comparison env/lib/python3.7/site-packages/networkx/linalg/algebraicconnectivity.py @ 2:6af9afd405e9 draft

"planemo upload commit 0a63dd5f4d38a1f6944587f52a8cd79874177fc1"
author shellac
date Thu, 14 May 2020 14:56:58 -0400
parents 26e78fe6e8c4
children
comparison
equal deleted inserted replaced
1:75ca89e9b81c 2:6af9afd405e9
1 # -*- coding: utf-8 -*-
2 # Copyright (C) 2014 ysitu <ysitu@users.noreply.github.com>
3 # All rights reserved.
4 # BSD license.
5 #
6 # Author: ysitu <ysitu@users.noreply.github.com>
7 """
8 Algebraic connectivity and Fiedler vectors of undirected graphs.
9 """
10 from functools import partial
11 import networkx as nx
12 from networkx.utils import not_implemented_for
13 from networkx.utils import reverse_cuthill_mckee_ordering
14 from networkx.utils import random_state
15
16 try:
17 from numpy import array, asmatrix, asarray, dot, ndarray, ones, sqrt, zeros
18 from numpy.linalg import norm, qr
19 from numpy.random import normal
20 from scipy.linalg import eigh, inv
21 from scipy.sparse import csc_matrix, spdiags
22 from scipy.sparse.linalg import eigsh, lobpcg
23 __all__ = ['algebraic_connectivity', 'fiedler_vector', 'spectral_ordering']
24 except ImportError:
25 __all__ = []
26
27 try:
28 from scipy.linalg.blas import dasum, daxpy, ddot
29 except ImportError:
30 if __all__:
31 # Make sure the imports succeeded.
32 # Use minimal replacements if BLAS is unavailable from SciPy.
33 dasum = partial(norm, ord=1)
34 ddot = dot
35
36 def daxpy(x, y, a):
37 y += a * x
38 return y
39
40
41 class _PCGSolver(object):
42 """Preconditioned conjugate gradient method.
43
44 To solve Ax = b:
45 M = A.diagonal() # or some other preconditioner
46 solver = _PCGSolver(lambda x: A * x, lambda x: M * x)
47 x = solver.solve(b)
48
49 The inputs A and M are functions which compute
50 matrix multiplication on the argument.
51 A - multiply by the matrix A in Ax=b
52 M - multiply by M, the preconditioner surragate for A
53
54 Warning: There is no limit on number of iterations.
55 """
56
57 def __init__(self, A, M):
58 self._A = A
59 self._M = M or (lambda x: x.copy())
60
61 def solve(self, B, tol):
62 B = asarray(B)
63 X = ndarray(B.shape, order='F')
64 for j in range(B.shape[1]):
65 X[:, j] = self._solve(B[:, j], tol)
66 return X
67
68 def _solve(self, b, tol):
69 A = self._A
70 M = self._M
71 tol *= dasum(b)
72 # Initialize.
73 x = zeros(b.shape)
74 r = b.copy()
75 z = M(r)
76 rz = ddot(r, z)
77 p = z.copy()
78 # Iterate.
79 while True:
80 Ap = A(p)
81 alpha = rz / ddot(p, Ap)
82 x = daxpy(p, x, a=alpha)
83 r = daxpy(Ap, r, a=-alpha)
84 if dasum(r) < tol:
85 return x
86 z = M(r)
87 beta = ddot(r, z)
88 beta, rz = beta / rz, beta
89 p = daxpy(p, z, a=beta)
90
91
92 class _CholeskySolver(object):
93 """Cholesky factorization.
94
95 To solve Ax = b:
96 solver = _CholeskySolver(A)
97 x = solver.solve(b)
98
99 optional argument `tol` on solve method is ignored but included
100 to match _PCGsolver API.
101 """
102
103 def __init__(self, A):
104 if not self._cholesky:
105 raise nx.NetworkXError('Cholesky solver unavailable.')
106 self._chol = self._cholesky(A)
107
108 def solve(self, B, tol=None):
109 return self._chol(B)
110
111 try:
112 from scikits.sparse.cholmod import cholesky
113 _cholesky = cholesky
114 except ImportError:
115 _cholesky = None
116
117
118 class _LUSolver(object):
119 """LU factorization.
120
121 To solve Ax = b:
122 solver = _LUSolver(A)
123 x = solver.solve(b)
124
125 optional argument `tol` on solve method is ignored but included
126 to match _PCGsolver API.
127 """
128
129 def __init__(self, A):
130 if not self._splu:
131 raise nx.NetworkXError('LU solver unavailable.')
132 self._LU = self._splu(A)
133
134 def solve(self, B, tol=None):
135 B = asarray(B)
136 X = ndarray(B.shape, order='F')
137 for j in range(B.shape[1]):
138 X[:, j] = self._LU.solve(B[:, j])
139 return X
140
141 try:
142 from scipy.sparse.linalg import splu
143 _splu = partial(splu, permc_spec='MMD_AT_PLUS_A', diag_pivot_thresh=0.,
144 options={'Equil': True, 'SymmetricMode': True})
145 except ImportError:
146 _splu = None
147
148
149 def _preprocess_graph(G, weight):
150 """Compute edge weights and eliminate zero-weight edges.
151 """
152 if G.is_directed():
153 H = nx.MultiGraph()
154 H.add_nodes_from(G)
155 H.add_weighted_edges_from(((u, v, e.get(weight, 1.))
156 for u, v, e in G.edges(data=True)
157 if u != v), weight=weight)
158 G = H
159 if not G.is_multigraph():
160 edges = ((u, v, abs(e.get(weight, 1.)))
161 for u, v, e in G.edges(data=True) if u != v)
162 else:
163 edges = ((u, v, sum(abs(e.get(weight, 1.)) for e in G[u][v].values()))
164 for u, v in G.edges() if u != v)
165 H = nx.Graph()
166 H.add_nodes_from(G)
167 H.add_weighted_edges_from((u, v, e) for u, v, e in edges if e != 0)
168 return H
169
170
171 def _rcm_estimate(G, nodelist):
172 """Estimate the Fiedler vector using the reverse Cuthill-McKee ordering.
173 """
174 G = G.subgraph(nodelist)
175 order = reverse_cuthill_mckee_ordering(G)
176 n = len(nodelist)
177 index = dict(zip(nodelist, range(n)))
178 x = ndarray(n, dtype=float)
179 for i, u in enumerate(order):
180 x[index[u]] = i
181 x -= (n - 1) / 2.
182 return x
183
184
185 def _tracemin_fiedler(L, X, normalized, tol, method):
186 """Compute the Fiedler vector of L using the TraceMIN-Fiedler algorithm.
187
188 The Fiedler vector of a connected undirected graph is the eigenvector
189 corresponding to the second smallest eigenvalue of the Laplacian matrix of
190 of the graph. This function starts with the Laplacian L, not the Graph.
191
192 Parameters
193 ----------
194 L : Laplacian of a possibly weighted or normalized, but undirected graph
195
196 X : Initial guess for a solution. Usually a matrix of random numbers.
197 This function allows more than one column in X to identify more than
198 one eigenvector if desired.
199
200 normalized : bool
201 Whether the normalized Laplacian matrix is used.
202
203 tol : float
204 Tolerance of relative residual in eigenvalue computation.
205 Warning: There is no limit on number of iterations.
206
207 method : string
208 Should be 'tracemin_pcg', 'tracemin_chol' or 'tracemin_lu'.
209 Otherwise exception is raised.
210
211 Returns
212 -------
213 sigma, X : Two NumPy arrays of floats.
214 The lowest eigenvalues and corresponding eigenvectors of L.
215 The size of input X determines the size of these outputs.
216 As this is for Fiedler vectors, the zero eigenvalue (and
217 constant eigenvector) are avoided.
218 """
219 n = X.shape[0]
220
221 if normalized:
222 # Form the normalized Laplacian matrix and determine the eigenvector of
223 # its nullspace.
224 e = sqrt(L.diagonal())
225 D = spdiags(1. / e, [0], n, n, format='csr')
226 L = D * L * D
227 e *= 1. / norm(e, 2)
228
229 if normalized:
230 def project(X):
231 """Make X orthogonal to the nullspace of L.
232 """
233 X = asarray(X)
234 for j in range(X.shape[1]):
235 X[:, j] -= dot(X[:, j], e) * e
236 else:
237 def project(X):
238 """Make X orthogonal to the nullspace of L.
239 """
240 X = asarray(X)
241 for j in range(X.shape[1]):
242 X[:, j] -= X[:, j].sum() / n
243
244 if method == 'tracemin_pcg':
245 D = L.diagonal().astype(float)
246 solver = _PCGSolver(lambda x: L * x, lambda x: D * x)
247 elif method == 'tracemin_chol' or method == 'tracemin_lu':
248 # Convert A to CSC to suppress SparseEfficiencyWarning.
249 A = csc_matrix(L, dtype=float, copy=True)
250 # Force A to be nonsingular. Since A is the Laplacian matrix of a
251 # connected graph, its rank deficiency is one, and thus one diagonal
252 # element needs to modified. Changing to infinity forces a zero in the
253 # corresponding element in the solution.
254 i = (A.indptr[1:] - A.indptr[:-1]).argmax()
255 A[i, i] = float('inf')
256 if method == 'tracemin_chol':
257 solver = _CholeskySolver(A)
258 else:
259 solver = _LUSolver(A)
260 else:
261 raise nx.NetworkXError('Unknown linear system solver: ' + method)
262
263 # Initialize.
264 Lnorm = abs(L).sum(axis=1).flatten().max()
265 project(X)
266 W = asmatrix(ndarray(X.shape, order='F'))
267
268 while True:
269 # Orthonormalize X.
270 X = qr(X)[0]
271 # Compute iteration matrix H.
272 W[:, :] = L * X
273 H = X.T * W
274 sigma, Y = eigh(H, overwrite_a=True)
275 # Compute the Ritz vectors.
276 X *= Y
277 # Test for convergence exploiting the fact that L * X == W * Y.
278 res = dasum(W * asmatrix(Y)[:, 0] - sigma[0] * X[:, 0]) / Lnorm
279 if res < tol:
280 break
281 # Compute X = L \ X / (X' * (L \ X)).
282 # L \ X can have an arbitrary projection on the nullspace of L,
283 # which will be eliminated.
284 W[:, :] = solver.solve(X, tol)
285 X = (inv(W.T * X) * W.T).T # Preserves Fortran storage order.
286 project(X)
287
288 return sigma, asarray(X)
289
290
291 def _get_fiedler_func(method):
292 """Returns a function that solves the Fiedler eigenvalue problem.
293 """
294 if method == "tracemin": # old style keyword <v2.1
295 method = "tracemin_pcg"
296 if method in ("tracemin_pcg", "tracemin_chol", "tracemin_lu"):
297 def find_fiedler(L, x, normalized, tol, seed):
298 q = 1 if method == 'tracemin_pcg' else min(4, L.shape[0] - 1)
299 X = asmatrix(seed.normal(size=(q, L.shape[0]))).T
300 sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
301 return sigma[0], X[:, 0]
302 elif method == 'lanczos' or method == 'lobpcg':
303 def find_fiedler(L, x, normalized, tol, seed):
304 L = csc_matrix(L, dtype=float)
305 n = L.shape[0]
306 if normalized:
307 D = spdiags(1. / sqrt(L.diagonal()), [0], n, n, format='csc')
308 L = D * L * D
309 if method == 'lanczos' or n < 10:
310 # Avoid LOBPCG when n < 10 due to
311 # https://github.com/scipy/scipy/issues/3592
312 # https://github.com/scipy/scipy/pull/3594
313 sigma, X = eigsh(L, 2, which='SM', tol=tol,
314 return_eigenvectors=True)
315 return sigma[1], X[:, 1]
316 else:
317 X = asarray(asmatrix(x).T)
318 M = spdiags(1. / L.diagonal(), [0], n, n)
319 Y = ones(n)
320 if normalized:
321 Y /= D.diagonal()
322 sigma, X = lobpcg(L, X, M=M, Y=asmatrix(Y).T, tol=tol,
323 maxiter=n, largest=False)
324 return sigma[0], X[:, 0]
325 else:
326 raise nx.NetworkXError("unknown method '%s'." % method)
327
328 return find_fiedler
329
330
331 @random_state(5)
332 @not_implemented_for('directed')
333 def algebraic_connectivity(G, weight='weight', normalized=False, tol=1e-8,
334 method='tracemin_pcg', seed=None):
335 """Returns the algebraic connectivity of an undirected graph.
336
337 The algebraic connectivity of a connected undirected graph is the second
338 smallest eigenvalue of its Laplacian matrix.
339
340 Parameters
341 ----------
342 G : NetworkX graph
343 An undirected graph.
344
345 weight : object, optional (default: None)
346 The data key used to determine the weight of each edge. If None, then
347 each edge has unit weight.
348
349 normalized : bool, optional (default: False)
350 Whether the normalized Laplacian matrix is used.
351
352 tol : float, optional (default: 1e-8)
353 Tolerance of relative residual in eigenvalue computation.
354
355 method : string, optional (default: 'tracemin_pcg')
356 Method of eigenvalue computation. It must be one of the tracemin
357 options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
358 or 'lobpcg' (LOBPCG).
359
360 The TraceMIN algorithm uses a linear system solver. The following
361 values allow specifying the solver to be used.
362
363 =============== ========================================
364 Value Solver
365 =============== ========================================
366 'tracemin_pcg' Preconditioned conjugate gradient method
367 'tracemin_chol' Cholesky factorization
368 'tracemin_lu' LU factorization
369 =============== ========================================
370
371 seed : integer, random_state, or None (default)
372 Indicator of random number generation state.
373 See :ref:`Randomness<randomness>`.
374
375 Returns
376 -------
377 algebraic_connectivity : float
378 Algebraic connectivity.
379
380 Raises
381 ------
382 NetworkXNotImplemented
383 If G is directed.
384
385 NetworkXError
386 If G has less than two nodes.
387
388 Notes
389 -----
390 Edge weights are interpreted by their absolute values. For MultiGraph's,
391 weights of parallel edges are summed. Zero-weighted edges are ignored.
392
393 To use Cholesky factorization in the TraceMIN algorithm, the
394 :samp:`scikits.sparse` package must be installed.
395
396 See Also
397 --------
398 laplacian_matrix
399 """
400 if len(G) < 2:
401 raise nx.NetworkXError('graph has less than two nodes.')
402 G = _preprocess_graph(G, weight)
403 if not nx.is_connected(G):
404 return 0.
405
406 L = nx.laplacian_matrix(G)
407 if L.shape[0] == 2:
408 return 2. * L[0, 0] if not normalized else 2.
409
410 find_fiedler = _get_fiedler_func(method)
411 x = None if method != 'lobpcg' else _rcm_estimate(G, G)
412 sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
413 return sigma
414
415
416 @random_state(5)
417 @not_implemented_for('directed')
418 def fiedler_vector(G, weight='weight', normalized=False, tol=1e-8,
419 method='tracemin_pcg', seed=None):
420 """Returns the Fiedler vector of a connected undirected graph.
421
422 The Fiedler vector of a connected undirected graph is the eigenvector
423 corresponding to the second smallest eigenvalue of the Laplacian matrix of
424 of the graph.
425
426 Parameters
427 ----------
428 G : NetworkX graph
429 An undirected graph.
430
431 weight : object, optional (default: None)
432 The data key used to determine the weight of each edge. If None, then
433 each edge has unit weight.
434
435 normalized : bool, optional (default: False)
436 Whether the normalized Laplacian matrix is used.
437
438 tol : float, optional (default: 1e-8)
439 Tolerance of relative residual in eigenvalue computation.
440
441 method : string, optional (default: 'tracemin_pcg')
442 Method of eigenvalue computation. It must be one of the tracemin
443 options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
444 or 'lobpcg' (LOBPCG).
445
446 The TraceMIN algorithm uses a linear system solver. The following
447 values allow specifying the solver to be used.
448
449 =============== ========================================
450 Value Solver
451 =============== ========================================
452 'tracemin_pcg' Preconditioned conjugate gradient method
453 'tracemin_chol' Cholesky factorization
454 'tracemin_lu' LU factorization
455 =============== ========================================
456
457 seed : integer, random_state, or None (default)
458 Indicator of random number generation state.
459 See :ref:`Randomness<randomness>`.
460
461 Returns
462 -------
463 fiedler_vector : NumPy array of floats.
464 Fiedler vector.
465
466 Raises
467 ------
468 NetworkXNotImplemented
469 If G is directed.
470
471 NetworkXError
472 If G has less than two nodes or is not connected.
473
474 Notes
475 -----
476 Edge weights are interpreted by their absolute values. For MultiGraph's,
477 weights of parallel edges are summed. Zero-weighted edges are ignored.
478
479 To use Cholesky factorization in the TraceMIN algorithm, the
480 :samp:`scikits.sparse` package must be installed.
481
482 See Also
483 --------
484 laplacian_matrix
485 """
486 if len(G) < 2:
487 raise nx.NetworkXError('graph has less than two nodes.')
488 G = _preprocess_graph(G, weight)
489 if not nx.is_connected(G):
490 raise nx.NetworkXError('graph is not connected.')
491
492 if len(G) == 2:
493 return array([1., -1.])
494
495 find_fiedler = _get_fiedler_func(method)
496 L = nx.laplacian_matrix(G)
497 x = None if method != 'lobpcg' else _rcm_estimate(G, G)
498 sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
499 return fiedler
500
501
502 @random_state(5)
503 def spectral_ordering(G, weight='weight', normalized=False, tol=1e-8,
504 method='tracemin_pcg', seed=None):
505 """Compute the spectral_ordering of a graph.
506
507 The spectral ordering of a graph is an ordering of its nodes where nodes
508 in the same weakly connected components appear contiguous and ordered by
509 their corresponding elements in the Fiedler vector of the component.
510
511 Parameters
512 ----------
513 G : NetworkX graph
514 A graph.
515
516 weight : object, optional (default: None)
517 The data key used to determine the weight of each edge. If None, then
518 each edge has unit weight.
519
520 normalized : bool, optional (default: False)
521 Whether the normalized Laplacian matrix is used.
522
523 tol : float, optional (default: 1e-8)
524 Tolerance of relative residual in eigenvalue computation.
525
526 method : string, optional (default: 'tracemin_pcg')
527 Method of eigenvalue computation. It must be one of the tracemin
528 options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
529 or 'lobpcg' (LOBPCG).
530
531 The TraceMIN algorithm uses a linear system solver. The following
532 values allow specifying the solver to be used.
533
534 =============== ========================================
535 Value Solver
536 =============== ========================================
537 'tracemin_pcg' Preconditioned conjugate gradient method
538 'tracemin_chol' Cholesky factorization
539 'tracemin_lu' LU factorization
540 =============== ========================================
541
542 seed : integer, random_state, or None (default)
543 Indicator of random number generation state.
544 See :ref:`Randomness<randomness>`.
545
546 Returns
547 -------
548 spectral_ordering : NumPy array of floats.
549 Spectral ordering of nodes.
550
551 Raises
552 ------
553 NetworkXError
554 If G is empty.
555
556 Notes
557 -----
558 Edge weights are interpreted by their absolute values. For MultiGraph's,
559 weights of parallel edges are summed. Zero-weighted edges are ignored.
560
561 To use Cholesky factorization in the TraceMIN algorithm, the
562 :samp:`scikits.sparse` package must be installed.
563
564 See Also
565 --------
566 laplacian_matrix
567 """
568 if len(G) == 0:
569 raise nx.NetworkXError('graph is empty.')
570 G = _preprocess_graph(G, weight)
571
572 find_fiedler = _get_fiedler_func(method)
573 order = []
574 for component in nx.connected_components(G):
575 size = len(component)
576 if size > 2:
577 L = nx.laplacian_matrix(G, component)
578 x = None if method != 'lobpcg' else _rcm_estimate(G, component)
579 sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
580 sort_info = zip(fiedler, range(size), component)
581 order.extend(u for x, c, u in sorted(sort_info))
582 else:
583 order.extend(component)
584
585 return order
586
587
588 # fixture for pytest
589 def setup_module(module):
590 import pytest
591 numpy = pytest.importorskip('numpy')
592 scipy.sparse = pytest.importorskip('scipy.sparse')