Mercurial > repos > shellac > guppy_basecaller
comparison env/lib/python3.7/site-packages/networkx/linalg/spectrum.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
author | shellac |
---|---|
date | Sat, 02 May 2020 07:14:21 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:26e78fe6e8c4 |
---|---|
1 """ | |
2 Eigenvalue spectrum of graphs. | |
3 """ | |
4 # Copyright (C) 2004-2019 by | |
5 # Aric Hagberg <hagberg@lanl.gov> | |
6 # Dan Schult <dschult@colgate.edu> | |
7 # Pieter Swart <swart@lanl.gov> | |
8 # All rights reserved. | |
9 # BSD license. | |
10 import networkx as nx | |
11 __author__ = "\n".join(['Aric Hagberg <aric.hagberg@gmail.com>', | |
12 'Pieter Swart (swart@lanl.gov)', | |
13 'Dan Schult(dschult@colgate.edu)', | |
14 'Jean-Gabriel Young (jean.gabriel.young@gmail.com)']) | |
15 | |
16 __all__ = ['laplacian_spectrum', 'adjacency_spectrum', 'modularity_spectrum', | |
17 'normalized_laplacian_spectrum', 'bethe_hessian_spectrum'] | |
18 | |
19 | |
20 def laplacian_spectrum(G, weight='weight'): | |
21 """Returns eigenvalues of the Laplacian of G | |
22 | |
23 Parameters | |
24 ---------- | |
25 G : graph | |
26 A NetworkX graph | |
27 | |
28 weight : string or None, optional (default='weight') | |
29 The edge data key used to compute each value in the matrix. | |
30 If None, then each edge has weight 1. | |
31 | |
32 Returns | |
33 ------- | |
34 evals : NumPy array | |
35 Eigenvalues | |
36 | |
37 Notes | |
38 ----- | |
39 For MultiGraph/MultiDiGraph, the edges weights are summed. | |
40 See to_numpy_matrix for other options. | |
41 | |
42 See Also | |
43 -------- | |
44 laplacian_matrix | |
45 """ | |
46 from scipy.linalg import eigvalsh | |
47 return eigvalsh(nx.laplacian_matrix(G, weight=weight).todense()) | |
48 | |
49 | |
50 def normalized_laplacian_spectrum(G, weight='weight'): | |
51 """Return eigenvalues of the normalized Laplacian of G | |
52 | |
53 Parameters | |
54 ---------- | |
55 G : graph | |
56 A NetworkX graph | |
57 | |
58 weight : string or None, optional (default='weight') | |
59 The edge data key used to compute each value in the matrix. | |
60 If None, then each edge has weight 1. | |
61 | |
62 Returns | |
63 ------- | |
64 evals : NumPy array | |
65 Eigenvalues | |
66 | |
67 Notes | |
68 ----- | |
69 For MultiGraph/MultiDiGraph, the edges weights are summed. | |
70 See to_numpy_matrix for other options. | |
71 | |
72 See Also | |
73 -------- | |
74 normalized_laplacian_matrix | |
75 """ | |
76 from scipy.linalg import eigvalsh | |
77 return eigvalsh(nx.normalized_laplacian_matrix(G, weight=weight).todense()) | |
78 | |
79 | |
80 def adjacency_spectrum(G, weight='weight'): | |
81 """Returns eigenvalues of the adjacency matrix of G. | |
82 | |
83 Parameters | |
84 ---------- | |
85 G : graph | |
86 A NetworkX graph | |
87 | |
88 weight : string or None, optional (default='weight') | |
89 The edge data key used to compute each value in the matrix. | |
90 If None, then each edge has weight 1. | |
91 | |
92 Returns | |
93 ------- | |
94 evals : NumPy array | |
95 Eigenvalues | |
96 | |
97 Notes | |
98 ----- | |
99 For MultiGraph/MultiDiGraph, the edges weights are summed. | |
100 See to_numpy_matrix for other options. | |
101 | |
102 See Also | |
103 -------- | |
104 adjacency_matrix | |
105 """ | |
106 from scipy.linalg import eigvals | |
107 return eigvals(nx.adjacency_matrix(G, weight=weight).todense()) | |
108 | |
109 | |
110 def modularity_spectrum(G): | |
111 """Returns eigenvalues of the modularity matrix of G. | |
112 | |
113 Parameters | |
114 ---------- | |
115 G : Graph | |
116 A NetworkX Graph or DiGraph | |
117 | |
118 Returns | |
119 ------- | |
120 evals : NumPy array | |
121 Eigenvalues | |
122 | |
123 See Also | |
124 -------- | |
125 modularity_matrix | |
126 | |
127 References | |
128 ---------- | |
129 .. [1] M. E. J. Newman, "Modularity and community structure in networks", | |
130 Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006. | |
131 """ | |
132 from scipy.linalg import eigvals | |
133 if G.is_directed(): | |
134 return eigvals(nx.directed_modularity_matrix(G)) | |
135 else: | |
136 return eigvals(nx.modularity_matrix(G)) | |
137 | |
138 | |
139 def bethe_hessian_spectrum(G, r=None): | |
140 """Returns eigenvalues of the Bethe Hessian matrix of G. | |
141 | |
142 Parameters | |
143 ---------- | |
144 G : Graph | |
145 A NetworkX Graph or DiGraph | |
146 | |
147 r : float | |
148 Regularizer parameter | |
149 | |
150 Returns | |
151 ------- | |
152 evals : NumPy array | |
153 Eigenvalues | |
154 | |
155 See Also | |
156 -------- | |
157 bethe_hessian_matrix | |
158 | |
159 References | |
160 ---------- | |
161 .. [1] A. Saade, F. Krzakala and L. Zdeborová | |
162 "Spectral clustering of graphs with the bethe hessian", | |
163 Advances in Neural Information Processing Systems. 2014. | |
164 """ | |
165 from scipy.linalg import eigvalsh | |
166 return eigvalsh(nx.bethe_hessian_matrix(G, r).todense()) | |
167 | |
168 | |
169 # fixture for pytest | |
170 def setup_module(module): | |
171 import pytest | |
172 scipy.linalg = pytest.importorskip('scipy.linalg') |