | |
60 scipy sparse matrix | |
61 pygraphviz agraph | |
62 | |
63 create_using : NetworkX graph constructor, optional (default=nx.Graph) | |
64 Graph type to create. If graph instance, then cleared before populated. | |
65 | |
66 multigraph_input : bool (default False) | |
67 If True and data is a dict_of_dicts, | |
68 try to create a multigraph assuming dict_of_dict_of_lists. | |
69 If data and create_using are both multigraphs then create | |
70 a multigraph from a multigraph. | |
71 | |
72 """ | |
73 # NX graph | |
74 if hasattr(data, "adj"): | |
75 try: | |
76 result = from_dict_of_dicts(data.adj, | |
77 create_using=create_using, | |
78 multigraph_input=data.is_multigraph()) | |
79 if hasattr(data, 'graph'): # data.graph should be dict-like | |
80 result.graph.update(data.graph) | |
81 if hasattr(data, 'nodes'): # data.nodes should be dict-like | |
82 # result.add_node_from(data.nodes.items()) possible but | |
83 # for custom node_attr_dict_factory which may be hashable | |
84 # will be unexpected behavior | |
85 for n, dd in data.nodes.items(): | |
86 result._node[n].update(dd) | |
87 return result | |
88 except: | |
89 raise nx.NetworkXError("Input is not a correct NetworkX graph.") | |
90 | |
91 # pygraphviz agraph | |
92 if hasattr(data, "is_strict"): | |
93 try: | |
94 return nx.nx_agraph.from_agraph(data, create_using=create_using) | |
95 except: | |
96 raise nx.NetworkXError("Input is not a correct pygraphviz graph.") | |
97 | |
98 # dict of dicts/lists | |
99 if isinstance(data, dict): | |
100 try: | |
101 return from_dict_of_dicts(data, create_using=create_using, | |
102 multigraph_input=multigraph_input) | |
103 except: | |
104 try: | |
105 return from_dict_of_lists(data, create_using=create_using) | |
106 except: | |
107 raise TypeError("Input is not known type.") | |
108 | |
109 # list or generator of edges | |
110 | |
111 if (isinstance(data, (list, tuple)) or | |
112 any(hasattr(data, attr) for attr in ['_adjdict', 'next', '__next__'])): | |
113 try: | |
114 return from_edgelist(data, create_using=create_using) | |
115 except: | |
116 raise nx.NetworkXError("Input is not a valid edge list") | |
117 | |
118 # Pandas DataFrame | |
119 try: | |
120 import pandas as pd | |
121 if isinstance(data, pd.DataFrame): | |
122 if data.shape[0] == data.shape[1]: | |
123 try: | |
124 return nx.from_pandas_adjacency(data, create_using=create_using) | |
125 except: | |
126 msg = "Input is not a correct Pandas DataFrame adjacency matrix." | |
127 raise nx.NetworkXError(msg) | |
128 else: | |
129 try: | |
130 return nx.from_pandas_edgelist(data, edge_attr=True, create_using=create_using) | |
131 except: | |
132 msg = "Input is not a correct Pandas DataFrame edge-list." | |
133 raise nx.NetworkXError(msg) | |
134 except ImportError: | |
135 msg = 'pandas not found, skipping conversion test.' | |
136 warnings.warn(msg, ImportWarning) | |
137 | |
138 # numpy matrix or ndarray | |
139 try: | |
140 import numpy | |
141 if isinstance(data, (numpy.matrix, numpy.ndarray)): | |
142 try: | |
143 return nx.from_numpy_matrix(data, create_using=create_using) | |
144 except: | |
145 raise nx.NetworkXError( | |
146 "Input is not a correct numpy matrix or array.") | |
147 except ImportError: | |
148 warnings.warn('numpy not found, skipping conversion test.', | |
149 ImportWarning) | |
150 | |
151 # scipy sparse matrix - any format | |
152 try: | |
153 import scipy | |
154 if hasattr(data, "format"): | |
155 try: | |
156 return nx.from_scipy_sparse_matrix(data, create_using=create_using) | |
157 except: | |
158 raise nx.NetworkXError( | |
159 "Input is not a correct scipy sparse matrix type.") | |
160 except ImportError: | |
161 warnings.warn('scipy not found, skipping conversion test.', | |
162 ImportWarning) | |
163 | |
164 raise nx.NetworkXError( | |
165 "Input is not a known data type for conversion.") | |
166 | |
167 | |
168 def to_dict_of_lists(G, nodelist=None): | |
169 """Returns adjacency representation of graph as a dictionary of lists. | |
170 | |
171 Parameters | |
172 ---------- | |
173 G : graph | |
174 A NetworkX graph | |
175 | |
176 nodelist : list | |
177 Use only nodes specified in nodelist | |
178 | |
179 Notes | |
180 ----- | |
181 Completely ignores edge data for MultiGraph and MultiDiGraph. | |
182 | |
183 """ | |
184 if nodelist is None: | |
185 nodelist = G | |
186 | |
187 d = {} | |
188 for n in nodelist: | |
189 d[n] = [nbr for nbr in G.neighbors(n) if nbr in nodelist] | |
190 return d | |
191 | |
192 | |
193 def from_dict_of_lists(d, create_using=None): | |
194 """Returns a graph from a dictionary of lists. | |
195 | |
196 Parameters | |
197 ---------- | |
198 d : dictionary of lists | |
199 A dictionary of lists adjacency representation. | |
200 | |
201 create_using : NetworkX graph constructor, optional (default=nx.Graph) | |
202 Graph type to create. If graph instance, then cleared before populated. | |
203 | |
204 Examples | |
205 -------- | |
206 >>> dol = {0: [1]} # single edge (0,1) | |
207 >>> G = nx.from_dict_of_lists(dol) | |
208 | |
209 or | |
210 | |
211 >>> G = nx.Graph(dol) # use Graph constructor | |
212 | |
213 """ | |
214 G = nx.empty_graph(0, create_using) | |
215 G.add_nodes_from(d) | |
216 if G.is_multigraph() and not G.is_directed(): | |
217 # a dict_of_lists can't show multiedges. BUT for undirected graphs, | |
218 # each edge shows up twice in the dict_of_lists. | |
219 # So we need to treat this case separately. | |
220 seen = {} | |
221 for node, nbrlist in d.items(): | |
222 for nbr in nbrlist: | |
223 if nbr not in seen: | |
224 G.add_edge(node, nbr) | |
225 seen[node] = 1 # don't allow reverse edge to show up | |
226 else: | |
227 G.add_edges_from(((node, nbr) for node, nbrlist in d.items() | |
228 for nbr in nbrlist)) | |
229 return G | |
230 | |
231 | |
232 def to_dict_of_dicts(G, nodelist=None, edge_data=None): | |
233 """Returns adjacency representation of graph as a dictionary of dictionaries. | |
234 | |
235 Parameters | |
236 ---------- | |
237 G : graph | |
238 A NetworkX graph | |
239 | |
240 nodelist : list | |
241 Use only nodes specified in nodelist | |
242 | |
243 edge_data : list, optional | |
244 If provided, the value of the dictionary will be | |
245 set to edge_data for all edges. This is useful to make | |
246 an adjacency matrix type representation with 1 as the edge data. | |
247 If edgedata is None, the edgedata in G is used to fill the values. | |
248 If G is a multigraph, the edgedata is a dict for each pair (u,v). | |
249 """ | |
250 dod = {} | |
251 if nodelist is None: | |
252 if edge_data is None: | |
253 for u, nbrdict in G.adjacency(): | |
254 dod[u] = nbrdict.copy() | |
255 else: # edge_data is not None | |
256 for u, nbrdict in G.adjacency(): | |
257 dod[u] = dod.fromkeys(nbrdict, edge_data) | |
258 else: # nodelist is not None | |
259 if edge_data is None: | |
260 for u in nodelist: | |
261 dod[u] = {} | |
262 for v, data in ((v, data) for v, data in G[u].items() if v in nodelist): | |
263 dod[u][v] = data | |
264 else: # nodelist and edge_data are not None | |
265 for u in nodelist: | |
266 dod[u] = {} | |
267 for v in (v for v in G[u] if v in nodelist): | |
268 dod[u][v] = edge_data | |
269 return dod | |
270 | |
271 | |
272 def from_dict_of_dicts(d, create_using=None, multigraph_input=False): | |
273 """Returns a graph from a dictionary of dictionaries. | |
274 | |
275 Parameters | |
276 ---------- | |
277 d : dictionary of dictionaries | |
278 A dictionary of dictionaries adjacency representation. | |
279 | |
280 create_using : NetworkX graph constructor, optional (default=nx.Graph) | |
281 Graph type to create. If graph instance, then cleared before populated. | |
282 | |
283 multigraph_input : bool (default False) | |
284 When True, the values of the inner dict are assumed | |
285 to be containers of edge data for multiple edges. | |
286 Otherwise this routine assumes the edge data are singletons. | |
287 | |
288 Examples | |
289 -------- | |
290 >>> dod = {0: {1: {'weight': 1}}} # single edge (0,1) | |
291 >>> G = nx.from_dict_of_dicts(dod) | |
292 | |
293 or | |
294 | |
295 >>> G = nx.Graph(dod) # use Graph constructor | |
296 | |
297 """ | |
298 G = nx.empty_graph(0, create_using) | |
299 G.add_nodes_from(d) | |
300 # is dict a MultiGraph or MultiDiGraph? | |
301 if multigraph_input: | |
302 # make a copy of the list of edge data (but not the edge data) | |
303 if G.is_directed(): | |
304 if G.is_multigraph(): | |
305 G.add_edges_from((u, v, key, data) | |
306 for u, nbrs in d.items() | |
307 for v, datadict in nbrs.items() | |
308 for key, data in datadict.items()) | |
309 else: | |
310 G.add_edges_from((u, v, data) | |
311 for u, nbrs in d.items() | |
312 for v, datadict in nbrs.items() | |
313 for key, data in datadict.items()) | |
314 else: # Undirected | |
315 if G.is_multigraph(): | |
316 seen = set() # don't add both directions of undirected graph | |
317 for u, nbrs in d.items(): | |
318 for v, datadict in nbrs.items(): | |
319 if (u, v) not in seen: | |
320 G.add_edges_from((u, v, key, data) | |
321 for key, data in datadict.items()) | |
322 seen.add((v, u)) | |
323 else: | |
324 seen = set() # don't add both directions of undirected graph | |
325 for u, nbrs in d.items(): | |
326 for v, datadict in nbrs.items(): | |
327 if (u, v) not in seen: | |
328 G.add_edges_from((u, v, data) | |
329 for key, data in datadict.items()) | |
330 seen.add((v, u)) | |
331 | |
332 else: # not a multigraph to multigraph transfer | |
333 if G.is_multigraph() and not G.is_directed(): | |
334 # d can have both representations u-v, v-u in dict. Only add one. | |
335 # We don't need this check for digraphs since we add both directions, | |
336 # or for Graph() since it is done implicitly (parallel edges not allowed) | |
337 seen = set() | |
338 for u, nbrs in d.items(): | |
339 for v, data in nbrs.items(): | |
340 if (u, v) not in seen: | |
341 G.add_edge(u, v, key=0) | |
342 G[u][v][0].update(data) | |
343 seen.add((v, u)) | |
344 else: | |
345 G.add_edges_from(((u, v, data) | |
346 for u, nbrs in d.items() | |
347 for v, data in nbrs.items())) | |
348 return G | |
349 | |
350 | |
351 def to_edgelist(G, nodelist=None): | |
352 """Returns a list of edges in the graph. | |
353 | |
354 Parameters | |
355 ---------- | |
356 G : graph | |
357 A NetworkX graph | |
358 | |
359 nodelist : list | |
360 Use only nodes specified in nodelist | |
361 | |
362 """ | |
363 if nodelist is None: | |
364 return G.edges(data=True) | |
365 return G.edges(nodelist, data=True) | |
366 | |
367 | |
368 def from_edgelist(edgelist, create_using=None): | |
369 """Returns a graph from a list of edges. | |
370 | |
371 Parameters | |
372 ---------- | |
373 edgelist : list or iterator | |
374 Edge tuples | |
375 | |
376 create_using : NetworkX graph constructor, optional (default=nx.Graph) | |
377 Graph type to create. If graph instance, then cleared before populated. | |
378 | |
379 Examples | |
380 -------- | |
381 >>> edgelist = [(0, 1)] # single edge (0,1) | |
382 >>> G = nx.from_edgelist(edgelist) | |
383 | |
384 or | |
385 | |
386 >>> G = nx.Graph(edgelist) # use Graph constructor | |
387 | |
388 """ | |
389 G = nx.empty_graph(0, create_using) | |
390 G.add_edges_from(edgelist) | |
391 return G |